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1  Introduction 
Quadric surfaces of finite type are a class of three-
dimensional surfaces in geometry that are defined 
by second-degree equations in three variables. 
These surfaces are an essential part of the study of 
conic sections, and they exhibit a wide range of 
interesting geometric properties and real-world 
applications. The study of quadric surfaces of finite 
type is crucial in various fields, including geometry, 
physics, engineering, and computer graphics.  

Quadric surfaces are used for modeling various 
objects in computer graphics, providing a 
mathematical representation of surfaces such as 
rocks, terrain, and architectural elements.  

Quadric surfaces, particularly hyperboloids 
(Figure 1) and ellipsoids (Figure2), are essential in 
the analysis of electromagnetic fields. In antenna 
design, hyperbolic and parabolic surfaces are used 
to guide and focus electromagnetic waves, 
improving transmission and reception. 

 
Fig. 1: (Hyperboloid) 

 
Fig. 2: (Ellipsoid) 
 

The study, [1], brought the concept of surfaces 
of finite Chen type to become an interesting topic 
for many differential geometers. As a result, much 
research has been done in this field by studying 
certain special classes of surfaces such as quadric 
surfaces, [2], [3], tubes, [4], [5], translation surfaces, 
[6], [7], ruled surfaces, [3], [8], [9], surfaces of 
revolution, [10], [11], [12], spiral surfaces, [13], 
cycles of Dupin, [14], [15], and helicoidal surfaces, 
[16], [17].  

We consider a surface Q in a Euclidean 3-space 
E3 with a system of coordinates v1, and v2 to be 
referred. We denote by (gij), (bij), and (eij) the 
coefficients of the metrics I, II, and III of Q 

respectively. Let  and  be any two functions 
defined on Q. The first Laplace operator regarding 
the fundamental form J = I, II, III of Q is defined by  

J(,): = cij /i /j, 
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where /i is the partial derivative with respect to 
the parameter vi and (cij) is defined to be the inverse 
tensor of (gij), (bij), and (eij) for J = I, II, and III 
respectively. The second Laplace operator according 
to the fundamental form J of Q is defined by:  

ΔJ:  = -
/j/i )(1

ijcc
c

 

where c = det(cij). 
 
Considering the position vector z = z(v1,v2), of Q in 
E3, authors in [18], showed the relation: 

IIIz = -ΙI(
K

H2 , z) -
K

H2 N. 

 
where K and H are the Gauss and the mean 
curvature of Q respectively, and N is its Gauss map. 
Moreover, they proved that a surface satisfying the 
condition: 

ΔΙIΙz = λz,    λΙR, 
 
i.e., a surface M: z = z(v1,v2) for which all coordinate 
functions are eigenfunctions of ΔΙIΙ with the same 
eigenvalue λ, is a part of a sphere (λ = 2) or a 
minimal surface (λ = 0). 
 

 

2  Fundamentals 
Consider the parametric representation:  

𝒓(𝑥, 𝑦)  =  {𝑟1(𝑥, 𝑦), 𝑟2(𝑥, 𝑦), 𝑟3(𝑥, 𝑦)},  
(𝑥, 𝑦) ∈ B  ℝ2 

of a surface Q.  
 
The fundamental form I of Q is 

I = Edx2 + 2Fdxdy + Gdy2. 
 
For some function φ(x, y) on D  ℝ2, ΔΙ  is found to 
be [19]: 
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The second metric is: 

II = Ldx2 + 2Mdxdy + Ndy2. 
 
Also, we have, [19] 
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For the vector-valued function r = {r1, r2, r3}, its 
well known that: 

ΔJr = {ΔJr1, ΔJr2, ΔJr3}, J = I, II..                   
 

Definition 1. A surface Q is said to be of coordinate 
finite type regarding the metric II, or briefly of 

coordinate finite II-type if the vector-valued 
function r of Q satisfies the relation:  

IIr = Ar, 
 
where A is a square matrix of order 3. Besides, if we 
consider the unit normal vector field N of the 
surface Q, then we also have:  
 

Definition 2. A surface Q is said to be of coordinate 
finite II-type Gauss map if the unit normal vector 
field N of Q satisfies:  

IIN = AN.                               (2) 
 
In this article, we pay attention to quadrics 

whose unit normal vector field N satisfies a relation 
of the form  (2). 

