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Abstract: Our article focuses on the study of quaternions topic introduced by Hamilton. Quaternions are a
generalization of complex numbers and have multiple applications in mathematical physics. Another application
of quaternions is robotics because what generalizes the imaginary axis is the family i, j, k modeling Euler angles
and rotations in space. The first part of the article we recall the different definitions of how the algebra of
quaternions is well constructed. The main results are given in the third part and concern: spatial quaternionics
rectifying-direction (sqRD) curves and and spatial quaternionic rectifying-donor (sqRDnr) curves. We study
a new tip of unit speed associated curves in E3, which is also used in robotic systems and kinematics, like a
spatial quaternionic rectifying-direction curve and spatial quaternionic rectifying-donor curve. Then, we achieve
qualification for the curves. Moreover, we present applications of spatial quaternionic rectifying-direction to some
specific curves like helix, slant helix, Salkowski and anti-Salkowski curves or rectifying curves. In addition, we
establish different theorems which generalize the results obtained on the quaternionic curves in Q. Then, we give
some examples are finally discussed. Consequently, Our paper is centered around theoretical analysis in geometry
rather than experimental investigations.
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1 Introduction
Quaternions, one of the important building blocks of
mathematical physics, were developed by Hamilton
in 1843 with the motivation to expand complex
numbers into three-dimensional space. Concentrating
his studies on the triad number system defined
as a+bi+cj, which has two complex and one real
component, Hamilton aimed to represent a point in
three-dimensional space with this number system. In
this way, Hamilton tried to establish an algebraic
system, but when he could not find any results in his
studies, he abandoned this triad system and added a
third imaginary component to this system. Therefore,
he discovered real quaternions, which are very well
known and frequently used in the scientific world
today. After Hamilton, the other scientist studying on
quaternions was [1]. The author used quaternions as a
tool in his physical studies, and Maxwell, influenced
by Tait, used quaternions in his work published in
1873 on electromagnetism, [2]. Although quaternions
and vectors are different mathematical quantities,
it was stated that vectors arise from different
interpretations of quaternions, [3]. The vector algebra
used today was found to be more useful by Gibbs and

Heaviside as quaternions as expressed in Maxwell’s
electromagnetic theory and they laid the foundations
of vector algebra used today, [4]. Quaternions are
very unique in their structure and because of this
structure they are very useful in the representation
of rotational and translational motions. The study
given by Chou on the derivation of the angular
displacement, angular velocity, angular acceleration
and momentum quantities associated with rotational
motion is particularly interesting, [5]. In that studies
by [5], [6], it was stated that when Euler parameters
are considered as unit quaternions, quaternions have
significant advantages in determining the orientation
of a coordinate system compared to classical methods
such as directional cosines. For this reason, rotational
motion with quaternions has been studied by many
researchers, [7], [8], [9]. In recent years, the
studies on the representation of robotic systems have
brought a different perspective to quaternions as if
they were rediscovered, [10], [11]. On the other
hand, some studies have shown that quaternions
play an important role in control and simulation
studies, [12], [13], [14]. In addition, quaternions
can easily be used to represent physical quantities
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frequently used in classical mechanics. Quaternions
also play an important role in relativistic mechanics,
[15]. One of the application areas of quaternions
is quantum mechanics. Since quaternions contain
complex components, they can be used to represent
wave functions and operators that are widely used
in quantum mechanics, [16]. The studies of [17],
[18], are remarkable in expressing the Schrödinger
and Dirac equations. In these studies, the studies on
quantum mechanics were examined both classically
and relativistically. On the other hand, the curve
theory is one of the important study areas in geometry.
The curve theory studies date back to Newton in the
17th century. The Frenet-Serret formulas, which are
one of the expressions characterizing curves, the most
basic, and even used today, were found by Frenet
(1847) and Serret (1851) independently from each
other. After the Frenet frame of any curve was
defined, a lot of special curve types such as plane,
helix, slant helix have been defined, [19], [20], [21],
[22], [23]. Some special curves can be also defined
according to which Frenet plane where the position
vector of this curve lies, that is, if the position vector
of the space curve lies in the osculating plane, this
curve is called the osculating curve, if the position
vector lies in the normal plane, this curve is called
the normal curve and if the position vector lies in the
rectifying plane, this curve is called a rectifying curve,
[24]. Moreover, a new curve pair defined by [25].
Then, many studies were carried out on the direction
curves, [26], [27], [28], [29], [30].

Scientists have shown great interest in quaternions
and have done many studies on quaternionic curves
by combining quaternions with the theory of curves.
First of all, the Serret-Frenet formulas of any
curve in 3-dimensional real Euclidean space in R3

were produced by spatial quaternionic curves by
[31]. With help of these formulas, the Serret-Frenet
formulas of one-variable quaternion-valued functions
(quaternionic curves) in R4 were obtained, [31]. The
quaternionic rectifying curve in E4 and E4

2 were
studied by [32], [33]. In addition to that, the
quaternionic direction curves were given by [29].
Then a lot of papers were studied on the quaternionic
curve and quaternionic direction curves, [29], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41].

2 Preliminaries
The Serret-Frenet formulas of spatial (pure)
quaternionic and quaternionic curves expressed
by [31]. The study, [31], contributed greatly to the
development of quaternions. Now, we give briefly
these notions.

