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Abstract: - The significance of Multistep Methods with constant coefficients and their application in addressing 
various Natural Science issues is universally acknowledged. Dahlquist conducted foundational research on these 
methods. Building on this, this text outlines certain developments in these theories and their use in solving 
Ordinary Differential, Volterra Integral, and Volterra Integro-Differential Equations. Advanced (forward-jumping) 
methods are examined, with a comparison made between the outcomes of these methods and those established by 
Dahlquist. Additionally, the study focuses on advanced second derivative multistep methods, demonstrating that 
the stable variants of these advanced methods yield greater accuracy. Furthermore, the research identifies the 
maximum achievable degree for the advanced methods. The constructed methods have been utilized to tackle 
model problems, and the resulting findings are presented here for illustration.  
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1   Introduction 
During the Middle Ages, researchers often found 
themselves captivated by the movements of celestial 
bodies, framing their inquiries within the context of an 
initial-value problem associated with Ordinary 
Differential Equations (ODEs). This exploration was 
not merely academic; it was an endeavor to 
understand the cosmos, reflecting humanity's quest for 
knowledge. As mathematicians began to seek 
solutions, they turned to various numerical methods 
that could approximate these elusive paths. Among 
these, the power series technique emerged as a 
prominent choice, allowing scholars to express 
solutions in terms of infinite series. However, it was 

Leonid Euler who critically assessed the limitations of 
these early approaches. He noted that while power 
series offered a mechanism for calculation, they often 
fell short in terms of convergence and accuracy for 
complex celestial problems. In response, Euler 
introduced a novel methodology that sought to 
enhance the reliability of these calculations, paving 
the way for more sophisticated analyses. The journey 
did not end there; it was the Adams-Moulton and 
Adams-Bashforth methods that truly revolutionized 
numerical techniques for solving ODEs. By 
employing these predictor-corrector methods, scholars 
were able to achieve greater precision and stability in 
their computations, illuminating the paths of celestial 
bodies with newfound clarity. Thus, the evolution of 
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numerical methods during this period reflected both 
the challenges faced and the ingenuity of 
mathematicians striving to understand the universe, 
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]:  

𝑦′(𝑥) = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0, 𝑥0 ≤ 𝑥 ≤ 𝑋.        (1) 
 

Here, suppose that, this problem has the unit 
continuous solution 𝑦(𝑥) , which is defined in the 
segment [𝑥0, 𝑋]. A continuous totality of arguments 
function 𝑓(𝑥, 𝑦) has been defined in some closed set, 
which has the continuous partial derivatives to some 
p, inclusively.  
As previously mentioned, the objective of this study is 
to determine the numerical solution for problem (1). 
At this stage, the precise value of the solution at point 
𝑥𝑖  is represented by 𝑦(𝑥𝑖), while the corresponding 
approximate values are indicated as 𝑦𝑖(𝑖 =
0,1,2, . . , 𝑁). The mesh points 𝑥𝑖 (where 𝑖 = 0,1, . , 𝑁) 
are defined such that 𝑥𝑖+1 = 𝑥𝑖 + ℎ  (for 𝑖 =
0,1, . . 𝑁 − 1). Here, h is a constant known as the step 
size, which segments the interval[𝑥0, 𝑋] into 𝑁 equal 
parts. We will let f denote the function values 

𝑓(𝑥𝑖 , 𝑦𝑖) (for 𝑖 = 0,1, . . , 𝑁).  
It's important to understand that Euler's approach can 
be derived from Adams's technique as a specific 
instance. Experts focused on creating and utilizing 
numerical methods for solving problem (1) have 
broadly generalized all established numerical 
techniques. This process led to the development of 
various methods, including the following:  

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ ∑ 𝛽𝑖𝑓𝑛+𝑖 , 𝑛 = 0,1,2, . . , 𝑁 −𝑘
𝑖=0

𝑘
𝑖=0

𝑘, 𝛼𝑘 ≠ 0,                           (2) 
when utilizing this approach to address certain issues 
of the kind (1), the question of the method's 
convergence comes into play. The study referenced in 
[2] explores this issue and demonstrates that for the 
method (2) to converge, the roots of the polynomial 
must meet specific criteria  

𝜌(𝜆) ≡ 𝛼𝑘𝜆𝑘 + 𝛼𝑘−1𝜆𝑘−1+. . . +𝛼1𝜆 + 𝛼𝑘       (3) 
 

The condition requires that the locations are 
situated within the unit circle, where no roots are 
repeated on its boundary. This principle is referred to 
as the dispersion concept. In reference [8], this 
principle is recognized as a criterion for the stability 
of method (2). It has been demonstrated that when 
𝛽𝑘 = 0 and method (2) maintains stability, then the 
relationship 𝑝 ≤ 𝑘  holds for the 𝑘 ≤ 10 , where 𝑝 
signifies the 𝑝 accuracy level of method (2).  