Interesting research also, one can follow the 
idea in [20] by defining the first and second Laplace 
operator using the definition of the fractional vector 
operators. Application within this subject can be 
found in [21], [22]. 
 

 

3 Quadric Surfaces 
For the quadric surface Q in ℝ3 we have the 
following three cases:  
Case I. Q is ruled surface. In geometry, a surface Q 
is ruled if through every point of Q there is a 
straight line that lies on S. Examples include the 
plane, lateral surfaces of a cylinder or cone, a 
conical surface with elliptical directrix, the right 
conoid, the helicoidal, and the tangent devolaple of 
a smooth curve in space. 

A ruled surface can be described as a set of 
points swept by a moving straight line. For example, 
a cone is formed by keeping one point of a line 
fixed whilst moving another point along a circle. A 
surface is doubly ruled if through every one of its 
points, there are two distinct lines that lie on the 
surface (Figure 3). 
 
 
                                       P . 
 
                                                                
 
 
 
Fig. 3: (Ruled surface) 
 

This case of ruled surfaces was studied in [8], 
and it was proved: 
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Theorem 1. There are no ruled surfaces in the 
Euclidean 3-space that satisfy the relation (2). 
Case II. Q is of the form: 

𝑍2 = 𝑐 + 𝑛𝑋2 + 𝑚𝑌2,    𝑛, 𝑚, 𝑐 ∈ ℝ, 
  𝑛𝑚 ≠ 0,  𝑐 > 0,                    (3) 

 
Case III. Q is of the form 

𝑍 =
𝑛

2
𝑋2 +

𝑚

2
𝑌2,     𝑛, 𝑚 ∈ ℝ,   𝑛, 𝑚 > 0.       (4) 

 
For case II mentioned above, we prove that a 

quadric of the form (3) satisfies the (2), exactly 
when 𝑛 = 𝑚 = −1, that is, Q is a part of a sphere. 
Next, we prove that for a quadric of the form (4) 
condition (2) cannot be satisfied. 
 
3.1 Quadrics of the Form (3) 
Putting X = x and Y = y, then Z = ± 22 mynxc  . 
Thus a parameterization of this form is locally 
represented by:  

𝒓(𝑥, 𝑦) = {𝑥, 𝑦, √𝑐 + 𝑛𝑥2 + 𝑚𝑦2 }.      (5) 
 
We have: 

𝒓𝑥 = {1,0,
𝑛𝑥

√𝜔
}, 𝒓𝑦 = {0,1,

𝑚𝑦

√𝜔 
} , 

 
where  

𝜔 = 𝑐 + 𝑛𝑥2 + 𝑚𝑦2. 
 
The coefficients of the metric I are: 

𝐸 = 〈𝒓𝑥, 𝒓𝑥〉 = 1 +
(𝑛𝑥)2

𝜔
 , 

𝐹 = 〈𝒓𝑥, 𝒓𝑦〉 =
𝑛𝑚𝑥𝑦

𝜔
 , 

𝐺 = 〈𝒓𝑦, 𝒓𝑦〉 = 1 +
(𝑚𝑦)2

𝜔
 . 

 
So, we obtain: 

𝐼 = (1 +
(𝑛𝑥)2

𝜔
) 𝑑𝑥2 + 2

𝑛𝑚𝑥𝑦

𝜔
𝑑𝑥 𝑑𝑦 + (1 +

(𝑚𝑦)2

𝜔
) 𝑑𝑦2. 

 
The normal vector N is: 

𝑵 =
𝒓𝑥×𝒓𝑦

√𝐸𝐺−𝐹2
= {

−𝑛𝑥

√𝑊
,

−𝑚𝑦

√𝑊
,

√𝜔

√𝑊
}          (6) 

 
where 

𝑊 = 𝑐 + 𝑛(𝑛 + 1)𝑥2 + 𝑚(𝑚 + 1)𝑦2. 
 