A real quaternion is given by q = a1i + a2j +

a3k + a4 , where

i) i2 = j2 = k2 = ijk = −1

ii) ij = k = −ji, jk = i = −kj ki = j = −ik.
in quaternionic space Q. It is worth noting here
that quaternionic space Q is isomorphic to four
dimensional real vector space R4. Now, we assume
two quaternion q1 = Sq1+Vq1 = a1i+a2j+a3k+a4
and q2 = Sq2 + Vq2 = b1i + b2j + b3k + b4
where Sq1 = a4, Vq1 = a1i + a2j + a3k, Sq2 =
b4, Vq2 = b1i+b2j+b3k. Therefore, the quaternionic
multiplication of these quaternions is

q1 × q2 = Sq1Sq2 − ⟨Vq1 , Vq2⟩+ Sq1Vq2 + Sq2Vq1 + Vq1 ∧ Vq2 .

which the vectorial and scalar product in E3 are
considered ∧ and ⟨, ⟩, respectively. In addition, we
assume that the quaternionic conjugate of q is γq. In
that case, for the quaternions q1 and q2, the h-inner
product is

h(q1, q2) =
1

2
(q1 × γq2 + q2 × γq1).

Now, we can give the definition of norm in
quaternionic space Q with the aid of the h-inner
product. Therefore, the norm of the quaternion q is
expressed

∥ q∥2 = |h(q, q)| = q × γq = γq × q.

Moreover, the quaternion q1 and q2 are expressed as
h- orthogonal quaternions if the equation h(q1, q2) =
0 is hold.

Now, we expressed the definitions of the spatial
(pure) quaternionic and quaternionic curves in
quaternionic spaceQ from [31]. In that case, we take
I = [0, 1] ⊆ R therefore, the spatial quaternionic
curve (ρ) is defined that

ρ : I ⊂ R −→Q,

ϱ −→ρ(ϱ) = ρ1(ϱ)i+ ρ2(ϱ)j + ρ3(ϱ)k

where ϱ ∈ I is arc-length parameter of the spatial
quaternionic curve (ρ) with non-zero curvatures.
Therefore, if we take that the curve (ρ) is the spatial
quaternionic curve with arc-length parameter. The
following theorem for Serret-Frenet formulas can be
given.
Theorem 1. Suppose that the Frenet frame and
curvatures of the spatial quaternionic curve (ρ) are
{t, n, b} and {κ, τ}, respectively. Therefore, the
Frenet formulas of this curve (ρ) can be expressed
that

t′ = κn, n′ = −κt+ τb, b′ = −τn (1)

which {κ, τ} are the curvature and torsion of curve
(ρ), respectively and h(t, t) = h(n, n) = h(b, b) =
1, h(t, n) = h(t, b) = h(n, b) = 0, [31].
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Now, we define the quaternionic curve, similarly.
Let the unit interval in R be I = [0, 1] ⊆ R.
Therefore, the real quaternionic curve is

ϕ : I ⊂ R −→Q,

ϱ −→ϕ(ϱ) = ϕ0(ϱ) + ϕ1(ϱ)i+ ϕ2(ϱ)j + ϕ3(ϱ)k

where ϱ ∈ I = [0, 1] is the arc-length parameter along
the smooth quaternionic curve (ϕ) with non-zero
curvatures. Therefore, the following theorem about
quaternionic Serret-Frenet formulas can be given.
Theorem 2. Consider that the quaternionic curve
in Q is (ϕ) with arch-length parameter ϱ ∈ I
and non-zero curvatures {K,κ, (τ −K)} and Frenet
frame of this quaternionic curve (ϕ) is {⊤, η, β1, β2}.
Therefore, the Serret-Frenet formulas of (ϕ) are

⊤′ = Kη,
η′ = −K⊤+ κβ1,
β′1 = −κη + (τ −K)β2,

β′2 = −(τ −K)β1

(2)

where K =∥ ⊤′(ϱ) ∥, η = t × ⊤, β1 = n ×
⊤, β2 = b × ⊤ and there are some connections
with the curvatures of (ρ) and (ϕ) such that the
torsion (κ) of the (ϕ) is the principal curvature of the
spatial quaternionic curve (ρ) and we assume that the
torsion of the spatial quaternionic curve (ρ) is r, the
principal curvatures of the quaternionic curve (ϕ) is
K therefore, the bi-torsion of the quaternionic curve
(ϕ) is (τ −K), [31].
Definition 1. Suppose that the tangent vector field
t of the spatial quaternionic curve (ρ) intersects a
constant vector with a constant angle for all points
of (ρ) therefore, the spatial quaternionic curve (ρ) is
called helix, [40].
Theorem 3. Consider that the curve (ρ) is with
non-zero curvatures {κ, τ} and (ρ) is helix.
Therefore, the necessary and sufficient condition
is

τ

κ
= constant (3)

at every point, ∀ϱ ∈ I , [40].
Definition 2. Let a spatial quaternionic curve inQ be
(ρ). In that case, the normal vector field n intersects
a constant vector with a constant angle at every point
of (ρ) therefore, the spatial quaternionic curve (ρ) is
called slant helix, [41].
Definition 3. Assume that the spatial quaternionic
curve ρwith non-zero curvatures {κ, τ} is slant helix.
Therefore, the necessary and sufficient condition is

κ2

(τ2 + κ2)
3

2

(
τ

κ

)′
= constant (4)

at every point of (ρ), [41].

