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1 Introduction

Mathematicians are still developing the discussion
of fixed points. One direction of development often
done is in the metric space used. The results of the
development of fixed points in various metric
spaces that have recently been carried out include
[1], [2], [3].- Some extensions of fixed points to the
coincidence case and common fixed points are used
to analyze the stability of iterative processes,
demonstrate the existence of solutions to equations,
and other related purposes. Common fixed points
topic stems from a conjecture made by [4] in 1954:
for any 9€[0,1] if the single-valued mapping A and |
satisfy A 1(9)=lAa (8) then the common fixed point of
h and 1 in [0,1] can be shown. Several researchers
have addressed this conjecture, such as those in [5],
[6], [7]. In 1967, [8] extended the discussion to the
metric space (®,d); he proved a common fixed point
theorem for commute mappings in (w,d). Since then,
research on common fixed points has begun to
develop rapidly.

Several researchers involved set-valued, single-
valued, and even their compositions in its
development. In 1977, [9] proposed the concept of
commutativity for the composition of set-valued and
single-valued mappings. Furthermore, they also
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showed common fixed points in topological vector
spaces. In 1988, [10] proposed the term weakly
commuting mappings and their common fixed point.
In 1989, [11] proposed the compatibility concept for
combining set-valued and single-valued mappings
(hybrid mappings) and showed the common fixed
point. They followed the results of [12] and [13].
2017, [14] extended the results of [11] on partial
metric spaces. In 1995, [15] extended the result of
compatible set-valued and single-valued mapping to
the t-weak-compatible mapping. In 2023, [16]
extended the result of [15] to partial metric spaces.
On the other side, [17] pioneered extending the
fixed point concept to partially ordered sets. In
partially ordered sets, the exploration of fixed points
expands, as seen from the results in references [18],
[19], [20], [21], [22], [23], [24]. Recently, the
common fixed points study of hybrid mapping has
been extended to partially ordered sets.
Furthermore, [23] proved the common fixed points
theorem for single-valued mappings on partially
ordered partial metric spaces. Also, [25] extended
the results of [11] to partially ordered sets.
Motivated by this work, we will establish the
theorem on coincidence and common fixed points
for compatible hybrid mappings on partially ordered
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sets. In this regard, our results expand the findings
of [14] and [16] in partially ordered sets.

2 Preliminaries
Let w be nonempty sets. Suppose (w, d) is a metric
space and CB(w) represents the class of all £ € w
and X # @ that are closed and bounded. Define
H(Z, Q) = max{d(Z,Q),d(Q,2)}, (1
for all %, Q) € CB(w), where
d(Z, Q) = sup{d(®¥,Q):9 € ¥}, and
d®¥,Q) =inf{d(¥,¢):¢ € Q}. Mapping H is a
metric on CB(w), which we call the Pompeiu-
Hausdorff metric on CB(w) [26]. The pairs
(CB(w),H) are called by Pompeiu-Hausdorff
metric space. Additionally, the completeness of
(CB(w),H) depends on the completeness (w,d)
[12],[27], [28].

In 1992, [29] and [30] proposed partial metric as
a broader version of the standard metric, wherein an
object's distance from itself need not always be zero.
Let w # @, a partial metric on w is p:w X w —
[0,0) a mapping which satisfies the following
conditions:

L. p@,¢) =p(9),

2. Ifp@,9) =p@,¢) =p(¢) thend =g,

3. p(,9) <p®,9),

4. p@,n) +p(¢) <p@ ) +pmn,

for all 9,¢,n € w. Furthermore, a pair (w,p) is
partial metric space. Several properties of sequence
in this space we refer to [20], [21], [22], [24], [29],
[30], [31] and reference therein.

Furthermore, [31] extend the Pompeiu-
Hausdorff metric to a more general (partial) metric.
They presented partial Pompeiu-Hausdorff metric
space induced by partial metric p. Consider (w,p)
as a partial metric space, where CB? (w) represents
the class of all subsets ¥ € w and X # @ that closed
and bounded.

The mapping HP:CBP(w) X CBP(w) — [0, )
define

HP(Z,Q) = max{p(E,Q0),p(Q,2)}, (2
for %, € CBP(w), where
p(E, Q) =sup {p(¥I,¢):Y € £}, and also we have
p(¥,Q) =inf {p(9,¢): ¢ € Q}. The mapping HP is
a partial Pompeiu-Hausdorff metric induced by p
[19], [31], [32]. The pairs (CB?(w), HP) are called
partial Pompeiu-Hausdorff metric spaces or p-
Pompeiu-Hausdorff metric spaces. Every Pompeiu-
Hausdorff metric is a p-Pompeiu-Hausdorff metric,
but the reverse is not necessarily true (see Example
2.6 and Remark 2.7 in [31]). Furthermore,
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(CBP(w),HP) is complete whenever (w,p) is
complete. Furthermore, some properties regarding
the p-Pompeiu-Hausdorff metric space are stated in
Theorem 2.1, 2.2, 2.3, and Lemma 2 4.