It's important to mention that method (2) has been 
analyzed by numerous researchers, but its in-depth 
examination was conducted by Dahlquist. In his 
investigation of method (2), Dahlquist utilized the 
notions of stability and accuracy, which he defined in 
specific terms. 
 
Definition 1. The approach (2) is termed stable if the 
roots of the polynomial 𝜌(𝜆) are situated on the unit 
circle, and there are no repeated roots along its 
boundary.  
 

Definition 2. An integer 𝑝 is referred to as the degree 
of the method (2) if the subsequent asymptotic 
equalities hold true.,  
∑ (𝛼𝑖𝑦(𝑥 + 𝑖ℎ) − ℎ𝛽𝑖𝑦′(𝑥 + 𝑖ℎ)) = 𝑂(ℎ𝑝+1), ℎ →𝑘

𝑖=0

0.                       (4) 
 

He has outlined the inherent constraints that affect 
the coefficients of the method detailed in (2).  
A. The values 𝛼𝑗  and 𝛽𝑗  (where 𝑗 = 0,1,2, . . , 𝑘 −

𝑚; 𝑖 = 0,1, . . , 𝑘) are defined as real numbers,  
 with the stipulation that 𝛼𝑘 ≠ 0.  
B.  The characteristic polynomials  

𝜌(𝜆) ≡ ∑ 𝛼𝑖𝜆𝑖; 𝛿(𝜆) ≡ ∑ 𝛽𝑖𝜆𝑖𝑘
𝑖=0

𝑘−𝑚
𝑖=0   

 are free of common factors, apart from constants  
C. The conditions 𝜌(1) = 0; 𝜌′(1) = 𝛿(1)  are 

satisfied.  
 

Theorem 1. Should method (2) exhibit stability and 
possess a degree of 𝑝, it follows that:  

𝑝 ≤ 2[𝑘/2] + 2                       (5) 
and for every 𝑘, there exist stable methods categorized 
as type (2) that correspond to the maximum degree 
𝑝𝑚𝑎𝑥.  
 

Based on the relationships in (5), it can be inferred 
that the extent of the technique outlined in (2) is 
limited. To enhance the precision of the numerical 
approaches, the study in [10] has suggested 
implementing the method described below:  

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ ∑ 𝛽𝑖𝑓𝑛+𝑖
𝑘
𝑖=0 , (𝑛 = 0,1, . . , 𝑁 −𝑘−𝑚

𝑖=0

𝑘, 𝑚 < 0).                           (6) 
 
Here, suppose that |𝛽𝑘−𝑚+1|+. . . +|𝛽𝑘| ≠ 0.  
 

Method (6) is typically referred to as the advanced 
or forward-jumping technique. The categories of 
methods (2) and (6) differ significantly from one 
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another. The following paragraph will focus on the 
exploration of advanced methodologies.  
 

§1. The exploration of sophisticated techniques  

The sophisticated techniques were developed at the 
start of the 20th century by Kowell, [11], [12], [13]. 
As a result, some researchers refer to method (6) as 
the Kowell method. The comprehensive analysis of 
method (6) is detailed in work (10). Utilizing the 
criteria 𝑚 > 0  and |𝛽𝑘−𝑚+1|+. . . +|𝛽𝑘| ≠ 0 , it has 
been established that the category of method (6) is 
distinct and autonomous from method (2). 
Consequently, essential conditions have been 
identified which constrain the coefficients of method 
(6), and they can be articulated as follows:  
𝐴!  The coefficients 𝜆𝑗, 𝛽𝑖  (where 𝑗 = 0,1, . . . , 𝑘 −

𝑚; 𝑖 = 0,1, . . . , 𝑘) ) represent certain real numbers, 

with the condition that 𝜆𝑘−𝑚 ≠ 0 is not equal to zero.  
𝐵!  The polinomials 𝜌̄(𝜆) ≡ ∑ 𝛼𝑖

𝑘−𝑚
𝑖=0 𝜆𝑖; 𝛿(𝜆) ≡

∑ 𝛽𝑖
𝑘
𝑖=0 𝜆𝑖.  

𝐶! 𝜌̄(1) = 0 and 𝜌̄′(1) = 0 = 𝛿(1) take place.  
 
Haven’t common factor different from constant.  
 

It has been observed that renowned scientists such 
as Laplace, Steklov, Klero, Kowell, and others have 
developed advanced methodologies. In reference [10], 
they introduced a concert method with a degree of 
𝑝 = 5 for 𝑘 − 3. Based on Dahlquist’s findings, it can 
be concluded that within the Multistep Method class 
(2), there are no stable methods with a degree of 𝑝 =
𝑘 + 2  when k takes the value of 2𝑣 − 1  (an odd 
number). A straightforward comparison between 
methods in classes (2) and (6) demonstrates that stable 
methods of type (6) offer greater accuracy than those 
of type (2). To further assess the accuracy of methods 
(2) and (6), we will examine the following theorem. 
 