Definition 4. Let ρ(σ) : I → Q be spatial
quaternionic curve and κ and τ be the curvatures of
ρ(σ). Therefore, ρ(σ) is defined Salkowski curve such
that κ is constant and torsion τ is non-constant. If
κ is non-constant and τ is constant, ρ(σ) is defined
anti-Salkowski curve, [42], [43].

Moreover, if the spatial quaternionic frame and
curvatures of (ρ) are given by {t, n, b} and {κ, τ},
respectively, then the vector D̃(σ) = τ

κ (σ)t(σ) +
b(σ) is defined as modified Darboux vector of (ρ),
[40].

3 Main Theorems and Proofs
While we primarily focus on the geometric structure
underlying quaternions used in physics and presents
specific applications of spatial quaternionic curves,
we also mentions the significance of quaternions in
various fields such as robotics, control, simulation
studies, classical mechanics, relativistic mechanics,
and quantum mechanics. Given the extensive
applications and ongoing research interest in
quaternions, the our study suggests potential
avenues for further exploration. For example,
we discuss the representation of rotational motion
using quaternions and highlights the advantages we
offer over classical methods. Therefore, this study
could inspire future studies to delve deeper into the
application of quaternions in rotational dynamics
and its implications for various fields such as
robotics and mechanical engineering. Furthermore,
our study touch upon the role of quaternions
in quantum mechanics, indicating a potential
area for future investigation. Since quaternions
can represent wave functions and operators in
quantum mechanics, readers may explore how
quaternionic formulations can provide new insights
or computational advantages in quantum mechanical
simulations and analysis. Additionally, we mention
the study of quaternionic curves in conjunction with
the theory of curves, suggesting that there may be
further advancements in understanding the geometric
properties and applications of quaternionic curves.
Future research could focus on developing new
methods for analyzing and utilizing quaternionic
curves in geometry, robotics, or other relevant fields.
Therefore, in this section, firstly, we define spatial
quaternionic rectifying-direction (sqRD) curves
and spatial quaternionic rectifying-donor (sqRDnr)
curves. Then, we obtain some characterizations
of these curves with theorems. In addition, we
give some corollaries about spatial quaternionic
frames of these curves. After that, we express some
applications of (sqRD)-curves such as whether these
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curves can be general and slant helices or plane
curves, and spatial quaternionic rectifying-direction
osculating curves (sqRDO), spatial quaternionic
rectifying-direction normal curves (sqRDN),
spatial quaternionic rectifying-direction rectifying
(sqRDR) curves. Consequently, we generalize
the theorems and corollaries mentioned above for
quaternionic curve in Q.

3.1 On the (sqRD)-curves
Definition 5. Suppose that any spatial quaternionic
curve is (ρ) and any unit vector field ξ is on the
rectifying plane of (ρ) in E3. Therefore, this vector
field ξ is defined as

ξ(σ) = µ(σ)t(σ) +ϖ(σ)b(σ) (5)

where µ(σ) ̸= 0, ϖ(σ) ̸= 0, µ(σ)2 +ϖ(σ)2 = 1 and
ξ′ and n are linearly dependent. In addition, if we
assume the integral curve λ : I → E3, parameterized
with arc-length parameter σ, of the vector field ξ, then
the integral curve (λ) is called (sqRD)-curve of (ρ)
and (ρ) is also called (sqRDnr)-curve in E3.

Theorem 4. Consider that the curve ρ(σ) is spatial
quaternionic curve, the unit vector field ξ(σ) =
µ(σ)t(σ)+ϖ(σ)b(σ) is on the rectifying plane of (ρ).
Therefore, the spatial quaternionic integral curve (λ)
of ξ is a (sqRD)-curve of (ρ), the necessary and
sufficient condition is that µ and ϖ are constants in
equation (5).

Proof. Let the vector field ξ be on the rectifying
plane of curve (ρ) and (λ) be an integral curve with
unit speed of ξ. Moreover, we suppose that (λ) is
(sqRD)-curve of (ρ). Therefore, we can give ξ(σ) =
µ(σ)t(σ)+ϖ(σ)b(σ)whereµ2(σ)+ϖ2(σ) = 1 from
the equation (5). If we take derivative of the equation
(5) with respect to σ, we get

ξ′(σ) = µ′t+ (µκ −ϖτ)n+ w′b. (6)

one knows that ξ′ and n are linearly dependent,
therefore we have{

µ′ = 0,
µκ −ϖτ ̸= 0,
ϖ′ = 0.

(7)

and, consequently

µ = constant, ϖ = constant.

Now, we suppose that the angle between the vector
fields ξ and t is α, therefore we can write

ξ(σ) = cosαt(σ) + sinαb(σ), (8)

and give the following corollary.