Theorem 2.1. [31], [32] Suppose (w, p) is a partial
metric space. For each X, 2,V € CBP? (w), satisfy
1. p(2,2) =sup{p(¥,9):9 € X},
p(Z,2) < p(2,0),
p(2,0) = 0impliesthat X = 0,
pE, 0 <pEY)+pl¥, Q)
—inf{p(n,n):n €Y}.

pwd

Theorem 2.2. [31], [32], [33] Suppose (w,p) is a
partial metric space and X € w and X # @, then
v e Xiffp(®¥,2) =p@,9).

Theorem 2.3. [31], [32] Suppose (w, p) is a partial

metric space. Every X, 2,Y € CBP(w), satisfy

1. HP(X,Q) < HP(Z,N),

2. HP(Z,0) =HP(0,X),

3. HP(Z,0) <HP(ZY)+HP(Y, Q)
—inf{p(m,n):n €Y},

4. IfHP(2,0) = 0thenX = (.

Lemma 2.4. Suppose (w,p) is a partial metric
space. If 2,2 € CBP(w), Y € X, thenthereis¢ € N
such that

p(d,¢) < HP (2, D).

Furthermore, we give some definitions of partial
ordering.

Definition 2.5. [34] A binary relation < that is
defined on w is said to be a partial order relation
when it satisfies:

1. 9 <9 (reflexivity),

2. If9 < ¢and¢ <9I thendy = ¢ (antisymmetry),
3. If9 < ¢andg¢ < nthend < n (transitivity),

for every 9,¢ and n € w. A pair (w, <) is called a
partially ordered set.

Definition 2.6. [34] Suppose that (w,<) be a
partially ordered set, 9,¢ € w. Elements 9 and ¢
are called comparable elements of w if either 9 < ¢
or¢=<9d.

Definition 2.7. [18] Suppose that (w,<) is a
partially ordered set. The mapping ¢t is called by
dominating mapping if ¥ < t(9) for each 9 € w.

For example, w = [0,1] with usual ordering < and
mapping t:w — @ where t(9):=9Y" for any n
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positive integers. We can show that 9 < t(9) for
9 € w or t is dominating maps.

Definition 2.8. If pair (w, <) is a partially ordered
set and pair (w, p) is a partial metric space, then we
call the triple (w,p, <) a partially ordered partial
metric space.

For example, suppose we have

w = {(0,0),(0,—1/4),(1/4,0),(—1/4,1/4)} € R?
with the order < defined as (9;,9,) and (¢4,¢,) €
w with (91,9;2) < (¢1,¢) ifand only if 9; < ¢; and
9, < ¢,. We know that (w, <) is a partially ordered
set. Let p: w X w — R? is defined as

p(,6) = p((®1,92)- (51,62))
1= max{[9; —¢1, 192 — ¢z},
for all 9,¢ € w so that the partial metric spaces
(w,p). Thus, (w,p, <) is partially ordered partial
metric spaces.

Definition 2.9. If partial metric spaces (w,p) in
Definition 2.8 is complete, then the triple (w,p, <)
is also complete.

The partial metric space (w,p) above is
complete partial metric space since every Cauchy
sequence is convergent in w. Therefore, the partially
ordered partial metric spaces (w,p,<) above are
complete.

Next, definitions of common fixed points and
coincidence points of hybrid mapping pairs are
given in the following definitions.

Definition 2.10. [14], [16] Let given T: w — CB(w)
and t:w — w. A point n € w is called a common
fixed point of mapping T and t if n = t(n) € T(n).
A point 9 € w is said to be a coincidence point of
hybrid mapping pairs T and t when t(9) € T (9).

Furthermore, [11] introduced the new concept,
the compatibility term for hybrid mapping pairs T
and t (see Definition 2 in [11]) generalizes the
compatibility concept for single-valued mappings t
and s (see Definition 1 in [11]). Now, we propose
the extension of the notion compatible mapping of
hybrid mapping pairs in partial metric spaces.

Definition 2.11. Suppose that we defined the
mappings T: w = CBP(w) and t: w — w in partial
metric spaces (w, p).
1.The mappings T and t are compatible iff tT(9) €
CBP?(w) and
HP(Tt(9,),tT(9,)) = 0,
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with (19,,) is sequence in w where t(9,) > n €Y
and T (9,,) - Y where Y € CBP (w).
2.The mappings T and t are t-weak compatible if
tT(9) € CBP(w) and satisfy
limy,_,o, HP (¢T (9,,), Tt(9,))
< limy o HP (Tt(9,), T(9y)),
and
limy,—oop(tT (9), Tt(9))
< limy o HP (Tt(9,), T(95)),
whenever (9,) € w where t(9,) >n €Y and
T(9,) = Y wheresetY € CB?(w).

From Definition 2.11, the hybrid mapping pairs
T and t are compatible iff tT(J) € CBP(w) for all
Y € wand

HP (Tt(9y), tT (9y)) = HP (tT (), tT (),
where (J,) is sequence in w such that sequences
t(¥,) > n €Y and T(Y,) = Y where Y € CBP (w)
[14]. Moreover, the set of weakly compatible
mappings on partial metric spaces contains the set of
compatible mappings [14], [16].

