
Abstract: The continuation of general Dirichlet series to meromorphic functions in the complex plane remains
an outstanding problem. It has been completely solved only for Dirichlet L-series. A sufficient condition for the
general case exists, however it is impossible to verify that it is fulfilled. We solve this problem here for another
class of general Dirichlet series, namely those series which are obtained from infinite Blaschke products by a
particular change of variable. This is a source of examples of general Dirichlet series with infinitely many poles.
An interesting new case is now revealed, in which the singular points of the extended function form a continuum.
We take a closer look at the case of Dirichlet series with natural boundary and give examples of such series. Some
figures illustrate the theory.
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1 Introduction
A general Dirichlet series is an expression of the form

ζA,Λ(s) =

∞∑
n=1

ane
−λns (1)

where A = (an) is an arbitrary sequence of complex
numbers, an ≠ 0 infinitely many times and

Λ = {0 = λ1 ≤ λ2 ≤ ...}

is a nondecreasing sequence of nonnegative numbers
such that limn→∞ λn = +∞.We will deal only with
normalized Dirichlet series for which a1 = 1. It is
obvious that for such a series we have

lim
σ→+∞

ζA,Λ(σ + it) = 1. (2)

If ζA,Λ(s) does not converge for s = 0, then [1],
[2], [3], [4], [5], [6], [7],

σc = lim sup ln
∣∣∣∣ n∑
k=1

ak

∣∣∣∣ 1

λn

,

is called the abscissa of convergence of the series (1).
The series converges for every s = σ+itwith σ > σc
and it diverges for every s = σ + it with σ < σc.
Obviously, if σc = +∞, the series does not converge
anywhere. If the series converges at s = 0, then the
abscissa of convergence is

σc = lim sup
n→∞

1

λn+1
ln
∣∣∣∣ζA,Λ(0)−

n∑
k=1

ak

∣∣∣∣ < 0.

To every series (1), a series

ζA,eΛ(s) =

∞∑
n=1

ane
−eλns (3)

is associated, where the exponents λn are replaced
by eλn . It is known, [8], that if the abscissa of
convergence σc of the series (1) is a finite number,
then the abscissa of convergence of the series (3)
is zero. Moreover, if the series (3) converges
everywhere on the imaginary axis, except for some
isolated points, then the series (1) can be extended to
a meromorphic function in the whole complex plane.

We call the extended function Dirichlet function.
When λn = lnn the series (1) becomes

ζA(s) =

∞∑
n=1

an
ns

and it is called ordinary Dirichlet series. The abscissa
of convergence of this series is

σc =

lim sup
[
ln
∣∣∣∣∑n

k=1 ak

∣∣∣∣]
lnn

.

The ordinary Dirichlet series with

an = 1, n = 1, 2, ...,

has the abscissa of convergence σc = 1 and it
admits an analytic continuation in C\{1}, which is
the famous Riemann Zeta function, ζ(s). A lot of
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studies have been devoted to this function, [9], [10],
due to its applications in number theory, statistics
and physics. One of the most unbelievable properties
of ζ(s) is that its all nonreal zeros are located on
the line ℜs = 1/2 (the Riemann Hypothesis). It
has been shown, [11], that this property is common
to all Dirichlet functions satisfying a Riemann type
of functional equation and which can be written as
an Euler product. The so-called Dirichlet L-series
satisfy to these conditions. These are series whose
coefficients an are Dirichlet characters χ(n), i.e.
periodic functions of some period q,whose values are
zero or some roots of order q of the unity. When these
values are just 0 and 1, the abscissa of convergence
of the series is 1, otherwise, it is 0. Every one of
these series admits an analytic continuation to the
whole complex plane, except for one simple pole at
0 or 1. The continued meromorphic function is called
Dirichlet L-function.

In this paper we deal with general Dirichlet series
which have infinitely many poles or do not admit
analytic continuation across the convergence line.

Example 1 and Example 2 below display Dirichlet
functions having infinitely many poles, all located
on the convergence line. In our knowledge, this is
something new. These functions are obtained from
some Blaschke products by a change of variable.
Those Blaschke products are meromorphic functions
in the complex plane and so are theDirichlet functions
generated by them. Then, the original Dirichlet
series are automatically extended to meromorphic
functions in the whole complex plane. This way of
generating Dirichlet functions can be used starting
from any Blaschke product, finite or infinite, which
does not cancel at the origin. In the case of infinite
Blaschke products, the abscissa of convergence of the
Dirichlet series is zero. Beside the poles on the line
of convergence, the Dirichlet function obtained by
a change of variable has also non isolated essential
singular points corresponding to the cluster points of
poles of the original Blaschke product. Again, this
has not been encountered in the literature until now.
Moreover, these essential singular points may be
found almost everywhere on the line of convergence,
making impossible the continuation of the Dirichlet
series across that line.