Corollary 1. The angle α between the vector field ξ
and tangent vector field t of (sqRDnr)-curve (ρ) is
constant.
Theorem 5. Consider that ξ is the vector field on
the rectifying plane of the spatial quaternionic curve
ρ(σ) : I → E3 and the integral curve (λ) with
unit speed of ξ is (sqRD)-curve of (sqRDnr)-curve
(ρ). Therefore, the curve pair (λ, ρ) is a spatial
quaternionic Bertrand curve pair.
Proof. The unit speed curve (λ) is considered
(sqRD)-curve of (ρ), (sqRDnr)-curve. In that case,
since (λ) is spatial quaternionic integral curve of ξ, we
know that λ′ = ξ. Now, we assume that the spatial
quaternionic frame of (λ) is

{
t̄, n̄, b̄

}
. Therefore, we

get λ′′ = κ̄n̄ = ξ′ since the spatial quaternionic
curve (λ) is unit speed curve where κ̄ is the curvature
of (λ). On the other hand, ξ′ and n are linearly
dependent, therefore n is linearly dependent with n̄.
Consequently, the curves (λ, ρ) is spatial quaternionic
Bertrand curves.

Theorem 6. Consider that the vector field ξ is
on the rectifying plane of (ρ) and the quaternionic
curvatures of the integral curve (λ) of ξ are
{κ̄, τ̄}. Therefore, if the curve (λ) is (sqRD)-curve
of (sqRDnr)-curve (ρ), then

κ̄ = cosακ − sinατ,
τ̄ = sinακ + cosατ. (9)

where {κ, τ} are quaternionic curvatures of (ρ) and
the angle α is between ξ and t.
Proof. Let the integral curve (λ) be (sqRD)-curve
of (ρ) with the vector field ξ and {κ, τ}, {κ̄, τ̄} be
Frenet curvatures of the spatial quaternionic curves
(ρ, λ), respectively. In that case, if we use equation
(8), Corollary (1) and Theorem (5), we get

κ̄n̄ = (cosακ − sinατ)n,

and we can take

κ̄ = cosακ − sinατ. (10)

where n̄ = n from Theorem (5).
Now, we can write

b̄ = t̄× n̄ = − sinαt+ cosαb.

and
b̄′ = −(cosατ + sinακ)n. (11)

On the other hand, from the definition of the
unit speed spatial quaternionic curve (λ) we know
τ̄ = −

⟨
b̄′, n̄

⟩
= −

⟨
b̄′, n

⟩
consequently, with the

equation (11) we get

τ̄ = cosατ + sinακ. (12)
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In addition that, we can write

κ = cosακ̄ + sinατ̄ , τ = − sinακ̄ + cosατ̄ .

Corollary 2. Let (λ) be (sqRD)-curve of
(sqRDnr)-curve (ρ). Therefore, the correlation
between spatial quaternionic frame vectors of these
curves can be given as

ξ = t̄ = cosαt+ sinαb, n̄ = n, b̄ = − sinαt+ cosαb,
or

t = cosαt̄− sinαb̄, n = n̄, b = sinαt̄+ cosαb̄.
(13)

3.2 Applications of (sqRD)-curves
Now, we give some applications for (sqRD)-curves
such as general helices, slant helices, plane
curves and we obtain (sqRDO), (sqRDN), and
(sqRDR)-curves.

3.2.1 Applications to General Helices and Slant
Helices

Now, we assume the second equation in the equation
(7) andwe see that the function τ

κ (σ) is not a constant,
provided that τ is non-zero. Then the following
theorem can be written.

Theorem 7. The (sqRDnr)-curve (ρ) of the curve
(λ) is not a general helix.

Now, we investigate the existence of condition
to be a general helix for (sqRD)-curve (λ). If
we consider (sqRD)-curve (λ) is a general helix,
considering Theorem (6), we have

τ̄

κ̄
(σ) =

sinακ + cosατ
cosακ − sinατ

= c = constant. (14)

After that, considering the equation (14) and
Corollary (1), one can see that the function

τ

κ
=

c− tanα
1 + c tanα

.

Therefore, the curve (ρ) is a general helix where
α is constant. In this case, there appears to be a
contradiction with Theorem (7) and the following
theorem can be written.

Theorem 8. Let (λ) be a (sqRD)-curve of the spatial
quaternionic curve ρ : I → E3. In this case the
following items are equivalent:

i) Any (sqRDnr)-curve (ρ) can not be a general
helix.

ii) Any (sqRD)-curve (λ) of (ρ) can not be a
general helix.

Moreover, considering Theorem (6), we can give
a similar theorem to Theorem (8) for slant helices.

Theorem 9. Let ρ : I → E3 be (sqRDnr)-curve
and (λ) be (sqRD)-curve of (ρ). In this case
the (sqRDnr)-curve (ρ) is slant helix therefore,
the necessary and sufficient condition is that
(sqRD)-curve (λ) of (ρ) is a slant helix.

Example 1. Let the spatial quaternionic Salkowski
curve be (ρ) and this curve be parametrized as
follows.

ρ(σ) =
1√

1 + y2


− 1−z

4(1+2z) sin((1 + 2z)σ)

− 1+z
4(1−2z) sin((1− 2z)σ)− 1

2 sinσ,
1−z

4(1+2z) cos((1 + 2z)σ)

+ 1+z
4(1−2z) cos((1− 2z)σ) + 1

2 cosσ,
1
4z cos(2zσ)


where z = y√

1+y2 , y ̸= ± 1√
3
, 0 are constants. This

curve is also a slant helix and we have

t(σ) = −

 cosσ cos(zσ) + z sinσ sin(zσ),
cos(zσ) sinσ − z cosσ sin(zσ),

z
y sin(zσ)

 ,

n(σ) = z

(
sinσ
y

,−cosσ
y

,−1

)
,

b(σ) =

 z sinσ cos(zσ)− cosσ sin(zσ),
−z cos(zσ) cosσ − sinσ sin(zσ),

z
y cos(zσ)

 ,

κ(σ) = 1, τ(σ) = tan(zσ).