We have: 
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then 

𝐿 = −〈𝑵𝑥, 𝒓𝑥〉 =
𝑛(𝑐 + 𝑚𝑦2)

𝜔√𝑊
 , 

𝑀 = −
1

2
(〈𝑵𝑥 , 𝒓𝑦〉 + 〈𝑵𝑦, 𝒓𝑥〉) = −

𝑛𝑚𝑥𝑦

𝜔√𝑊
 , 

𝑁 = −〈𝑵𝑦, 𝒓𝑦〉 =
𝑚(𝑐 + 𝑛𝑥2)

𝜔√𝑊
 . 

 
And 

√|𝐿𝑁 − 𝑀2| =
√𝑛𝑚𝑐

√𝜔√𝑊
 . 

 
The Second fundamental form of the surface is 
given by:   
 

II = 2
2

2
2 )(2)(

dy
W
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W
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Therefore from (1), the Laplace operator ∆𝐼𝐼of Q is 
given as follows:  
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We denote by (N1, N2, N3) the components of 
the vector N. For the partial derivatives of N1, we 
have:  
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Similar relations can be drawn for the partial 
derivatives of N2. Applying (7) for the functions N1 
and N2, we find: 
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After a lot of computations, we write the above 
equation as follows:  

  ),(1)13()1(1
2

32
21 yxf

cW
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W
NII   

 (8) 
 
where  

 422232 )1(2)1)(1(4),( xymnmyxmnmnyxf   
+ 3nm(n +1)(m + 1)(c + nx2)xy2 – 
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where  

 422422 )1(2)1)(1(4),( yxnmnyxmnnmyxg 

      
+ 3nm(n +1)(m + 1)(c + my2)yx2 – 

2mn(n + 1)2(c +nx2)yx2 

+ m2(n + 1)(m + 1)(c +nx2)y3 + 
cm(n + 1)(c +nx2)y]. 

 
Let A = [aij]. Applying relation (2) for the 

position vector (6) we find: 


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From (8) and (10) we have: 
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Putting y = 0 in the above equation, then we get: 

xnncxnn )13()1( 32  + n2(n + 1)(m + 1)x3 

+ cn(m + 1)x = (–a11nx+ a13 2nxc  )W W . (13)     
 

Making some computations on (13) we obtain a 
polynomial of the variable x which must hold for all 
the values of x from which we conclude that all the 
coefficients of the terms of the variable x of the 
polynomial must be zeros, and since n ≠ 0 so we 
will have n + 1 = 0 and a13 = 0. 

 
From (9) and (11) we have: 
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Putting x = 0 in the above equation, then we get 
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+ cm(n + 1)y = (–a22my+ a23 2myc  )W W . 
      (14) 

 
Similarly, by making some computations on 

(14) we obtain a polynomial of the variable y which 
must hold for all the values of y from which we 
conclude that all the coefficients of the terms of the 
variable y of the polynomial must be zeros, and 
since m ≠ 0 so we will have m + 1 = 0 and a23 = 0. 

Putting n = –1, m = –1, and a13 = 0, then from 
(13) we get a11 = –

c

2 . In the same way, if we put n 

= –1, m = –1, and a23 = 0, then from (14) we also get 
a22 = –

c

2 . 

 
Besides, relation (7) becomes: 
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The component N3 of N becomes:   

N3 = 
c

yxc 22   .                       (16) 

 
From (15) and (16) we find: 
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On account of (12), we get: 
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Since the last equation holds for all the values of 
the variables x and y, it is easily verified that we 
must have: 

a31 =  a32 = 0, and  a33 = –
c

2 .            

So, we proved the following: 
 
Theorem 2. Spheres are the only quadric surfaces 
of this kind 𝑍2 = 𝑐 + 𝑛𝑋2 + 𝑚𝑌2,  that satisfies the 
relation IIN = AN.  
 