We have shown in [12], that the series

∞∑
n=0

e−2ns

is such a series, for which the abscissa of convergence
is 0. Indeed, this is a Dirichlet series with ak = 0 if
k ̸= 2n, a2n = 1 and λ2n = 2n . It is known that the

Hadamard series

h(z) =

∞∑
n=0

z2
n

has the unit circle as natural boundary. We obtain the
Dirichlet series

∞∑
n=0

e−2ns

by changing the variable z = reiθ in the Hadamard
series with e−s = e−σe−it. We notice that r → 1 if
and only if σ → 0 and this is true for any t. We have
seen in [12], that

lim
r→1

h
(
re

2kπi

2n

)
= ∞

for every n ∈ N and every k = 1, 2, ..., 2n, i.e.,

lim
r→1

h(reiθ) = ∞

for almost every θ ∈ R. This implies

lim
σ→0

∞∑
n=0

e−2n(σ+it) = ∞

for almost every t ∈ R.
This is a clear example of Dirichlet series for

which the convergence line is a natural boundary.
Any power series

∞∑
n=1

an(z − z0)
n,

having the convergence radius R and the circle of
convergence |z − z0| = R as natural boundary, can
be converted by the change of variable z − z0 = e−s

into a Dirichlet series with the natural boundaryℜs =
ln 1

R .
The geometry of the mappings by the Dirichlet

L-functions is relatively well known, [13]. Its
description is based on the local behavior, [14], of
an analytic function. Namely, any complex function
f(s) which is analytic in a neighborhood of a point
s0 and such that f ′(s0) ̸= 0 is locally injective
at s0, which means that it maps conformally, hence
bijectively, a certain neighborhood of s0 onto an open
disk. If s0 is a zero of order m of f ′(s), then m
Jordan arcs starting at s0 divide that neighborhood
into m domains which are mapped conformally onto
the same disk with a radial slit, Fig. 1. Something
similar happens when s0 is an isolated pole of order
m of f(s), except that instead of a disk we have the
exterior of a disk, Fig. 2.
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Fig. 1:     Local conformal mapping by an analytic
function in the neighborhood of a zero of order n

Fig. 2:    Local conformal mapping by an analytic
function in the neighborhood of a pole of order n

Since any Dirichlet function ζA,Λ(s) is analytic
in the complex plane except for some poles its local
behavior is that illustrated by Fig. 1 and Fig. 2.
Obviously, any pole of ζA,Λ(s) cannot exist for
ℜs > σc. However, if ζA,Λ(s) admits a meromorphic
continuation in the whole plane, at least one pole of
the extended function must appear. In our knowledge,
there is no concrete example in the literature where
more than one pole exists.

The purpose of this paper is to give such examples
and also to study the geometry of the mappings by
Dirichlet functions with natural boundary.

The applications in science are for the moment
unclear for us. However, having in view the
applications in science of the Riemann Zeta function,
which is a particular example of Dirichlet function,
such applications are easily conceivable.

When studying Dirichlet series (1) it is useful
to compare them with Dirichlet series whose
coefficients are an. Let us denote by ζA,Λ(s) such a
series. When an are all real we have

ζA,Λ(s) = ζA,Λ(s).

Since
n∑

k=1

ak =

n∑
k=1

ak,

the abscissa of convergence of the two series is the
same. Let us notice also that

ζA,Λ(s) = ζA,Λ(s).

2 Dirichlet Functions with Several
Singular Points

Let

B(z) =

m≤∞∏
k=1

e−iαk
z − zk
1− zkz

be a Blaschke product with the zeros zk = rke
iα

k ,
0 ≤ rk < 1, which in the case m = ∞ satisfies the
Blaschke condition of convergence, [15].

∞∑
k=1

(1− rk) < ∞.

Theorem 1. The Taylor series

B(z) =

∞∑
n=0

anz
n,

where an = B(n)(0)
n! , converges for |z| < 1 and it can

be converted into the Dirichlet series

ζA,N(s) =

∞∑
n=0

ane
−ns (4)

by the change of variable z = e−s. The abscissa of
convergence of this Dirichlet series is σc = 0 when
m = ∞ and the unit circle from the z-plane is carried
by this change of variable into the imaginary axis of
the s-plane. For every singular point ζ0 = eiα0 of
B(z) on the unit circle there are infinitelymany points
sm = i(mπ − α0), m ∈ Z on the imaginary axis
which are singular for ζA,N(s).

Proof: Indeed, B(z) is analytic in the unit disk
and if m = ∞, it has at least one singular point on
the unit circle, which is a cluster point of the zeros
zk. The Taylor series of B(z) coincides with B(z) in
a neighborhood of 0, and its convergence radius is at
least 1, since there is no singular point of B(z) in the
open unit disk. On the other hand, when m = ∞,
since there are singular points of B(z) on the unit
circle, this radius cannot be greater than 1. Thus, the
Taylor series of B(z) converges exactly in the unit
disk. By the change of variable z = e−s we get

B(e−s) =

∞∑
n=0

ane
−ns = ζA,N(s)

and this series converges for

|e−s| = |e−σ−it| = e−σ < 1,
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i.e., for σ > 0, and diverges for σ < 0, hence the
abscissa of convergence of ζA,N(s) is σc = 0. For
any real number α0 we have that sj = i(2jπ − α0)
is a singular point for ζA,N(s) if an only if eiα0 is a
singular point for B(z).

When m is finite, the abscissa of convergence of
ζA,N(s) is σc < 0 and the only singular points of
ζA,N(s) are those satisfying the equation

e−s =
1

zk
.

�

Example 1.
Let

B(z) =

(
pz − 1

p− z

)2

,

where p > 1 be a Blaschke product of degree 2.

Differentiating B(z) for z ̸= p, we get

B′(z) = 2(p2 − 1)
pz − 1

(p− z)3
.

Suppose that

B(k)(z) =
k!(p2 − 1)[2pz + (k − 1)p2 − (k + 1)]

(p− z)k+2
.

(5)
It can be easily checked that this is true for k = 1.