Then by choosing α = π
4 , from (8) we get ξ(σ) =

(x1(σ), x2(σ), x3(σ)) where

x1(σ) =

√
2

2

(
− cosσ cos(zσ)− z sinσ sin(zσ)
+z sinσ cos(zσ)− cosσ sin(zσ)

)
,

x2(σ) =

√
2

2

(
− cos(zσ) sinσ + z cosσ sin(zσ)
−z cos(zσ) cosσ − sinσ sin(zσ)

)
,

x3(σ) =

√
2

2

z

y
(− sin(zσ) + cos(zσ)) .

Now, we obtain (sqRD)-curve (λ) as follows

λ(σ) =
∫ σ
0 λ

′(σ)dσ =
∫ σ
0 ξ(σ)dσ = (λ1(σ), λ2(σ), λ3(σ))

where

λ1(σ) =

∫ σ

0

[ √
2
2 (− cosσ cos(zσ)− z sinσ sin(zσ)
+z sinσ cos(zσ)− cosσ sin(zσ))

]
dσ,

λ2(σ) =

∫ σ

0

[ √
2
2 (− cos(zσ) sinσ + z cosσ sin(zσ)
−z cos(zσ) cosσ − sinσ sin(zσ))

]
dσ,

λ3(σ) =

∫ σ

0

√
2

2

z

y
(− sin(zσ) + cos(zσ))dσ

(Fig. 1 and Fig. 2) and from Theorem (9), (λ) is also
a slant helix.
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Figure 1: The Slant helix (sqRDnr)-curve (ρ) for
y = 1/10 (left) and (sqRD)-curve (λ) of (ρ) (right).

3.2.2 Applications to Plane Curves
Now, we suppose that the (sqRDnr)-curve (ρ) is
plane curve, especially. In this case, we know that the
torsion of (ρ) is hold τ = 0. Therefore, considering
the equation (5) we have

κ̄ = cosακ, τ̄ = sinακ (15)

and τ̄
κ̄ = constant where {κ̄, τ̄} are the spatial

quaternionic curvatures of (sqRD)-curve (λ) and (λ)
is general helix. In addition to that, if we consider
that the (sqRD)-curve (λ) is general helix ( τ̄κ̄ =
constant), then the (sqRDnr)-curve (ρ) is general
helix ( τκ = constant). This situation contradicts
with Theorem (7). Consequently, if (λ) is general
helix, so that τ

κ = constant the necessary and
sufficient condition is the situation τ = 0. Therefore
we give the following proposition.

Proposition 1. Assume that the (sqRD)-curve
(λ) is spatial quaternionic rectifying direction
curve of (sqRDnr)-curve (ρ). In this case, the
(sqRDnr)-curve (ρ) is plane curve therefore,

Figure 2: The Slant helix (sqRDnr)-curve (ρ) for
y = 1 (left) and (sqRD)-curve (λ) of (ρ) (right).

the necessary and sufficient condition is that the
(sqRD)-curve (λ) is general helix.

3.3 The (sqRDO)-curves
In this chapter, we describe spatial quaternionic
rectifying-direction osculating (sqRDO)-curves in
E3.
Definition 6. Suppose that {t, n, b} is the
Frenet frame of (sqRDnr)-curve (ρ) and (λ) is
(sqRD)-curve of (ρ). The curve (λ) is called
(sqRDO)-curve of (ρ), if the position vector of
(λ) for ∀σ ∈ I lying on the osculating plane of its
(sqRDnrO)-curve (ρ).

Considering the definition of (sqRDO)-curve one
can write the following equation

λ(σ) = u(σ)t(σ) + v(σ)n(σ) (16)

where u(σ), v(σ) are non-zero differentiable
functions dependent on parameter σ. Differentiating
(16) and substituting the first equality of (13) in
obtained equation, it follows

cosαt+ sinαb = (u′ − vκ)t+ (v′ + uκ)n+ vτb.
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and {
u′ − vκ = cosα,
v′ + uκ = 0,
vτ = sinα,

finally,

u(σ) = sinα
τ ′

κτ2
, v(σ) =

sinα
τ

. (17)

Substituting (17) in (16) we have

λ(σ) =
sinα
τ

(
τ ′

κτ
t(σ) + n(σ)

)
.

Then the following theorem can be written.

Theorem 10. Consider that (λ) is the
(sqRDO)-curve of (sqRDnrO)-curve (ρ) in
E3. In this case the following items are equivalent:

i) (λ) is a (sqRDO)-curve of (ρ).
ii) The parametric representation of (λ) is given

by

λ(σ) =
sinα
τ

(
τ ′

κτ
t(σ) + n(σ)

)
where α is the constant angle between the curves (ρ)
and (λ).

Theorem 11. Suppose that (λ) is the (sqRDO)-curve
of (ρ). In this case the following items are equivalent:

i) The (sqRDnrO)-curve (ρ) is an anti-Salkowski
curve in E3.

ii) The position vector of (sqRDO)-curve (λ) is
linearly dependent with n(σ) of (ρ).