3.2  Quadrics of the Form (4) 

Putting X = x and Y = y, then Z = 
22

22 mynx
 . And so a 

parametric representation of this kind is locally 
given by:  

r(x, y) = {x, y, 
22

22 mynx
 }.                      (17) 

We have: 
 rx = {1, 0, nx},     ry = {0, 1, my}. 

 
The coefficients of the metric I are: 

E = 1 + (nx)2,    F = nmxy,    G = 1 + (my)2. 
 
So, we obtain: 

I = [1 + (nx)2]dx2 + 2nmxydxdy + [1 + (my)2]dy2. 
 
The Gauss map N is:  
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The components of the second fundamental 

form are defined as follows: 
L = 

g

n ,      M = 0,      N = 
g

m  

 
The Second fundamental form of the surface is 

given by:   
II = 22 dy
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m
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Therefore from (1), the Laplace operator ∆𝐼𝐼of 
Q is given as follows: 
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Let (N1, N2, N3) be the components of the vector 

N. For the partial derivatives of N1, we have:  
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Similar relations can be drawn for the partial 

derivatives of N2. Applying (19) for the function N1 
and  N2, we find: 
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g

ymnm

g

ymxnmy
NII )3()(3

2

2323

2





  

=
2g

my (2n3x2 – m2ny2 – 3mn2x2 – 3m – n).            (21) 

 
For the partial derivatives of N3, we have:  
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x

N 2
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



  ,   
gg
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y

N 2
3 




  
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x

N

2
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2
3

2 )1( 




  

gg

xnm

y

N
2
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2
3

2 )1( 




                                                                                           

 
Applying (19) for the function  N3, we find:  

23
1
g

NII  [n(m2y2 + 1) + m(n2x2 + 1)].       (22) 

 
Let A = [aij]. Applying relation (2) for the 

position vector (18) we find: 
















g

nx
N IIII

1
 = a11N1 + a12N2 + a13N3,   (23)   

          
















g

my
N IIII

2
 = a21N1 + a22N2 + a23N3,    (24)  

        
















g
N IIII 1

3
 = a31N1 + a32N2 + a33N3.      (25)                
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From (20) and (23) we get: 

2g

nx (2m3y2 – n2mx2 – 3nm2y2 – 3n – m)   

= –a11
g

nx  – a12
g

my  + a13
g

1 . 

 
Let x = 0, then 

0
1

1
1 22132212 








ym
a

ym

my
a . 

 
It clearly can be seen that a12 = a13 = 0, from 

which we conclude that a11 = 0. 
 
In the same way, from (21) and (24) we get: 

2g

my (2n3x2 – m2ny2 – 3mn2x2 – 3m – n) 

= –a21
g

nx  – a22
g

my  + a23
g

1 . 

 
Let y = 0, then 

0
1

1
1 22232221 








xn
a

xn

nx
a . 

 
We find that a21 = a23 = 0, from which we also 
conclude that a22 = 0. 
 
So, (20) and (21) become respectively: 

2g

nx (2m3y2 – n2mx2 – 3nm2y2 – 3n – m) = 0, 

2g

my (2n3x2 – m2ny2 – 3mn2x2 – 3m – n) = 0. 

 
The last two equations hold for all the values of 

the variables x and y only when n = m = 0, which is 
impossible since n and m are positive. So, we 
proved: 

 
Theorem 3. There are no quadric surfaces of the 
second kind  Z = 

22

22 mynx
  whose Gauss map 

satisfies the relation IIN = AN. 
 

 

4  Conclusion 
This research article was divided into three sections, 
where after the introduction, the needed definitions 
and relations regarding this interesting field of study 
were given. Then a formula for the Laplace operator 
corresponding to the first fundamental form I was 
proved once for the position vector and another for 
the Gauss map of a surface Q by using Cartan’s 
method of the moving frame. Finally, we classify 

the quadric surfaces Q satisfying the relation ΔG = 
MG, for a real square matrix M of order 3. An 
interesting study can be drawn, if this type of study 
can be applied to other classes of surfaces that have 
not been investigated yet such as spiral surfaces, or 
tubular surfaces. 
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