Then

B(k+1)(z) =
k!(p2 − 1)

(p− z)2k+4
{2p(p− z)k+2+

+ (k + 2)(p− z)k+1[2pz + (k − 1)p2

− (k + 1)]}

After simplification with (p− z)k+1 we get

B(k+1)(z) =
k!(p2 − 1)

(p− z)k+3
[2p(p− z) + 2p(k + 2)z+

+ (k − 1)(k + 2)p2 − (k + 1)(k + 2)]

=
k!(p2 − 1)

(p− z)k+3
[2p(k + 1)z + k(k + 1)p2−

− (k + 1)(k + 2)]

=
(k + 1)![2pz + kp2 − (k + 2)]

(p− z)k+3

which is (5) with k replaced by k+1, and this shows
that indeed (5) is true for every k ≥ 1.

In particular,

B(k)(0) =
k!(p2 − 1)[(k − 1)p2 − (k + 1)]

pk+2
,

thus the Taylor series of B(z) is

B(z) =
1

p2
− 2(p2 − 1)

p3
z

+ (p2 − 1)

∞∑
k=2

[(k − 1)p2 − (k + 1)]
zk

pk+2

and it can be easily checked that its radius
of convergence is p. The function B(z) is a
meromorphic function in the complex plane having
the unique double pole z = p and the unique double
zero z = 1

p .

We note that

B(e−s) =
1

p2
− 2(p2 − 1)

p3
e−s + (p2 − 1)·

·
∞∑
k=2

[(k − 1)p2 − (k + 1)]
1

pk+2
e−ks

is a Dirichlet series with a1 = 1
p2 .

MultiplyingB(e−s) by p2 we obtain a normalized
Dirichlet series

ζA,N(s) =

∞∑
n=1

ane
−ns

where a1 = 1, a2 = −2
(
p− 1

p

)
and for n ≥ 3,

an =
(p2 − 1)[(n− 2)p2 − n]

pn−1
.

For ζA,N(s) we have

limσσ→+∞ζA,N(σ + it) = 1

for every t ∈ R. Moreover, ζA,N(s) = −1 implies

p
pe−s − 1

p− e−s
= ±i

or
p2e−s − p = ±i(p− e−s),

(p2 ± i)e−s = p(1± i),

es =
p2 ± i

p(1± i)
.

In both cases

σ = ln p2 + 1

2p
> 0.

Thus, every component of the preimage by ζA,N(s) of
the unit circle is a parabola-shaped curve having the
vertex on the line

σ = ln p2 + 1

2p
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and the branches tend asymptotically to the lines t =
(2k + 1)πi.

The fundamental domains of B(z) are the upper
and the lower half-planes, which are mapped
conformally by B(z) onto the complex plane with a
slit alongside the interval (0,+∞) of the real axis.
On the other hand, the function e−s maps conformally
every strip

{s|s = σ + it, σ ∈ R, t ∈ (2kπ, (2k + 1)π)}

onto the upper half-plane and every strip

{s|s = σ + it, σ ∈ R, t ∈ ((2k − 1)π, 2kπ)}

onto the lower half-plane. Summing up, the
fundamental domains of ζA,N(s), Fig. 3, are
horizontal strips of height π which are mapped
conformally by ζA,N(s) onto the complex plane with
a slit alongside some interval of the real axis. A little
computation shows that the lines

s = σ + (2k + 1)πi

are mapped by ζA,N(s) onto the interval (1, p4),while
the image of the lines

s = σ + 2kπi

is the whole real half-axis and the intervals (0, 1) and
(p4,+∞) are covered twice. Thus every strip

{s = σ + it|kπ < t < (k + 1)π}

is mapped conformally by ζA,N(s) onto the whole
complex plane with a slit alongside the positive
real half-axis. The boundaries of these strips are
components of the preimage by ζA,N(s) of the real
axis.

The zeros and the poles of ζA,N(s) belong to
these boundaries and they are double zeros and
respectively double poles. A small half-disk centered
at ln p+2kπi is mapped conformally by ζA,N(s) onto
a neighborhood of the origin with a slit alongside the
positive real half-axis, while a small half-disk centred
at − ln p is mapped conformally onto the exterior
of a closed curve containing the origin with a slit
alongside the positive real half-axis.

The preimage by ζA,N(s) of the circle of radius p2
centered at the origin is the imaginary axis. Indeed,
every segment (2kπ, (2k+1)π] and ((2k−1)π, 2kπ]
of the imaginary axis is mapped by e−s onto the half
unit circle, which is mapped byB(z) onto the full unit
circle and by p2B(z) onto the circle centered at the
origin and of radius p2.

It is expected that a similar configuration will
be produced by the Dirichlet functions pqB(e−s)
generated by any Blaschke product of the form

B(z) =

(
pz − 1

p− z

)q

Fig. 3: A   n illustration of the fundamental domains
of the Blaschke product generated Dirichlet function
and their conformal mappings

for arbitrary integer q > 2. The points ln p + 2kπi
are this time zeros of order q of the function, while
the points − ln p + 2kπi are poles of order q. The
geometry of themapping in the neighborhood of these
points is that shown in Fig. 1 and Fig. 2. This implies
a change in the preimage of the real axis in the sense
that q components of that preimage will pass through
the points± ln p+2kπi. These are all components of
the preimage of the positive real half-axis when q is
even and of both, positive and negative real half axis
when q is odd. We illustrate this affirmation for the
case q = 3 in Fig. 4 and of the case q = 4 in Fig. 5.