Example 2. Let the (sqRDnrO)-curve (ρ) be
obtained as

ρ(σ) =
(

−3
4

( cos 3σ
9 + cosσ

)
,−3

4

( sin 3σ
9 + sinσ

)
,
√
3
2 cosσ

)
(Fig. 3). The required spatial quaternionic frame
vectors and curvatures of ρ(σ) are calculated by

t(σ) =
(

1
4 sin 3σ + 3

4 sinσ, −1
4 cos 3σ − 3

4 cosσ, −
√
3
2 sinσ

)
,

n(σ) =
( √

3
4

cos(3σ)
cosσ +

√
3
4 ,

√
3
4

sin(3σ)
cosσ +

√
3
4 tan(σ),−1

2)
)

and
κ =

√
3 cosσ, τ =

√
3 sinσ,

respectively. Then, from Theorem (10),
(sqRDO)-curve (λ) is obtained as follows,

λ(σ) =
(

sin 3σ
12 sinσ + cos 3σ

4 cosσ + 1
2 ,−

cos 3σ
12 sinσ − cosσ

4 sinσ + sinσ
4 cosσ + sin 3σ

4 cosσ ,−
2
√
3

3

)
which is drawn in Fig 3.
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Figure 3: (sqRDnrO)-curve (ρ) (left) and
(sqRDO)-curve (λ) (right).

3.4 The (sqRDN)-curves
Now, assume that (ρ) is (sqRDnr)-curve which
have quaternionic frame {t, n, b} and (λ) is
(sqRD)-curve of (ρ). Therefore, (λ) is called
spatial quaternionic rectifying-direction normal
curve (or (sqRDN)-curve) of (ρ), if the position
vector of (λ) always lies on the normal plane of its
(sqRDnrN)-curve (ρ).

Therefore, one can write the parametric
representation of (λ) as

λ(σ) = y(σ)n(σ) + z(σ)b(σ), (18)

where y(σ), z(σ) are non-zero differentiable
functions dependent on σ. Differentiating (18) and
considering (13) in obtained equality, it follows

cosαt+ sinαb = −yκt+ (y′ − zτ)n+ (z′ + yτ)b.

Therefore, we can find system of equations{ −yκ = cosα,
y′ − zτ = 0,
z′ + yτ = sinα.

(19)
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In this case, we get

y(σ) = −cosα
κ

, z(σ) = cosα
κ′

κ2τ
. (20)

Substituting (20) in (18), we get also

λ(σ) = −cosα
κ

(
n(σ)− κ′

κτ
b(σ)

)
. (21)

Therefore, we can give the following theorem.

Theorem 12. Let (λ) be the (sqRD)-curve of the
(sqRDnr)-curve (ρ). In this case, the following
items are equivalent:

i) (λ) is the (sqRDN)-curve of
(sqRDnrN)-curve (ρ).

ii) The parametric representation of (λ) is

λ(σ) = −cosα
κ

(
n(σ)− κ′

κτ
b(σ)

)
,

where the constant angle α between (ρ) and (λ).

Now, we assume that the (sqRDnrN)-curve (ρ)
is Salowski curve in E3. Therefore, the curvature (κ)
is constant and the (sqRDN)-curve (λ) is λ(σ) =
− cosα

κ n(σ) = constant. Consequently, the curve (λ)
is non-regular curve and the following corollary can
be given.

Corollary 3. Consider that the curve (λ) is
(sqRDN)-curve of the (sqRDnrN)-curve of
(ρ). Therefore, (ρ) is not a Salkowski curve.

3.5 The (sqRDR)-curves
Definition 7. Let (ρ) be spatial quaternionic curve
given by spatial quaternionic frame {t, n, b} and (λ)
be (sqRD)-curve of (ρ). The curve (λ) is called
spatial quaternionic rectifying direction rectifying
curve (or (sqRDR)-curve) of (ρ), if the position
vector of (λ) every time lying on the rectifying plane
of its (sqRDnrR)-curve (ρ).

From this definition, the parametric representation
of (λ) is

λ(σ) = Υ(σ)t(σ) + Φ(σ)b(σ), (22)

where Υ(σ), Φ(σ) are non-zero differentiable
functions dependent on the parameterx σ.
Differentiating (22) and considering (13) in obtained
equality, it follows

cosαt+ sinαb = Υ′t+ (Υκ − Φτ)n+Φ′b. (23)

From (23) it follows,{
Υ′ = cosα,
Υκ − Φτ = 0,
Φ′ = sinα.

(24)

From the solution of system (24) we have

Υ(σ) = (cosα)σ+c1, Φ(σ) = (sinα)σ+c2, (25)

where c1, c2 are integration constant. From (25) and
second equation of system (24) it follows

κ
τ

=
(sinα)σ + c2
(cosα)σ + c1

. (26)

Then if c1, c2 = 0, from (26) we get that κ
τ is

constant, i.e., ρ is a general helix. But this is a
contradiction according to Theorem (7). Then, in (25)
it should pointed out that the integration constants
c1, c2 cannot be zero at the same time.

