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1  Introduction 
In differential geometry, vector fields are used in 
three-dimensional and four-dimensional spaces and 
higher-dimensional spaces to determine the 
geometric properties of curves and surfaces. The 
best-known and most widely used vector fields are 
the Frenet vector fields, the Darboux vector fields, 
tangent vector fields, and normal vector fields. 
Frenet vector fields form an orthonormal frame 
along a space curve. This frame field is called the 
Frenet frame which includes important knowledge 
about the curve. Frenet formulas, which consist of 
the derivative equations of the Frenet frame, can be 
rewritten using the Darboux vector field in 
Euclidean 3-space  𝔼3, [1], [2]. If a curve lies on a 
surface, then by using the tangent vector field of the 
curve and the normal vector field of the surface, we 
can construct a different frame called the Darboux 
frame. Using the vector fields of the Frenet frame, 
and the Darboux frame, some new frames, curves, 
and surfaces have been defined and characterized in 
different spaces, [3], [4], [5], [6], [7], [8]. Among 
these surfaces, ruled surfaces have many 
applications in CAGD, architecture, and physics. 
Developable surfaces which are special kinds of 
ruled surfaces have also been studied in many 
spaces, [4], [5], [9], [10]. Also, since special surface 
curves such as lines of curvature, and geodesic 
curves play an important role in surface analysis and 
geometric design, several methods have been given 

to construct a developable surface or hypersurface 
possessing a given curve as the line of curvature or a 
geodesic curve of it, [4], [5], [6], [11]. 

The Darboux frame field has been extended into 
Euclidean 4-space 𝔼4 and the extended Darboux 
frame field of the first kind, and the extended 
Darboux frame field of the second kind have been 
defined in [12]. Some special curves according to 
this extended Darboux frame field have been 
defined in [13].  

Defining some new vector fields along a space 
curve with nonvanishing curvatures in 𝔼4, the 
Frenet formulas have been rewritten as ternary 
products of Frenet vectors in [14]. Later, some new 
planes, curves, and ruled hypersurfaces have been 
introduced and then some characterizations related 
to these planes, curves, and ruled hypersurfaces 
have been given [14]. The results of [14] have been 
studied in Minkowski 4-space by [15]. 

This paper aims to define new vector fields 
along a geodesic curve on an orientable 
hypersurface with nonvanishing curvatures of 
extended Darboux frame of the second kind in  𝔼4 
and to rewrite the derivatives of the extended 
Darboux frame field vectors of the second kind as 
ternary products of these vector fields. This study 
also aims to define new planes and curves using 
these new vector fields. In addition, we construct 
some ruled hypersurfaces associated with these 
vector fields. 
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2  Preliminaries 
Let 𝛼 be a unit speed curve in 𝔼3, and {T,N, B, 𝜅, 𝜏} 
denote the Frenet apparatus of 𝛼. By using the 
Darboux vector field D = 𝜏T + 𝜅B of 𝛼, the Frenet 
formulas:  

T′ = 𝜅N,    N′ = −𝜅T + 𝜏B,    B′ = −𝜏N 
 
can be rewritten as [1]:  

T′ = D × T,    N′ = D × N,    B′ = D × B. 
       

Let 𝑆 ⊂ 𝔼3 be an oriented surface and 𝛼 be a 
unit speed curve on 𝑆. Let T be the unit tangent 
vector field of 𝛼, and N be the surface unit normal 
vector field restricted to 𝛼. Then, the Darboux frame 
field along the curve 𝛼 is given by {T, V, N}, where 
V = N × T. Then, the derivative  equations of the 
Darboux frame field are given by [1].  

{

T′ = 𝜅𝑔V + 𝜅𝑛N,

V′ = −𝜅𝑔T + 𝜏𝑔N,

N′ = −𝜅𝑛T − 𝜏𝑔V,

 

where 𝜅𝑔, 𝜅𝑛, and 𝜏𝑔 denote the geodesic curvature, 
the normal curvature, and the geodesic torsion of 𝛼, 
respectively. By using the Darboux vector field:  

W = 𝜏𝑔T − 𝜅𝑛V+ 𝜅𝑔N 
of 𝛼, we can rewrite the above equations as:  

T′ = W× T,    V′ = W × V,    N′ = W × N. 
 