Theorem 2. Should the approach (6) demonstrate 
stability and possess a degree of p, the subsequent 
occurs:  

𝑝 ≤ 𝑘 + 𝑚 + 1(𝑘 ≥ 3𝑚).  
 

It can be inferred that method (6) presents a more 
favorable option. There are instances where applied 
problems require the utilization of more precise 
methods for their resolution. Thus, this discussion 
focuses on developing a more accurate numerical 
technique to address the problem (1). To achieve this, 
Euler introduced an approach that involves calculating 

subsequent terms of the Taylor series. For the design 
of a more precise numerical method for addressing the 
problem (1), Dahlquist suggests an alternate technique 
such as [11], [12], [13], [14], [15], [16], [17], [18], 
[19]:  

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ ∑ 𝛽𝑖𝑓𝑛+𝑖 + ℎ2 ∑ 𝛾𝑖𝑔𝑛+𝑖; 𝑛 =𝑘
𝑖=0

𝑘
𝑖=0

𝑘
𝑖=0

0,1, . . . 𝑁 − 𝑘; 𝛼𝑘−𝑚 ≠ 0.                (7) 
 

The function 𝑔(𝑥, 𝑦) is defined in the following 
manner: 𝑔(𝑥, 𝑦) = 𝑓𝑥

′(𝑥, 𝑦) + 𝑓𝑦
′(𝑥, 𝑦)𝑓(𝑥, 𝑦).  

Dahlquist fundamentally investigated this method 
and proved some theorems. The main result of the 
named work can be presented as follows.  
 

Theorem 3. If we assume that the technique described 
in (7) is stable and possesses a degree of 𝑝, then  
𝑝 ≤ 2𝑘 + 2𝑖𝑓|𝛽𝑘| + |𝛾𝑘| ≠ 0 and 𝑝 = 2𝑘, 𝛽𝑘 = 𝛾𝑘 =

0.                                 (8) 
 

For each 𝑘, there exists a stable method of type 
(7) with a difference of 𝑝 = 2𝑘 + 2.  

To enhance the precision of method (7), a 
modified version of method (7) has been introduced in 
[12] as follows:  

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ ∑ 𝛽𝑖𝑓𝑛+𝑖 + ℎ2 ∑ 𝛾𝑖𝑔𝑛+𝑖; 𝑛 =𝑠
𝑖=0

𝑙
𝑖=0

𝑘−𝑚
𝑖=0

0,1, . . . 𝑁 − 𝑘; 𝛼𝑘−𝑚 ≠ 0, 𝑚 > 0.           (9) 
 

The technique outlined in method (7) can be 
derived from method (9) as a specific instance, as 
demonstrated in [20], [21], [22], [23], [24], [25], [26], 
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], 
[37], [38], [39].  

The approach was thoroughly examined in the 
study referenced as [12]. It is important to mention 
that method (9), in the scenario where 𝑚𝑎𝑥( 𝑙, 𝑠) ≤
𝑘 − 𝑚, was analyzed by Dahlquist. Consequently, we 
will focus on evaluating method (9) when 
𝑚𝑎𝑥( 𝑙, 𝑠) > 𝑘 − 𝑚. To proceed, let us define what 
constitutes the highest order of accuracy for method 
(9) under the condition where 𝑚𝑎𝑥( 𝑙, 𝑠) > 𝑘 − 𝑚.  
 

Theorem 4. If technique (9) possesses a degree of p 
and is stable when 𝑚𝑎𝑥( 𝑙, 𝑠) > 𝑘 − 𝑚, it follows that 
there exist stable methods of type (9) that are 
characterized by the maximum degree 𝑝𝑚𝑎𝑥.  

It is important to observe that if in method (7) the 
coefficients 𝛽𝑖 (where 𝑖 = 0,1, . . , 𝑘) meet the criterion 
𝛽𝑖 = 0 (for = 0,1, . . , 𝑘), the interpretation of stability 
is significantly altered. In such a scenario, the concept 
of stability can be articulated as follows: 
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Definition 3. Method (7) is termed stable when 𝛽𝑖 =
0  for 𝑖 = 0,1, . . , 𝑘 , provided that the roots of the 

polynomial 𝜌(𝜆) ≡ ∑ 𝛼𝑖𝜆𝑖𝑘
𝑖=0  are situated within the 

unit circle, and that there are no multiple roots present 
on its boundary, apart from the double root 𝜆 = 1.  
To exemplify the findings mentioned earlier, we can 
examine the methods categorized as (7) and (9).  