These preimages border q fundamental domains
of ζA,N(s) in every horizontal strip of width 2π. The
conformal mapping of these domains by ζA,N(s) is
illustrated in Fig. 4 and Fig. 5 below.

Example 2.
Let us study the Dirichlet function defined by the

Blaschke product

B(z) =

(
az − 1

a− z

)2

,

where a = reiα, r > 1, α ∈ R.
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Fig.    4: The fundamental domains of p 3
(
pe−s−1
p−e−s

)3

in the strip {s|s = σ + it, σ ∈ R,−π ≤ t ≤ π} and
their conformal mapping

Fig. 5: The fundamental domains of p 4
(
pe−s−1
p−e−s

)4

in the strip {s|s = σ + it, σ ∈ R,−π ≤ t ≤ π} and
their conformal mapping

This is the function

ζA,N(s) = a2
(
ae−s − 1

a− e−s

)2

= 1 +

∞∑
n=1

ane
−ns, s = σ + it,

where
an =

a2

n!
B(n)(0)

Differentiating B(z) for z ̸= a we obtain

B′(z) = 2(r2 − 1)
az − 1

(a− z)3

and an induction argument shows that

B(n)(z) =
n!(r2 − 1)[2az + (n− 1)r2 − (n+ 1)]

(a− z)n+2
,

thus,

an =
(r2 − 1)[(n− 1)r2 − (n+ 1)]

an
,

for n = 1, 2, 3, ....
Let us notice that

lim
σ→+∞

ζA,N(σ + it) = 1

for every t ∈ R. Moreover, ζA,N(s) = 0 if and only
if ae−s = 1, i.e. eσ+it = reiα, which is σ = ln r and
t = α+ 2kπ. The points

sk = ln r + (α+ 2kπ)i

are all double zeros of ζA,N(s). The symmetric points
with respect to the imaginary axis, which are

s′k = − ln r + (α+ 2kπ)i

are double poles of ζA,N(s).A small half circle around
sk is mapped by ζA,N(s) one to one onto a closed
curve around the origin, while a small half circle
around s′k is mapped by ζA,N(s) one to one onto a
closed curve around ∞. The line through sk and s′k
is mapped by ζA,N(s) onto the positive real half axis.
Indeed,

ζA,N(σ + i(α+ 2kπ)) =

= r2e−2iα

(
reiαe−σe−i(α+2kπ) − 1

re−iα − e−σe−i(α+2kπ)

)2

= r2
(
re−σ − 1

r − e−σ

)2

≥ 0
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and the equation

ζA,N(σ + i(α+ 2kπ)) = h

has two solutions for every h ≥ 0, h ̸= r2, and no
solution for h < 0.

The lines

L2k : s = σ + 2kπi, k ∈ Z, σ ∈ R

are mapped one to one by w = ζA,N(s) onto a Jordan
arc having the end points at w = 1 and w = r4.

Indeed,

w = ζA,N(σ + 2kπi) = r2e−2iα

(
reiαe−σ − 1

re−iα − e−σ

)2

and for σ = 0 we have

ζA,N(2kπi) = r2e−2iα

(
reiα − 1

re−iα − 1

)2

,

which is for every k ∈ Z the same point w0 on
the circle |w| = r2. Performing continuations along
every line Lk starting from w0 and keeping in mind
that

lim
σ→+∞

ζA,N(σ + 2kπi) = 1

and
lim

σ→−∞
ζA,N(σ + 2kπi) = r4,

we obtain the respective Jordan arc.
The lines

L2k+1 : s = σ + (2k + 1)πi

are mapped one to one by w = ζA,N(s) onto another
arc with the end points at w = 1 and w = r4. Indeed,

w = ζA,N(σ + (2k + 1)πi)

= r2e−2iα

(
−reiαe−σ − 1

re−iα + e−σ

)2

and for σ = 0 we have

ζA,N((2k + 1)πi) = r2e−2iα

(
reiα + 1

re−iα + 1

)2

= r2
(

reiα + 1

re−iα + 1

)2

,

which is, again, for every k ∈ Z the same point
w1 on the circle |w| = r2. Performing continuations
alongL2k+1 starting fromw1 we obtain the respective
Jordan arc.

The horizontal lines through ln r+(α+(2k+1)π)i
are mapped one to one by ζA,N(s) onto the interval
(1, r4) of the real axis. Indeed,

ζA,N(σ + (α+ (2k + 1)π)i) =

= r2e−2iα

(
reiαe−(σ+(α+(2k+1)π)i − 1

re−iα − e−(σ+(α+(2k+1)π)i

)2

= r2
(
re−σ + 1

r + e−σ

)2

> 0

and for σ = 0 we have

ζA,N((α+ (2k + 1)π)i) = r2.

Performing continuations along those lines starting
from w = r2 and taking into account that

lim
σ→+∞

ζA,N(σ + 2kπi) = 1

and
lim

σ→−∞
ζA,N(σ + 2kπi) = r4,

we obtain the desired result.
The fundamental domains of ζA,N(s) are the

horizontal strips between consecutive lines Lk. They
are mapped conformally by ζA,N(s) onto the complex
plane with a slit alongside the positive real half axis.
It is easier to visualize the fundamental domains
between consecutive lines

L
(α)
k : s = σ + (kπ + α)i.

Fig. 6 below portrays the conformal mapping of
the domain between L

(α)
−3 and L

(α)
−2 . It shows the

components belonging to that domain of the preimage
of the unit disk and of the disks centered at the origin
and having the radius r2 and r4.The component of the
preimage of the exterior of this last disk is also visible.
We can distinguish as well the image by ζA,N(s) of the
line L−2.