Definition 2.1 Let {e1, e2, e3, e4} be the standard 
basis of ℝ4. The ternary product of the vectors X =
∑4i=1 xiei, Y = ∑4i=1 yiei, and Z = ∑4i=1 ziei is 
defined by [16]:  

X⊗ Y⊗ Z = |

e1 e2 e3 e4
𝑥1 𝑥2 𝑥3 𝑥4
𝑦1 𝑦2 𝑦3 𝑦4
𝑧1 𝑧2 𝑧3 𝑧4

|. 

      
Let 𝛿 be a unit speed curve in 𝔼4, and 

{T,N, B1, B2, 𝜅1, 𝜅2, 𝜅3} denote the Frenet apparatus 
of 𝛿. By using the vector fields [14]:  

    D1 = B2,    D2 = 𝜅2T + 𝜅1B1,      
D3 = 𝜅3N+ 𝜅2B2,    D4 = T 

 
along 𝛿, the Frenet formulas:  

T′ = 𝜅1N,    N
′ = −𝜅1T+ 𝜅2B1, 

             B1′ = −𝜅2N+ 𝜅3B2,    B2′ = −𝜅3B1 
 
can be rewritten as [14]:  

T′ = D1⊗D2⊗T,

N′ = D1⊗D2⊗N,

B1
′ = D3⊗D4⊗B1,

B2
′ = D3⊗D4⊗B2.

 

 

Let ℳ ⊂ 𝔼4 be an orientable hypersurface 
oriented by the unit normal vector field 𝒩, and 𝛿 be 
a unit speed Frenet curve of class 𝐶𝑛  (𝑛 ≥ 4) on 
ℳ. Let T denote the unit tangent vector field of 𝛿, 
and N denote the hypersurface unit normal vector 
field restricted to 𝛿. Then, if the set {N, T, 𝛿′′} is 
linearly independent, one can construct the extended 
Darboux frame field {T, E, D, N} of the first kind 
along 𝛿 [12], where:  

E =
𝛿′′ − 〈𝛿′′, N〉N

||𝛿′′ − 〈𝛿′′, N〉N||
,    D = N⊗ T⊗ E. 

 
In this case, the differential equation of this 

frame is given by [12]:  

{
 
 

 
 
T′ = 𝜅𝑔

1E + 𝜅𝑛N,

E′ = −𝜅𝑔
1T + 𝜅𝑔

2D+ 𝜏𝑔
1N,

D′ = −𝜅𝑔
2E + 𝜏𝑔

2N,

N′ = −𝜅𝑛T − 𝜏𝑔
1E − 𝜏𝑔

2D.

 

 
If the set {N, T, 𝛿′′} is linearly dependent, then 

one can construct the extended Darboux frame field 
{T, E, D,N} of the second kind along 𝛿 [12], where:  

E =
𝛿′′′ − 〈𝛿′′′, N〉N − 〈𝛿′′′, T〉T

||𝛿′′′ − 〈𝛿′′′, N〉N − 〈𝛿′′′, T〉T||
 , 

and D = N⊗ T⊗ E. In this case, the differential 
equation of this frame is given by [12]:  

{
 
 

 
 
T′ = 𝜅𝑛N,

E′ = 𝜅𝑔
2D+ 𝜏𝑔

1N,

D′ = −𝜅𝑔
2E,

N′ = −𝜅𝑛T − 𝜏𝑔
1E,

 (1) 

where 𝜅𝑛 denotes the normal curvature of the 
hypersurface, 𝜅𝑔2 denotes the geodesic curvature of 
order 2 and 𝜏𝑔1 denotes the geodesic torsion of order 
1.  
 
Definition 2.2 Let δ: I ⊂ ℝ → 𝔼4 be a curve with 
unit tangent vector e0, and {𝑒1(𝑡), 𝑒2(𝑡)} denotes an 
orthonormal basis of generating plane along δ. Then 
the hypersurface:  

𝜑(𝑡, 𝑣1, 𝑣2) = 𝛿(𝑡) + 𝑣1𝑒1(𝑡) + 𝑣2𝑒2(𝑡), 
is called a ruled hypersurface represented by the 
map 𝜑: 𝐼 × ℝ2 → 𝔼4 in 𝔼4. If  