Now, substituting (25) in (22) and considering
Corollary (2), we get;

λ(σ) = (σ + γ)̄t(σ) + ζb̄(σ), (27)

where γ = c1 cosα+c2 sinα, ζ = c2 cosα−c1 sinα
are non-zero constants. Differentiating (27) gives that

τ̄

κ̄
=
σ + γ

ζ
. (28)

From (27) and (28) we can write

λ(σ) = ζ
( τ̄
κ̄
t̄+ b̄

)
(σ) = ζ ˜̄D(σ),

where ˜̄D(σ) = τ̄
κ̄ t̄+b̄ is the modified Darboux vector

of (λ).Then the following theorem can be written as;

Theorem 13. Suppose that (λ) is the (sqRD)-curve
of the (sqRDnr)-curve (ρ). If (λ) is a
(sqRDR)-curve in E3, then one can write,
i) (λ) is a spatial quaternionic rectifying curve in E3

whose curvatures satisfy τ̄
κ̄ = σ+γ

ζ where γ, ζ are
non-zero constants.
ii) The position vector of (sqRDR)-curve (λ) is
linearly dependent with the modified Darboux vector
˜̄D of (λ).

The Theorem (13) provide a way for the
(sqRDR)-curve using the (sqRDnrR)-curve as
follows;

Corollary 4. Suppose that (λ) is the (sqRDR)-curve
of the (sqRDnrR)-curve (ρ). Therefore, the position
vector of (λ) is given by

λ(σ) = [(cosα)σ + c1] t(σ) + [(sinα)σ + c2] b(σ)
(29)

where α is the constant angle between the curves and
c1, c2 are integration constants, non-zero.
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Example 3. Let the (sqRDnrR)-curve (ρ) be
Salkowski curve. Then the parametrization of (ρ) is
obtained as follows,

ρ(σ) =
9√
82



√
82−82

8(41+
√
82)

sin
((

1 +
√
82
41

)
σ
)

+
√
82+82

8(
√
82−41)

sin
((

1−
√
82
41

)
σ
)
− 1

2 sinσ,
82−

√
82

8(41+
√
82)

cos
((

1 +
√
82
41

)
σ
)

−
√
82+82

8(
√
82−41)

cos
((

1−
√
82
41

)
σ
)
+ 1

2 cosσ,
9
4 cos

(√
82
41 σ

)


.

Then by choosing α = π/6, c1 =
√
3/2, c2 =

1/2 in (29), a (sqRDR)-curve of (ρ) is obtained as
follows (Fig. 4)

λ(σ) =
σ + 1

2

(√
3t(σ) + b(σ)

)
,

where

t(σ) =


− cosσ cos

(√
82
82 σ

)
−

√
82
82 sinσ sin

(√
82
82 σ

)
,

− sinσ cos
(√

82
82 σ

)
+

√
82
82 cosσ sin

(√
82
82 σ

)
,

−9
√
82

82 sin
(√

82
82 σ

)
 ,

b(σ) =


√
82
82 cos

(√
82
82 σ

)
sinσ − cosσ sin

(√
82
82 σ

)
,

−
√
82
82 cos

(√
82
82 σ

)
cosσ − sinσ sin

(√
82
82 σ

)
,

9
√
82

82 cos
(√

82
82 σ

)
 .

Figure 4: The (sqRDnrR) Salkowski curve (ρ) (left)
and the (sqRDR)-curve (λ) of (ρ) (right).

3.6 The (qRD)-curves
Now, we assume that a unit vector field χ of
the quaternionic curve (ϕ) and a quaternionic
integral curve (δ) of χ in Q. Then, we define
the quaternionic rectifying direction curve
((qRD)-curve) and quaternionic rectifying-donor
curve ((qRDnr)-curve). Consequently, we give
definition and theorems about these curves.

Definition 8. Assume that a vector field χ given as

χ(ϱ) = ψ1(ϱ)⊤(ϱ) + ψ2(ϱ)β1(ϱ) + ψ3(ϱ)β2(ϱ),
(30)

of the quaternionic curve ϕ : I −→ Q where
ϱ is arbitrary parameter, ψ1(ϱ) ̸= 0, ψ2(ϱ) ̸=
0, ψ3(ϱ) ̸= 0, and χ′(ϱ) /∈ Sp {⊤, β1, β2}. In
that case, if the quaternionic integral curve of χ with
arc-length parameter ϱ is (δ), then the curve (δ) is
called (qRD)-curve of (ϕ) and the curve (ϕ) is called
(qRDnr)-curve.

Theorem 14. Assume that ϕ : I −→ Q is
quaternionic curve and δ : J −→ Q is quaternionic
integral curve of χ in equation (30). In that case, (δ)
is the (qRD)-curve of (qRDnr)-curve (ϕ), therefore
the necessary and sufficient condition is that the
equations

ψ1(ϱ) = c = constant,

ψ2(ϱ) = sin
( ∫

(τ −K)ds
)
̸= 0,

ψ3(ϱ) = cos
( ∫

(τ −K)ds
)
̸= 0

are hold.

Proof. Assume that the quaternionic integral curve
(δ) is (qRD)-curve of (ϕ). In that case, if we take
derivative of the vector field χ(ϱ) in equation (30)
with respect to ϱ, then we get

χ′(ϱ) = (ψ′
1)⊤+ [ψ1K − ψ2κ]η + [ψ′

2 − ψ3(τ −K)]β1

+ [ψ′
3 + ψ2(τ −K)]β2.