𝑦𝑛+3 = (𝑦𝑛+2 + 𝑦𝑛+1 + 𝑦𝑛)/3 + ℎ(10781𝑓𝑛+3

+ 22707𝑓𝑛+2 + 16659𝑓𝑛+1 + 
+4285𝑓𝑛)/27216 + ℎ2(−2099𝑔𝑛+3 + 7227𝑔𝑛+1 +

979𝑔𝑛)/45360(𝑝 = 9).                (10) 
 

𝑦𝑛+2 = (416𝑦𝑛+1 − 103𝑦𝑛)/313 + ℎ(157𝑓𝑛+3

+ 11233𝑓𝑛+2 + 8521𝑓𝑛+1 − 
−2830𝑓𝑛)/25353 + ℎ2(−11𝑔𝑛+3 + 630𝑔𝑛+2 +
1557𝑔𝑛+1 − 92𝑔𝑛)/8451(𝑝 = 9).                (11) 

 
𝑦𝑛+1 = 𝑦𝑛 + ℎ(1985𝑓𝑛+3 + 12015𝑓𝑛+2

+ 142255𝑓𝑛+1 + 
+34465𝑓𝑛)/90720 + ℎ2(−163𝑔𝑛+3 + 2421𝑔𝑛+2 +
7659𝑔𝑛+1 + 1283𝑔𝑛)/30240(𝑝 = 8).                (12) 

 
Through straightforward comparison, it can be 

acknowledged that the characteristics of these 
techniques are influenced by the previously derived 
results of the law. Comparable findings can be found 
in the literature.  
 
 
2   Numerical Results 
To illustrate the new approach for obtaining more 
precise results regarding construction, we can apply 
method type (2) to tackle a straightforward problem: 
𝑦′ = 𝑐𝑜𝑠𝑥 , with the condition 𝑦(0) = 0 , where 0 ≤
𝑥 ≤ 1 . The exact solution is known to be 𝑦(𝑥) =
𝑠𝑖𝑛𝑥. For this particular example, we will employ the 
Simpson method as follows:  

𝑦𝑛+1 = 𝑦𝑛 + ℎ(𝑓𝑛 + 4𝑓𝑛+1 + 𝑓𝑛+2)/3     (13) 
the subsequent Simpson method, utilizing a step-size 
of  ℎ ≔ ℎ/2:  

𝑦𝑛+2 = 𝑦𝑛 + ℎ(𝑓𝑛 + 4𝑓𝑛+1/2 + 𝑓𝑛+2)/3     (14) 
 

The outcomes obtained from these techniques 
have been organized in Table 1 (Appendix).  
 
 
3   Conclusion 
In this section, we will compare results derived from 
Multistep Methods that incorporate constant 
coefficients through the first and second derivatives of 

the solution to the problem (1). It has been 
demonstrated that certain classes of methods leverage 
the first and second derivatives of the solution to this 
problem. This category of methods generalizes the 
established Multistep Second Derivative Methods 
with constant coefficients. A thorough comparison of 
methods employing the first derivative of the solution 
to the problem (1) is provided. Moreover, it has been 
established that the newly formulated class of 
methods, classified as type (6), represents a distinct 
category. A straightforward comparison reveals that 
these Multistep Methods, similar to advanced 
approaches, possess both benefits and drawbacks. 
Specifically, the advanced methods require prior 
knowledge of the sought values at forthcoming points 
to define y_(n+k-m). It is noteworthy that the 
predictor-corrector method can be employed to tackle 
this challenge, thereby extending the stability region 
for stable advanced methods. This discourse 
elaborates on how Multistep Methods can effectively 
address initial-value problems for Ordinary 
Differential Equations, while also applying to other 
scenarios, such as initial-value issues for Volterra 
Integral Differential Equations. To confirm this, it 
suffices to express method (2) in an alternative 
format:  
 

∑ 𝛼𝑖𝑦𝑛+𝑖 = ℎ ∑ 𝛽𝑖𝑦𝑛+𝑖
′ , 𝑛 = 0,1, . . . , 𝑁 − 𝑘, 𝛼𝑘

𝑘

𝑖=0

𝑘

𝑖=0

≠ 0. 
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APPENDIX 

 
Table 1. Results for the step size h:=0.1 

Step size Variable x Error for the Simpson’s method Error for the method (14) 
h=0.1 0.2 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.11E-06 
0.10E-06 
0.21E-06 
0.21E-06 
0.31E-06 
0.30E-06 
0.39E-06 
0.38E-06 
0.46E-06 

0.69E-08 
0.10E-07 
0.13E-07 
0.16E-07 
0.19E-07 
0.22E-07 
0.24E-07 
0.27E-07 
0.29E-07 
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