𝑟𝑎𝑛𝑘[𝑒0, 𝑒1, 𝑒2, 𝑒1
′ , 𝑒2

′ ] = 4, (2) 
 

then the ruled hypersurface is called non-
developable. If  

𝑟𝑎𝑛𝑘[𝑒0, 𝑒1, 𝑒2, 𝑒1
′ , 𝑒2

′ ] = 3, (3) 
 

then the ruled hypersurface is called developable, 
[17]. 
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3  New Vector Fields and Curves in 𝔼4 
Let ℳ ⊂ 𝔼4 be an orientable hypersurface, 𝛿 be a 
unit speed geodesic curve on ℳ with nonzero 
curvatures 𝜅𝑛, 𝜅𝑔2, 𝜏𝑔1, and {T, E, D, N} denotes its 
extended Darboux frame of the second kind. Let us 
define the following vector fields along 𝛿:  

W1 = D,    W2 = −𝜏𝑔
1T + 𝜅𝑛E,

W3 = 𝜅𝑔
2N− 𝜏𝑔

1D,    W4 = T.
 (4) 

 
Note that the set {W1,W2,W3,W4} is linearly 

independent along 𝛿 and {W1,W2}, {W3,W4} and 
{W2,W3} are orthogonal sets. Let us denote the 
subspaces spanned by {W1,W2}, {W3,W4} and 
{W2,W3} as W1W2-plane, W3W4-plane, and W2W3-
plane, respectively. We may rewrite (1) by using the 
vector fields W𝑖 (1 ≤ 𝑖 ≤ 4) as follows:  

T′ = W1⊗W2⊗T,

E′ = W3⊗W4⊗E,

D′ = W3⊗W4⊗D,

N′ = W1⊗W2⊗N.

 (5) 

 
So, according to (5), T and N rotate around the 

W1W2-plane, and E and D rotate around the W3W4-
plane. This means the W1W2-plane and the W3W4-
plane play the role that the Darboux vector W =
𝜏𝑔T − 𝜅𝑛V + 𝜅𝑔N plays in 3-space.  

Now, we will define some new curves and call 
them W1W2-curve, W3W4-curve, and W2W3-curve, 
respectively. 
 

Definition 3.1 If the position vector of a geodesic 
curve on an orientable hypersurface ℳ ⊂ 𝔼4 
always lies in its W1W2-plane, it is called a W1W2-
curve.  
 

Theorem 3.1 Let 𝛿 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ with nonvanishing curvatures 
𝜅𝑛 , 𝜅𝑔

2, and 𝜏𝑔1. Then, 𝛿 is congruent to a W1W2-
curve if and only if the curvatures of 𝛿 satisfy the 
equation:  

    { 1

𝜅𝑔
2(𝑠)

(
𝜅𝑛(𝑠)(𝑐−𝑠)

𝜏𝑔
1(𝑠)

)
′

}
′

+
𝜅𝑛(𝑠)𝜅𝑔

2(𝑠)(𝑐−𝑠)

𝜏𝑔
1(𝑠)

= 0, (6) 

 
where 𝑐 = constant.   
 

Proof.  (⇒) Let 𝛿 be a W1W2-curve with non-
vanishing curvatures 𝜅𝑛, 𝜅𝑔

2, and 𝜏𝑔
1 on ℳ. Then, we 

can write:  
𝛿(𝑠) = 𝜆1(𝑠)W1(𝑠) + 𝜆2(𝑠)W2(𝑠) (7) 

for some functions 𝜆𝑖(𝑠), (𝑖 = 1,2). Taking the 
derivative of (7) according to 𝑠 and using (1) gives 
us:  

        {
(𝜆2(𝑠)𝜏𝑔

1(𝑠))′ + 1 = 0,

(𝜆2(𝑠)𝜅𝑛(𝑠))′ − 𝜆1(𝑠)𝜅𝑔
2(𝑠) = 0,

𝜆1
′ (𝑠) + 𝜆2(𝑠)𝜅𝑛(𝑠)𝜅𝑔

2(𝑠) = 0.

              (8) 

 
If we use the first equation of (8), we obtain:  

 𝜆2(𝑠) =
𝑐−𝑠

𝜏𝑔
1(𝑠)

 ,  

 
where 𝑐 denotes an integration constant. The second 
equation of (8) gives:  

 𝜆1(𝑠) =
1

𝜅𝑔
2(𝑠)

(
𝜅𝑛(𝑠)(𝑐−𝑠)

𝜏𝑔
1(𝑠)

)
′

. 