We know that χ′(ϱ) /∈ Sp {⊤, β1, β2}, and χ′ is
linear dependent with η, therefore we obtain

ψ′
1 = 0,

ψ1K − ψ2κ ̸= 0,

ψ′
2 − ψ3(τ −K) = 0,

ψ′
3 + ψ2(τ −K) = 0.

and consequently, we get

ψ1(ϱ) = c = constant, ψ2(ϱ) = sin
( ∫

(τ −K)ds
)
̸= 0
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ψ3(ϱ) = cos
( ∫

(τ −K)ds
)
̸= 0.

Theorem 15. Assume that (δ) is the (qRD)-curve
of the (qRDnr)-curve (ϕ) and the quaternionic
curvatures of these curves (ϕ, δ) are {K,κ, (τ −K)}
and {K̄, κ̄, (τ̄ − K̄)}, respectively. Therefore, the
relationships between the quaternionic curvatures are
given

K̄ =
√
κ2 +K2,

κ̄ =

√
κ2(τ −K)2(κ2 +K2) + (κ′K − κK′)2

κ2 +K2
,

τ̄ − K̄ =

√
κ2 +K2

κ2(τ −K)2(κ2 +K2) + (κ′K − κK′)2

.


(τ −K).

[
2κ′(K′κ −Kκ′)

+κK(κ′′ − κ(τ −K)2)
−K′′κ2+

(κ2K′ − 2κκ′K′)(τ −K)′
]
 .

Proof. Let the quaternionic apparatus of
the (qRD)-curve and (qRDnr)-curve
be {⊤̄, η̄, β̄1, β̄2, K̄, κ̄, (τ̄ − K̄)} and
{⊤, η, β1, β2,K,κ, (τ − K)}, respectively. In
that case, we can write

δ′ = ⊤̄ = η (31)

and with the aid of derivative with respect to (ρ), we
have

⊤̄′ = η′ ⇒ K̄η̄ = −K⊤+ κβ1.

Therefore, we obtain the principal quaternionic
curvature of (δ) as

K̄ =
√

κ2 +K2.

On the other hand, if we use the equation κ̄ =
∥⊤×η×γ′′′∥

∥γ′′∥ and we obtain

γ′′′ = −κ′⊤+(−K2−κ2)η+κ′β1+κ(τ −K))β2

then we get the torsion of quaternionic (RD)-curve
(δ) as

κ̄ =

√
κ2(τ −K)2(κ2 +K2) + (κ′K − κK′)2

κ2 +K2

Consequently, if we make necessary adjustments in
τ̄ − K̄ = h(γ4,β2)

∥⊤×η×γ′′′∥ , then we find the bi-torsion of

(δ) as

τ̄ − K̄ =

√
κ2 +K2

κ2(τ −K)2(κ2 +K2) + (κ′K − κK′)2

.


(τ −K).

[
2κ′(K′κ −Kκ′)

+κK(κ′′ − κ(τ −K)2)
−K′′κ2+

(κ2K′ − 2κκ′K′)(τ −K)′
]
 .

4 Conclusion
In many fields of study such as mathematics, physics,
robotics and digital technology, using quaternions
(and therefore non-commutative structure) derived
from complex numbers instead of complex numbers
creates a new field of study, and therefore quaternions
provide great convenience in this field of study.
In 1843, Hamilton discovered quaternions while
working on generalizing complex numbers to three
dimensions. While Hamilton hoped that quaternions
would be characterized by three numbers when
he generalized the complex numbers, he found
that four numbers were necessary. Hamilton was
always interested in the geometric interpretation of
quaternions and explored the role of quaternions
in explaining three-dimensional rotations with pure
quaternions. The main use of quaternions after
Hamilton was expressed is the notation of quaternions
instead of physical theories in Cartesian coordinates.
The best-known example of this isMaxwell’s Treatise
on Electricity and Magnetism. In these years,
there was talk of the value of using non-coordinate
methods of modern differential geometry instead
of using the old tensor methods in space-time
physics. In addition, quaternions were also very
popular in many other fields of physics. First of
all, also Maxwell used quaternions in the results
of the equations, which will be named after him.
Electromagnetism has been studied many times
by many scientists with dual, complex or real
quaternions. In addition, the representation of
electromagnetism in the matter environment was
reconstructed using quaternion algebra. Derivatives
of quaternions from high-dimensional algebras are
used in order to gain a new perspective on a
system involving the gravitational force. In addition,
these algebras were used to unify both gravity
and electromagnetism. Quaternionic structures are
discussed in the fields of physics, acoustics, plasma
and so on. The success of quaternions was not only
limited to mathematics and physics, but also used as
a very successful method in robotic studies. In this
study, we have defined the new type associated curves
of a space curve, which is parameterized by arc-length
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in E3. We have named these associated curves
as (sqRD)-curve and (sqRDnr)-curve. We have
examined relationships between some specific curves
like helix, slant helix, Salkowski, anti-Salkowski
curve, spatial quaternionic rectifying curves and these
new type curves. We have showed that although
(sqRD)-curve of spatial quaternionic curve are not
general helix, they are slant helix. Furthermore,
spatial quaternionic rectifying-direction curve of
spatial quaternionic curve is an (sqODR)-curve of
the same curve. In that case, the curve is an
anti-Salkowski curve. The similar results have been
obtained for (sqNDR)-curve and (sqRDR)-curve
of the curve. These results are quite remarkable.
Therefore, we think that this study will create a
bridge in the fields of physics and geometry with the
help of quaternions. In addition, we have continued
theoretical and practical research.
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