The Dirichlet function generated by a Blaschke
product of the form

B(z) =

(
az − 1

a− z

)q

for an integer q > 2, where a = reiα, r > 1, α ∈ R,
can be obtained in a similar way. It is

ζA,N(s) = aqB(e−s).

Every point

sk = ln r + (2kπ + α)i

is a zero of order q of ζA,N(s), while the points

s′k = − ln r + (2kπ + α)i
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Fig. 6: T   he fundamental domains of the Dirichlet
function a2

(
ae−s−1
a−e−s

)2
and their conformal mapping

are poles of order q. The configurations in a
neighborhood of these points are those described in
Fig. 1 and Fig. 2 and the global mapping properties
of ζA,N(s) are those illustrated in Fig. 4 and Fig. 5.

Theorem 2. Let B(z) be an infinite Blaschke
product satisfying the Blaschke condition and let E
be the set of cluster points of the zeros zk of B(z). If
C\E contains an arc of the unit circle, then there is
a unique function B̃(z) meromorphic in C\E, which
coincides with B(z) in the unit disk and such that the
points 1

zk
are poles of B̃(z) of the same order as the

zeros zk of B(z).

Proof: LetD be the open unit disk and ∂D be the
unit circle. The function defined by

B̃(z) =
1

B
(
1
z

)
for |z| > 1 and

B̃(z) = B(z)

for |z| < 1, satisfies to these conditions in C\∂D.
Indeed, it is meromorphic for |z| ̸= 1 since its only
singular points for |z| ̸= 1 are the points 1

zk
for which

we get

B̃

(
1

zk

)
=

1

B(zk)
=

1

B(zk)
.

This last equality is due to the fact that

B(zk) = 0 = B(zk).

This shows that 1
zk

is a pole of B̃(z) of the same order
as the zero zk of B(z).

We need to define B(z) on ∂D\E.We notice that
for every n, the function

Bn(z) =

n∏
k=1

e−iαk
z − zk
1− zkz

is defined in the whole complex plane as a
meromorphic function having the poles 1

zk
, k =

1, 2, ..., n and

Bn(z) =
1

Bn

(
1
z

) = B̃n(z).

Indeed, this is straightforward since for every factor

e−iαk
z − zk
1− zkz
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we have

1

e−iαk

1

z
−zk

1− zk
z

= e−iαk
z − zk
1− zkz

.

Moreover, for every ζ = eiθ for which eiφ = Bn(ζ)
we have

B̃n(ζ) =
1

Bn

(
1
ζ

) =
1

Bn

(
1

e−iθ

)
=

1

Bn(eiθ)
=

1

eiφ
= eiφ = Bn(ζ),

thus
Bn(z) = B̃n(z)

everywhere. Since

B(z) = lim
n→∞

Bn(z)

for |z| < 1, we have also

B̃(z) = lim
n→∞

B̃n(z)

for |z| ̸= 1.
To define B(z) on ∂D\E, let us notice that by

Cauchy integral formula, for every ζ ∈ ∂D\E we
have

Bn(ζ) =
1

2πi

∫
γ

B̃n(z)

z − ζ
dz,

where γ is a circle centered at ζ and included in that
neighborhood. Letting n → ∞ under the integral
sign shows that there is limn→∞Bn(ζ), which is by
definition B(ζ) and we have

B(ζ) =
1

2πi

∫
γ

B̃(z)

z − ζ
dz.

Moreover, B′
n(ζ) exists and

B′
n(ζ) =

1

2πi

∫
γ

Bn(z)

(z − ζ)2
dz.

Letting n → ∞ in this formula, we get

B̃′(ζ) =
1

2πi

∫
γ

B̃(z)

(z − ζ)2
dz,

thus the function B̃(z) is analytic on ∂D\E and
meromorphic in C\E. Regarding its behavior at ∞,

we have

lim
z→∞

B̃(z) = lim
z→∞

1

B
(
1
z

)
=

1∏∞
n=1 rn

=
1

B(0)
,

which shows that B̃(z) is a meromorphic function in
C\E. �

Theorem 3. Let ζA,N(s) be a Dirichlet function
obtained from a Blaschke productB(z) by the change
of variable z = ϕ(s) = e−s.LetE be the set of cluster
points of zeros of B(z). If C\E contains an arc of
the unit circle on whichB(z) is defined, then ζA,N(s)

admits a meromorphic continuation to C\ϕ−1(E).

Proof: Indeed, under this hypothesis, by Theorem
2, B(z) admits a meromorphic continuation B̃(z) to
C\E. IfB(z) is a finite Blaschke product,E = ∅ and
B̃(z) is a meromorphic function in C. In any case,

ζA,N(s) = B̃(e−s)

is the function we are looking for. The case where
ϕ−1(E) is a continuum is obtained from any infinite
Blaschke product for which E is an arc of the unit
circle

E = {z|z = eiθ, 0 ≤ α < θ < β ≤ 2π}.
Such an example has been given in [12]. �

Theorem 4. Let ζA,N(s) be a Dirichlet function
obtained from a Blaschke productB(z) by the change
of variable z = ϕ(s) = e−s. If z0 is a pole of order p
of B(z), then there are infinitely many poles of order
p of ζA,N(s) which are carried by ϕ(s) into z0. These
are the only singular points of ζA,N(s).