 
Thus, we obtain equation (6) by substituting the 

obtained results into the third equation of (8). 
      (⇐) Let us assume that the curvatures of 𝛿 
satisfy the equation (6). Differentiating the vector:  

𝐴(𝑠) = 𝛿(𝑠) −
1

𝜅𝑔
2(𝑠)

(
𝜅𝑛(𝑠)(𝑐 − 𝑠)

𝜏𝑔
1(𝑠)

)

′

W1(𝑠)

 

                    −
𝑐 − 𝑠

𝜏𝑔
1(𝑠)

W2(𝑠)

 

according to 𝑠 yields zero vector. This means 𝐴(𝑠) 
is a constant vector. Then, 𝛿(𝑠) is congruent to a 
W1W2-curve.  
 
Definition 3.2 If the position vector of a geodesic 
curve on an orientable hypersurface ℳ ⊂ 𝔼4 
always lies in its W3W4-plane, it is called a W3W4-
curve.   
 

Theorem 3.2 Let 𝜁 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ with nonvanishing curvatures 

𝜅𝑛, 𝜅𝑔
2, and 𝜏𝑔

1. Then, 𝜁 is congruent to a W3W4-
curve if and only if the curvatures of  𝜁 satisfy the 
equation:  

   𝑐 { 1

𝜅𝑛(𝑠)
(
𝜅𝑔
2(𝑠)

𝜏𝑔
1(𝑠)

)
′

}
′

+
𝑐𝜅𝑛(𝑠)𝜅𝑔

2(𝑠)

𝜏𝑔
1(𝑠)

+ 1 = 0, (9) 

 
where 𝑐 = constant.  
 

Proof. (⇒) Let 𝜁 be a W3W4-curve with non-
vanishing curvatures 𝜅𝑛, 𝜅𝑔

2, and 𝜏𝑔
1 on ℳ. Then, by 

the definition, we can write  
𝜁(𝑠) = 𝜇1(𝑠)W3(𝑠) + 𝜇2(𝑠)W4(𝑠) (10) 

 
for some functions 𝜇𝑖(𝑠), (𝑖 = 1,2). If we 
differentiate (10) according to 𝑠 and use (1), we 
obtain:  

     {
(𝜇1(𝑠)𝜏𝑔

1(𝑠))′ = 0,

(𝜇1(𝑠)𝜅𝑔
2(𝑠))′ + 𝜇2(𝑠)𝜅𝑛(𝑠) = 0,

𝜇2
′ (𝑠) − 𝜇1(𝑠)𝜅𝑛(𝑠)𝜅𝑔

2(𝑠) − 1 = 0.

           (11) 
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 From the first equation of (11), we have:  
𝜇1(𝑠) =

𝑐

𝜏𝑔
1(𝑠)

 , 

where 𝑐 is an integration constant. The second 
equation of (11) yields:  

𝜇2(𝑠) = −
𝑐

𝜅𝑛(𝑠)
(
𝜅𝑔
2(𝑠)

𝜏𝑔
1(𝑠)

)

′

. 

 
If we substitute these results into the third 

equation of (11), we get (9). 
      (⇐) Let us assume that the curvatures of 𝜁 
satisfy the equation (9). Let:  

𝐵(𝑠) = 𝜁(𝑠) −
𝑐

𝜏𝑔
1(𝑠)

W3(𝑠)

+
𝑐

𝜅𝑛(𝑠)
(
𝜅𝑔
2(𝑠)

𝜏𝑔
1(𝑠)

)

′

W4(𝑠). 

 
If we differentiate 𝐵(𝑠) according to 𝑠, we 

obtain a zero vector. This means 𝐵(𝑠) is a constant 
vector. Thus, 𝜁(𝑠) is congruent to a W3W4-curve.  
 

Definition 3.3 If the position vector of a geodesic 
curve on an orientable hypersurface ℳ ⊂ 𝔼4 
always lies in its W2W3-plane, it is called W2W3-
curve.   
 

Theorem 3.3 Let 𝜎 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ with nonvanishing curvatures 

𝜅𝑛 , 𝜅𝑔
2, and 𝜏𝑔

1. Then, 𝜎 is congruent to a W2W3-
curve if and only if the curvatures of σ satisfy the 
equation:  

{
𝑐1 (

𝜏𝑔
1(𝑠)

𝜅𝑛(𝑠)
)
′

+ 𝑐2𝜅𝑛(𝑠) + 1 = 0,

𝑐2 (
𝜏𝑔
1(𝑠)

𝜅𝑔
2(𝑠)

)
′

− 𝑐1𝜅𝑔
2(𝑠) = 0,

           (12) 

 
where 𝑐1 = constant and 𝑐2 = constant.  
 