Proof: Indeed,

B(z) =
Φ(z)

(z − z0)p
,

where Φ(z) is analytic in a neighborhood of z0 and
Φ(z0) ̸= 0. Thus,

ζA,N(s) = B(ϕ(s)) =
Φ(ϕ(s))

[ϕ(s)− z0]p
.

The equation
e−s = e−σ−it = z0 = r0e

iα0

is equivalent to e−σ = r0 and t = 2kπ − α0, k ∈ Z.
It is obvious that all the points

sk = − ln r0 + i(2kπ − α0)

are poles of ζA,N(s) of the order p and they are carried
by ϕ(s) into z0 and these are the only ones. �
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3 Dirichlet Series with Natural
Boundary

Examples of Dirichlet series with natural boundary
have been given in [12]. They were obtained either
from Hadamard type of series, or from infinite
Blaschke products with natural boundary. We will
revisit them in Section 4.

Let us notice that for a series (1) with real
coefficients, we have

ζA,Λ(s) = ζA,Λ(s),

hence, if it converges at s = σc + it, where σc is
its abscissa of convergence, then it converges also at
s = σc − it.Moreover, if we denote

ζ̃A,Λ(s) = ζA,Λ(2σc − s) = ζA,Λ(2σc − s)

for s = σ + it, σ < σc, since we have

2σc − σ > σc,

the function ζ̃A,Λ(s) is well defined and it is an
analytic function in the half-plane s = σ+it, σ < σc.

Thus, to any Dirichlet series (1) defined for ℜs >
σc we can associate a function (4) which is analytic in
the half-planeℜs < σc. If the series (1) has the natural
boundary the line ℜs = σc, then the function (4) has
the same natural boundary. If the series (1) converges
at a point s = σc − it, then

ζ̃A,Λ(σc + it) = ζA,Λ(2σc − σc − it)

= ζA,Λ(σc − it)

= ζA,Λ(s).

Thus, ζ̃A,Λ(s) converges at s = σc + it and

ζ̃A,Λ(s) = ζA,Λ(s).

The two functions do not coincide on the line
separating their domains, therefore they are not
continuations one of each other.

It is known, [11], that if a Dirichlet function
satisfies a Riemann type of functional equation,
then it admits an analytic continuation across the
convergence line giving rise to a meromorphic
function in the whole complex plane. Such an
analytic continuation does not coincide with the
function (4). However, with the notation

ζ̂A,Λ(s) = ζA,Λ(2σc − s)

= ζA,Λ(2σc − s)

= ζ̃A,Λ(s)

when s = σc + it we have

ζ̂A,Λ(s) = ζA,Λ(2σc − (σc − it))

= ζA,Λ(σc + it)

= ζA,Λ(s),

hence the two functions coincide at the points
of the line ℜs = σc where the series (1) is
convergent. The function ζ̂A,Λ(s) is not an analytic
function for σ < σc, yet its complex conjugate
is analytic. Such a function is called antianalytic
and it preserves some of the properties of analytic
functions, for example that of having the real and
the imaginary parts harmonic functions. These
functions satisfy equations similar (but not identical)
to Cauchy-Riemann equations. Also, as mappings,
they preserve the absolute value of the angles, yet
they reverse the sense of these angles. When the
domain of the two functions contains a segment
of the convergence line of the series (1), we will
call ζ̂A,Λ(s) the antianalytic continuation of ζA,Λ(s)
and the function equal to each one of them in their
domains will be called a dianalytic function. We
keep the notation ζ̂A,Λ(s) for this function. It is a
continuous function in its domain and it is analytic
for ℜs > σc and antianalytic for ℜs < σc.

4 The Preimage of the Real Axis by a
General Dirichlet Series

The geometry of the mappings by a general Dirichlet
series can be revealed by studying the preimage by
such a series of the real axis and of some circles
centered at the origin. The technique of continuation
along an arc or lifting of an arc, [16], p. 23, and the
uniqueness theorem related to it is frequently used.

The function z = ζA,Λ(s) is an analytic function
in the half-plane ℜs > σc. The point s = ∞ is an
essential singular point for every term ane

−λns of the
series (1) and therefore for ζA,Λ(s) .

By Picard Theorem, there are infinitely many
points sn for which ζA,Λ(s) assumes any given value
z, except perhaps for a lacunary one. Then there
are infinitely many components γ of the preimage by
ζA,Λ(s) of the unit circle. We have proved in [11],
that at least one of them must be unbounded. Since

lim
σ→∞

ζA,Λ(σ + it) = 1,

infinitely many of them are unbounded and since
ζA,Λ(s) = 1 infinitely many times, infinitely many
of them are bounded.
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Let us examine an unbounded component γ of the
preimage of the unit circle. If s = σ + it ∈ γ then

ζA,Λ(s) = eiθ, 0 < θ < 2π,

and σ → +∞ if and only if θ → 0, or θ → 2π. We
take a ray

Lα : z = ρeiα, ρ ≥ 0,

through the origin of the z-planemaking a small angle
α ̸= 0with the positive real half axis and let s = σ+it
be on the component Ψα of the preimage by ζA,Λ(s)
of Lα intersecting γ. There is a unique point

sα = σα + itα ∈ γ

such that
ζA,Λ(sα) ∈ Lα.

The componentΨα is obtained by doing continuation
along Lα from sα. Since Lα starts in the origin, the
curve Ψα starts in a zero of ζA,Λ(s). Since Lα does
not pass through z = 1, we have that σ does not tend
to +∞ on Ψα, hence Ψα remains in a left half-plane.
When α → 0 we have σα → +∞ and Ψα becomes
the union of two components, one inside γ, belonging
to the preimage of the interval (0, 1) and the other
one exterior to γ, belonging to the preimage of the
interval (1,+∞). This last component is above γ if α
was positive and below it if α was negative.