Proof. (⇒) Let 𝜎 be a W2W3-curve with non-
vanishing curvatures 𝜅𝑛, 𝜅𝑔

2, and 𝜏𝑔
1 on ℳ. Then, 

from the definition of the W2W3-curve, we can write  
𝜎(𝑠) = 𝜈1(𝑠)W2(𝑠) + 𝜈2(𝑠)W3(𝑠) (13) 

 
for some functions 𝜈𝑖(𝑠), (𝑖 = 1,2). Taking the 
derivative of (13) according to 𝑠 and using (1) yield: 

{
 
 

 
 
(𝜈1(𝑠)𝜅𝑛(𝑠))′ = 0,

(𝜈2(𝑠)𝜅𝑔
2(𝑠))′ = 0,

(𝜈1(𝑠)𝜏𝑔
1(𝑠))′ + 𝜈2(𝑠)𝜅𝑛(𝑠)𝜅𝑔

2(𝑠) + 1 = 0,

(𝜈2(𝑠)𝜏𝑔
1(𝑠))′ − 𝜈1(𝑠)𝜅𝑛(𝑠)𝜅𝑔

2(𝑠) = 0.

(14) 

 
If we use the first equation of (14), we get:  

𝜈1(𝑠) =
𝑐1

𝜅𝑛(𝑠)
 , 

where 𝑐1 is an integration constant. The second 
equation of (14) gives:  

𝜈2(𝑠) =
𝑐2

𝜅𝑔
2(𝑠)

 , 

 
where 𝑐2 is an integration constant. Then, we obtain 
the equation (12), if we substitute these results into 
the third and fourth equations of (14). 
      (⇐) Let us assume that the curvatures of the 
curve 𝜎 satisfy the equation (12). If we consider the 
vector:  

𝐶(𝑠) = 𝜎(𝑠) −
𝑐1

𝜅𝑛(𝑠)
W2(𝑠) −

𝑐2

𝜅𝑔
2(𝑠)

W3(𝑠), 

and differentiate it according to 𝑠, we find zero 
vector. So, 𝐶(𝑠) is a constant vector. Then, 𝜎(𝑠) is 
congruent to a W2W3-curve. 
 

Example 3.1 Let us consider the hypersurface  ℳ 
with its parametric equation: 

𝑋(𝑢, 𝑣, 𝑤) = ((1 +
3𝑣

√10
)sin(ℓ1𝑢) −

3√21

14
wcos(ℓ1u),

                    (1 +
3𝑣

√10
)cos(ℓ1𝑢) +

3√21

14
𝑤sin(ℓ1u),

                    (1 −
𝑣

√10
)sin(ℓ2𝑢) +

√7

14
𝑤cos(ℓ2u),

                    (1 −
𝑣

√10
)cos(ℓ2𝑢) −

√7

14
𝑤sin(ℓ2𝑢)),

 

 
where ℓ1 =

1

2
, ℓ2 =

√3

2
. It is easy to verify that the 

curve 
𝛿(𝑠) = 𝑋(𝑠, 0,0)   
= (sin(ℓ1𝑠), cos(ℓ1𝑠), sin(ℓ2𝑠), cos(ℓ2𝑠)) 

is a geodesic on ℳ, where 𝑠 ∈ 𝐼 ⊂ ℝ. Then, we can 
construct the extended Darboux frame of the second 
kind along 𝛿. If we use the formulas given in [12], 
we find the curvatures of 𝛿 as: 
    𝜅𝑛(𝑠) =

√5

2√2
,  𝜅𝑔

2(𝑠) =
√3

√10
,   𝜏𝑔

1(𝑠) =
1

2

√3

√10
 . 

 
Thus, we can see that these curvatures do not 

satisfy the equation (6). It means 𝛿 is not a W1W2-
curve in 𝔼4. However, the above curvatures satisfy 
(9) with 𝑐 = − √2

√5
. This means 𝛿 is a W3W4-curve in 

𝔼4. If we substitute the results into (10), we have: 

𝛿(𝑠) = −
4

√3
W3(𝑠) + 0.W4(𝑠), 

where 

W3(𝑠) =
√3

√10
(N(𝑠) −

1

2
D(𝑠)). 
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Moreover, the curvatures of 𝛿 satisfy also the 
equation (12) with 𝑐1 = 0, 𝑐2 = −

2√2

√5
 which yields 

𝛿 as a W2W3-curve in 𝔼4. 
 
 
4 Ruled Hypersurfaces Obtained by 

 the Vector Fields 𝐖𝒊 
Let 𝛿 be a geodesic curve with arc-length parameter 
𝑠 lying on an orientable hypersurface ℳ with 
nonvanishing curvatures 𝜅𝑛, 𝜅𝑔2, and 𝜏𝑔1. Let us 
consider the vector fields W𝑖 (1 ≤ 𝑖 ≤ 4) defined in 
(4). If we normalize the orthogonal sets {W1,W2} 
and {W2,W3}, we find the orthonormal frames 
{W1,W2} and {W2,W3}, where 
W2(𝑠) =

W2(𝑠)

||W2(𝑠)||

            =
1

√𝜅𝑛
2(𝑠)+(𝜏𝑔

1)2(𝑠)
[𝜅𝑛(𝑠)E(𝑠) − 𝜏𝑔

1(𝑠)T(𝑠)]
an

d
W3(𝑠) =

W3(𝑠)

||W3(𝑠)||

        =
1

√(𝜅𝑔
2)2(𝑠)+(𝜏𝑔

1)2(𝑠)
[𝜅𝑔
2(𝑠)N(𝑠) − 𝜏𝑔

1(𝑠)D(𝑠)],
 

respectively. Differentiating these vector fields 
according to 𝑠 give:  

W2

′
(𝑠) = 𝜌1(𝑠)[𝜅𝑛(𝑠)T(𝑠) + 𝜏𝑔

1(𝑠)E(𝑠)]

+ 𝜌2(𝑠)D(𝑠) 
 and 
  W3

′
(𝑠) = −𝜌3(𝑠)T(𝑠) 

       +𝜌4(𝑠)[𝜅𝑔2(𝑠)D(𝑠) + 𝜏𝑔1(𝑠)N(𝑠)], 
 
where  

𝜌1(𝑠) = [(
𝜅𝑛

𝜏𝑔
1)

′
(𝜏𝑔
1)2

(𝜅𝑛
2 + (𝜏𝑔

1)2)
3/2
] (𝑠), 

𝜌2(𝑠) =
𝜅𝑛𝜅𝑔

2

√𝜅𝑛
2 + (𝜏𝑔

1)2
(𝑠), 

𝜌3(𝑠) =
𝜅𝑛𝜅𝑔

2

√(𝜅𝑔
2)2 + (𝜏𝑔

1)2
(𝑠), 

𝜌4(𝑠) = [(
𝜅𝑔
2

𝜏𝑔
1)

′
(𝜏𝑔
1)2

((𝜅𝑔
2)2 + (𝜏𝑔

1)2)
3/2
] (𝑠). 

       
Now, let us consider the orthonormal frames 

{W1(𝑠),W2(𝑠)} and {W2(𝑠),W3(𝑠)}. We define the 
ruled hypersurfaces:  

    𝜑(𝑠, 𝑢, 𝑣) = 𝛿(𝑠) + 𝑢W1(𝑠) + 𝑣W2(𝑠),    (15) 
and 

𝜓(𝑠, 𝑢, 𝑣) = 𝛿(𝑠) + 𝑢W2(𝑠) + 𝑣W3(𝑠), 

where 𝑢, 𝑣 ∈ ℝ, 𝑠 ∈ 𝐼, and call them as W1W2-ruled 
hypersurface and W2W3-ruled hypersurface of 𝛿, 
respectively.  
 
Theorem 4.1 Let 𝛿 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ. Then, (𝑠0, 𝑢0, 𝑣0) is a singular 
point of the W1W2-ruled hypersurface of 𝛿 if and 
only if the equation  

𝜅𝑛(𝑠0) − 𝑢0(𝜅𝑔
2𝜏𝑔
1)(𝑠0) + 𝑣0[𝜌1((𝜅𝑛)

2 +

(𝜏𝑔
1)2)](𝑠0) = 0. (16) 

 holds. 
 