Since there are in finitely many unbounded
components γ of the preimage by ζA,Λ(s) of the unit
circle, there will be infinitely many components Γ′

n,
n ∈ Z, of the preimage by ζA,Λ(s) of the interval
(1,+∞) of the real axis such that in the open strip
Sn between two consecutive components Γ′

n and
Γ′
n+1 there is a unique unbounded component of the

preimage of the unit circle. We count these strips such
that Sn+1 is above Sn and S0 is the strip containing
the point s = 0.

Theorem 5. The open strips Sn are disjoint.

Proof: It is enough to deal with adjacent open
strips Sn and Sn+1. If they were not disjoint the
curves Γ′

n and Γ′
n+1 would intersect each other at a

point
s0 = σ0 + it0, σ0 > σc.

Let x0 = ζA,Λ(s0). The parts of Γ′
n and Γ′

n+1 with
σ ≥ σ0 are both mapped by ζA,Λ(s) one to one
onto the interval (1, x0] and therefore the domain
bounded by them is conformally mapped by ζA,Λ(s)
onto the complex plane with the slit (1, x0]. This
domain should contain a pole s = σ + it of ζA,Λ(s),
with σ > σc, which is not possible since ζA,Λ(s) is
analytic in that domain. Thus any two open strips are
disjoint. �

Theorem 6. The set of the strips Sn fills the whole
plane when they are unbounded at the left and at the
right and it fills the half-planeℜs > σc when they are
bounded on the left by ℜs = σc.

Proof: What we need to prove is that for every
strip Sn there is a strip above it and one below it.
Suppose there is no strip above Sn and let s1 be a
point in Sn and s2 be a point above Sn. Their images
ζA,Λ(s1) and ζA,Λ(s2) can always be connected by
a Jordan arc γ not intersecting the interval (1,+∞).
Continuation η along γ from s1 must end in s2 and
cannot intersect Γ′

n+1 since γ does not intersect

ζA,Λ(Γ
′
n+1) = (1,+∞)

and this is a contradiction. A similar contradiction
is found if we suppose that there is no strip below
some Sn with negative n,which completely prove the
theorem. �

Theorem 7. Let σ0 ∈ R be arbitrary and

σ0 + itk ∈ Γ′
k, k = n, n+ 1,

where Γ′
n and Γ′

n+1 are two adjacent components of
the preimage by ζA,Λ(s) of the interval (1,+∞) of
the real axis, as previously defined. Let us denote

Ln = {σ0 + it|tn ≤ t ≤ tn+1}.

Then the image by ζA,Λ(s) of the strip S′
n bounded by

Γ′
n, Γ

′
n+1 and Ln is the whole complex plane.

Proof: Indeed, the image of Ln by ζA,Λ(s) is a
Jordan arc γ connecting

ζA,Λ(σ0 + itk), k = n, n+ 1.

Suppose

ζA,Λ(σ0 + itn) < ζA,Λ(σ0 + itn+1).

Since the intervals

(1, ζA,Λ(σ0 + itn)) and (1, ζA,Λ(σ0 + itn+1))

are the images of Γ′
n and Γ′

n+1, there must be a point
s0 on Γ′

n+1 such that

ζA,Λ(s0) = ζA,Λ(σ0 + itn).

When s describes Γ′
k with σ varying from +∞ to σ0,

then ζA,Λ(s) goes on the real axis from 1 to ζA,Λ(σ0+
itk). When s describes Ln, then ζA,Λ(s) goes on γ
from

ζA,Λ(σ0 + itn) to ζA,Λ(σ0 + itn+1).
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The interval (1, ζA,Λ(σ0 + itn)) is travelled twice in
both directions. Let z be any point in the complex
plane not belonging to the interval (1, ζA,Λ(σ0+itn))
or to the arc γ. There is an arc η connecting z with
ζA,Λ(σ0 + itn) which does not intersect the interval
(1, ζA,Λ(σ0 + itn+1)) or the arc γ. Continuation over
η from σ0 + itn ends up in a point s ∈ S′

n such that
ζA,Λ(s) = z. This shows that the image by ζA,Λ(s) of
the closed strip S′

n is indeed the whole complex plane.
�

This result does not mean that ζA,Λ(s) maps
conformally S′

n onto the complex plane with a slit,
since S′

n might contain branch points of ζA,Λ(s). This
is a known fact in the case of Dirichlet L-functions.

The bounded components of the preimage by
ζA,Λ(s) of the closed unit disk contain each one a
point s

(1)
k such that ζA,Λ(s

(1)
k ) = 1 and a point

s
(0)
k such that ζA,Λ(s

(0)
k ) = 0. Every component

Γn,k of the preimage by ζA,Λ(s) of the real axis
which is mapped one to one onto the whole real axis
must contain both of these points. The components
Γn,0 which are mapped one to one onto the interval
(−∞, 1) contains just a zero of ζA,Λ(s).

Theorem 8. Every curve Γn,k is included in an
open strip Sn.