Proof. If we calculate the partial derivatives of 
𝜑(𝑠, 𝑢, 𝑣), we find:  
𝜑𝑠 = [1 + 𝑣𝜌1(𝑠)𝜅𝑛(𝑠)]T(𝑠)

        +[𝑣𝜌1(𝑠)𝜏𝑔
1(𝑠) − 𝑢𝜅𝑔

2(𝑠)]E(𝑠) + 𝑣𝜌2(𝑠)D(𝑠),
 

 𝜑𝑢 = D(𝑠), 

 

𝜑𝑣 = (
−𝜏𝑔

1

√𝜅𝑛
2+(𝜏𝑔

1 )2
)(𝑠)T(𝑠)

            +(
𝜅𝑛

√𝜅𝑛
2+(𝜏𝑔

1 )2
) (𝑠)E(𝑠).

 

 
So, we get : 

𝜑𝑠⊗𝜑𝑢⊗𝜑𝑣 =

    =
𝜅𝑛(𝑠)−𝑢(𝜅𝑔

2𝜏𝑔
1)(𝑠)+𝑣[𝜌1(𝜅𝑛

2+(𝜏𝑔
1 )2)](𝑠)

(√𝜅𝑛
2+(𝜏𝑔

1)2)(𝑠)
N(𝑠).    (17) 

 
It is known that (𝑠0, 𝑢0, 𝑣0) is a singular point of 

the W1W2-ruled hypersurface of 𝛿 if and only if 
(𝜑𝑠⊗𝜑𝑢⊗𝜑𝑣)(𝑠0, 𝑢0, 𝑣0) = 0. Thus, the claim is 
clear from (17).  

 
Corollary 4.1 If we write 𝑢 = 𝑣 = 0 in (15), we 
find the points of the curve 𝛿. Then, 𝛿(𝑠) is a 
regular point of 𝜑(𝑠, 𝑢, 𝑣) for all 𝑠 ∈ 𝐼.  
 

Proposition 4.1 Let 𝛿 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ. The 𝑊1𝑊2-ruled hypersurface 
associated with δ is developable.   
 

Proof. We get: 

  

𝑟𝑎𝑛𝑘[T,W1,W2,W1
′,W2

′
] =

= 𝑟𝑎𝑛𝑘

[
 
 
 
 
 
 
1 0 0 0
0 0 1 0

−𝜏𝑔
1

√𝜅𝑛
2+(𝜏𝑔

1)2

𝜅𝑛

√𝜅𝑛
2+(𝜏𝑔

1 )2
0 0

0 −𝜅𝑔
2 0 0

𝜌1𝜅𝑛 𝜌1𝜏𝑔
1 𝜌2 0]

 
 
 
 
 
 

= 3.
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Then, from (3), the W1W2-ruled hypersurface 
associated with 𝛿 is developable.   

 
Theorem 4.2 Let 𝛿 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ. Then, (𝑠0, 𝑢0, 𝑣0) is a singular 
point of the W2W3-ruled hypersurface of 𝛿 if and 
only if the equations  

{

𝜅𝑛(𝑠0) + 𝑢0[𝜌1(𝜅𝑛
2 + (𝜏𝑔

1)2)](𝑠0)

              −𝑣0(𝜅𝑛𝜌3)(𝑠0) = 0,

𝑣0[𝜌4((𝜅𝑔
2)2 + (𝜏𝑔

1)2)](𝑠0) + 𝑢0(𝜅𝑔
2𝜌2)(𝑠0) = 0

 

(18) 
hold.  
 

Proof. If we calculate the partial derivatives of 
𝜓(𝑠, 𝑢, 𝑣), we obtain:  
𝜓𝑠 = [1 + 𝑢𝜌1(𝑠)𝜅𝑛(𝑠) − 𝑣𝜌3(𝑠)]T(𝑠)

+[𝑢𝜌1(𝑠)𝜏𝑔
1(𝑠)]E(𝑠) + [𝑢𝜌2(𝑠) + 𝑣𝜌4(𝑠)𝜅𝑔

2(𝑠)]D(𝑠)

              +[𝑣𝜌4(𝑠)𝜏𝑔
1(𝑠)]N(𝑠),

𝜓𝑢 =

(

 
−𝜏𝑔

1

√𝜅𝑛
2 + (𝜏𝑔

1)2
)

 (𝑠)T(𝑠)

              +

(

 
𝜅𝑛

√𝜅𝑛
2 + (𝜏𝑔

1)2
)

 (𝑠)E(𝑠),

𝜓𝑣 =

(

 
𝜅𝑔
2

√(𝜅𝑔
2)2 + (𝜏𝑔

1)2
)

 (𝑠)N(𝑠)

              −

(

 
𝜏𝑔
1

√(𝜅𝑔
2)2 + (𝜏𝑔

1)2
)

 (𝑠)D(𝑠).

 

 
So, we have:  
𝜓𝑠⊗𝜓𝑢⊗𝜓𝑣 = Γ1(−𝜅𝑛(𝑠)T(𝑠) − 𝜏𝑔

1(𝑠)E(𝑠))

+Γ2(𝜅𝑔
2(𝑠)D(𝑠) + 𝜏𝑔

1(𝑠)N(𝑠)),
 

(19) 
 
where  

Γ1 =
𝑣{𝜌4((𝜅𝑔

2)2 + (𝜏𝑔
1)2)}(𝑠) + 𝑢(𝜅𝑔

2𝜌2)(𝑠)

√𝜅𝑛
2 + (𝜏𝑔

1)2√(𝜅𝑔
1)2 + (𝜏𝑔

1)2
 

and 

Γ2 =
𝜅𝑛(𝑠) + 𝑢{𝜌1(𝜅𝑛

2 + (𝜏𝑔
1)2)}(𝑠) − 𝑣(𝜅𝑛𝜌3)(𝑠)

√𝜅𝑛
2 + (𝜏𝑔

1)2√(𝜅𝑔
1)2 + (𝜏𝑔

1)2
. 

Thus, the claim is clear from (19).  

Corollary 4.2 𝛿(𝑠), ∀𝑠 ∈ 𝐼, is a regular point of the 
W2W3-ruled hypersurface.   
 

Proposition 4.2 Let 𝛿 be a geodesic curve with arc-
length parameter 𝑠 lying on an orientable 
hypersurface ℳ. The W2W3-ruled hypersurface 
associated with 𝛿 is non-developable.  
 

Proof. We have:  
𝑟𝑎𝑛𝑘[T,W2,W3,W2

′
,W3

′
] = 4. 

 
Then, from (2), the W2W3-ruled hypersurface 

associated with 𝛿 is non-developable.   
 

Example 4.1 Let us consider the unit speed 
geodesic curve 𝛿 given in Example 3.1. Since: 

W2(s) =
1

2√7
(5E(𝑠) − √3 T(𝑠)), 

W3(s) =
1

√5
(2N(𝑠) − D(𝑠)), 

we obtain the W2W3-ruled hypersurface of 𝛿 as: 

𝜓(𝑠, 𝑢, 𝑣) = ((1 −
𝑣

√2
)sin(ℓ1𝑠) −

3√21

14
𝑢cos(ℓ1𝑠),

                    (1 −
𝑣

√2
)cos(ℓ1𝑠) +

3√21

14
𝑢sin(ℓ1𝑠),

                    (1 −
𝑣

√2
)sin(ℓ2𝑠) +

√7

14
𝑢cos(ℓ2𝑠),

                    (1 −
𝑣

√2
)cos(ℓ2𝑠) −

√7

14
𝑢sin(ℓ2𝑠)).

 

 
If we consider the equation (18), we find the 

singular points of the  W2W3-ruled hypersurface of 
𝛿 as (η, 0, √2), ∀η ∈ 𝐼. 

 
 

5  Conclusion 
This paper focuses on a geodesic curve on an 
orientable hypersurface with nonvanishing 
curvatures of extended Darboux frame of the second 
kind in Euclidean 4-space 𝔼4. We define the linearly 
independent vector fields:   

W1 = D,    W2 = −𝜏𝑔
1T + 𝜅𝑛E,

W3 = 𝜅𝑔
2N− 𝜏𝑔

1D,    W4 = T
  

along the curve. These vector fields enable us to 
rewrite the derivatives of the extended Darboux 
frame field vectors as ternary products of related 
vector fields. We also defined the W1W2-plane, 
W3W4-plane, and W2W3-plane along the curve and 
showed that the W1W2-plane and W3W4-plane play 
the role of Darboux vector. Furthermore, we 
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introduced the W1W2-curve, W3W4-curve, and 
W2W3-curve and obtained their characterizations. 
Finally, two ruled hypersurfaces related to the newly 
defined vector fields have been constructed. Two 
examples have been given as applications of our 
results. Similar investigations can be researched for 
the extended Darboux frame of the first kind, or any 
other special frames along a curve in Euclidean 4-
space or other spaces. 
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