Proof: It is useful to color differently the preimage
of the negative real half axis and that of the positive
real half axis, say red and blue. The joint points of
the two colors can only be zeros or poles of ζA,Λ(s).
The curves Γ′

n are all blue, while the curves Γn,k are
part red and part blue, and the two colors join at points
s
(0)
k where ζA,Λ(s

(0)
k ) = 0 . Obviously, the preimage

of the negative real half axis and that of the interval
(1,+∞) are disjoint and therefore the red part of Γn,k

cannot meet any curve Γ′
n. Also, the intervals (0, 1)

and (1,+∞) being disjoint, no Γ′
n can meet any Γn,k

between s(0)k and s(1)k . Suppose that Γn,k and Γ′
n meet

at a point s0 with x0 = ζA,Λ(s0) > 1. The uniqueness
theorem of continuation along a curve tells us that
continuation along the interval (1, x0) from s0 cannot
produce two distinct curves Γn,k and Γ′

n, therefore
such a point s0 does not exist. �

It is known that for the Dirichlet L-functions the
number of the curves Γn,k included in Sn, n ̸= 0
increases approximately logarithmically with |n|.The
strip S0 contains infinitely many curves Γ0,k.

Every circle centered at the origin of the z-plane
intersects orthogonally both, the positive and the
negative real half-axis and therefore a point moving
in the same direction on a component of the

preimage of such a circle will meet alternatively
components of the preimage of the real axis colored
red and blue, intersecting them orthogonally. This
simple topological fact has been called the color
alternating rule. This is true in particular for an
unbounded component of the unit circle. It intersects
orthogonally every curve Γn,k from the respective
strip Sn, with alternating colors red and blue.

Increasing the radius of the unit circle its
unbounded components from all the strips Sn fuse
into a unique unbounded curve intersecting all the
curves Γ′

n and Γn,k and the color alternating rule
remains true. This means, among other things, that
the components Γn,k neighboring Γ′

n must face them
with the red part and then the alternation of colors in
the same component Γn,k must change somewhere
in Sn without violating the color alternating rule.
This is possible if and only if one of the components
Γn,k is intersected just once on the red side. Such a
component exists in every strip Sn and it is unique.
This is Γn,0, which is mapped one to one by ζA,Λ(s)
onto the interval (−∞, 1). Indeed, the interval (0, 1)
meets the unit circle in z = 1 and when

z = ζA,Λ(σ + it) → 1

we have that
σ + it → ∞

on the unbounded component of the preimage of
the unit circle. Then this component does not meet
the preimage of the interval (0, 1). Therefore, this
component meets only the preimage of the interval
(−∞, 0), i.e. it meets Γn,0 only on the red part.

The study of the derivative ζ ′A,Λ(s) of a Dirichlet
L-function, [13], allowed a precise description of the
mapping by such a function. We have shown that if
ζA,Λ(s) has mn points s(1)k in the strip Sn for which
ζA,Λ(s

(1)
k ) = 1, then ζ ′A,Λ(s) has exactly mn zeros

vn,k in Sn counted with multiplicities. Connecting
ζA,Λ(vn,k) with z = 1 by a segment of line Ln,k

and performing continuation along Ln,k from every
point vn,k we obtain curves γn,k which together with
the preimage of the interval (1,+∞) of the real
axis bound fundamental domains of ζA,Λ(s). These
domains are mapped conformally by ζA,Λ(s) onto the
whole complex plane with a slit along side the interval
(1,+∞) and Ln,k.

For arbitrary general Dirichlet functions, the
geometry of the mappings is more complicated.
While a Dirichlet L-function has just one pole and
this is in the strip S0, Theorem 4 exhibits examples
of general Dirichlet series with infinitely many poles.
However, there is a regularity of the location of those
poles, since they are of the form

sk = − ln r0 + i(2kπ − α0),
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hence located each one in a horizontal strip of height
2π. The behavior of ζA,Λ(s) in such a strip is expected
to be similar to that of Dirichlet L-functions in the
whole plane.

5 Conclusions

There aremany studies devoted toDirichlet functions,
most of which focus on the local behavior of these
functions. We dealt with global mapping properties
of Dirichlet functions in some of our previous
publications, yet limiting our research to Dirichlet
L-functions. These are functions obtained by analytic
continuation of Dirichlet L-series. When studying
general Dirichlet series the researchers are confronted
with unsolved problems related to the possibility of
analytic continuation of these series and the boundary
behavior of those series which cannot be analytically
continued across the convergence line. The purpose
of this paper was to tackle these problems.

For the Dirichlet series obtained from finite
Blaschke products, the analytic continuation to
the whole complex plane except for some poles
is automatic, since these Blaschke products are
meromorphic functions in the complex plane and so
are the Dirichlet functions obtained by a change of
variable.

When the Blaschke product generating a Dirichlet
function is infinite, non isolated singular points of
that product appear on the unit circle. To every one
of these points correspond infinitely many singular
points of that Dirichlet function all located on the
convergence line.

We succeeded to prove that for those Dirichlet
series obtained from infinite Blaschke products, the
continuation is possible as long as some arcs of
the unit circle do not contain singular points of the
respective Blaschke products. Even in the case when
the continuation was not possible, we were able to
find twin functions of those series outside of the
half-plane of convergence whose behavior imitate
that of the original functions.

Further research directions would be to study
other classes of Dirichlet series which admit analytic
continuation across the convergence line. It is known
that any power series can be converted into a Dirichlet
series by a change of variable. If the circle of
convergence of that power series is not a natural
boundary, then the Dirichlet series can be analytically
continued across the convergence line. Many open
questions remain about these series. Can they always
be extended to the whole complex plane? What are
their fundamental domains? Is there a way to classify
these functions?
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