The following lemma gives some compatibility
properties for set-valued mappings T and single-
valued mappings t.

Lemma 2.12. Given partial metric spaces (w,p)
and T:w - CBP(w) be set-valued mappings that
are continuous on w. If there exist single-valued
mappings t:w — w is continuous on w where
t(n) € T(n) for some n € w, then the mapping T
and t are compatible.

Proof. By using the continuity of t on w, T(9) €
CBP(w) for all Y € w, then tT(Y) € CBP(w) for
all 9 € w. Let (9;,) sequence on w where T(9,,) —
Y, t(¥9,) = n, whenever ¥ € CBP(w) and n €Y.
We can take n €Y where t(n) € T(n). By the
continuity of mappings T and t implies
lim,,o, HP (Tt(9y,), tT(9y))
< Limyy oo (HP (Tt (), t (1)) + HP (t(0), t(1))
+HP (t(n), tT (9n)))
< iMoo HP (Tt(9,), t(1))
+limy o HP(t (), t(n))
+ limy, o HP (t(0), tT (9))
=0
Therefore, by Definition 2.11 part (1), we obtain T
and t are compatible.

Lemma 2.12 above extends Lemma 4 in [35] to
partial metric spaces. Furthermore, Lemma 2.13
below is an extension of Lemma 1 (in [35]) or
LEMMA (in [11]) in partial metric spaces.
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Lemma 2.13. Let T: w - CBP(w) and t: w - w be
compatible mappings. The condition t(n) € T(n)
for some n € w implies

tT(n) = Tt(n).

Proof. Suppose that 9,, = n for each n, then we
obtain t(9,) = t(n) = t(n) and T(Y,) — Y, where
Y =t(n). Therefore, by t(n) € T(n) and using
compatibility of T and ¢ then,

HP(tT (), Tt(n)) = HP (Tt(9,), tT (9n)) = O,
as n — oo. Hence, we obtain

HP (T (), Tt(n)) = 0.

It implies tT(n) = Tt(n).

In 2017, [14] proved the common fixed point
theorem for hybrid mapping pairs that are
compatible in partial metric spaces.

Theorem 2.14. Suppose (w, p) is a complete partial

metric space. If the mappings t:w - w and T: w —

CBP(w) are compatible and continuous mappings

that satisfy T(w) € t(w), and

HP(T(9),T())

< cmax{p(t(®¥),t(s)), p(t (@), T(®)), p(t(5), T(5)),
1/2 (p(t (@), T(5)) + p(t(5), T(¥)))}

for some ¢ with 0 < ¢ < 1, it implies there exist n €

w Where t(n) € T(n).

In 2023, [16] recently established the following
common fixed point theorem for t-weak compatible
hybrid pair mappings in partial metric space.

Theorem 2.15. Suppose (w, p) is a complete partial
metric space. If the mappings t:w - w and T: w —
CBP(w) be a t-weak compatible and continuous
mappings that satisfy T (w) < t(w), and
HP(T(),T(5))

< cmax{p(t(®), t()), p(t(®), T(®)), p(t(5), T(s)),

1/2 (p(t (), T(s)) + p(t(5), T(9))}
for some ¢ with 0 < ¢ < 1, it implies there exist
n € wwheret(n) € T(n).

In this paper, Theorem 2.14 and 2.15 are
extended to partially ordered sets to get the
coincidence and the common fixed point for
compatible hybrid mapping pairs and t-weak
compatible hybrid mapping pairs in partially
ordered partial metric spaces.

3 Main Results

3.1 Compatible Hybrid Mapping Pairs
We extend Theorem 2.14 in the setting of partial
order sets as in Theorem 3.1.
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Theorem 3.1. Suppose (w,p,=<) Iis complete

partially ordered partial metric space. Assume that

the mapping t:w - w and T:w — CBP(w) be a

continuous mapping and satisfy

HP(T(9),T(5))

< cmax{p(t(®),t(s)), p(t @), T(®)), p(t(c), T(5)),
1/2 (p(t (@), T(5)) + p(t(5), T(9)))

for some ¢ with 0 < ¢ < 1 and for all comparable

element 9,¢ € w. If the specified conditions are

satisfied

1. T(w) € t(w),

2. Ift(¢) € TW)thend <,

3. T and t are compatible.

then t(n) € T(n) forn € w.

Proof. Take 9, be an arbitrary element of w. We can
choose ¥; € w such that t(9;) € T(Iy), and this is
possible since T(I) € t(w). Therefore, by
assumption 2, 9y < 9¢. If ¢ = 0, then
p(t(91), T(¥1)) < HP(T(p), T(¥,)) = 0.
Since T(9,) € CBP(w) then t(9,) €T®,). It
means the proof is done.
In the other case, assuming that ¢ # 0, we have k: =
1/+/c > 1. Since t(9;) € T(Y,) then by Lemma
2.4, there exist a point ¢; € T'(9;) such that
p(§1' t(ﬁl)) < HP (T(ﬁl):T(ﬁo))
< k HP(T(¥1), T(9)).
So, for comparable element I, < ¥; we have
p(61,t(91)) < k HP(T(91), T(9)).
Let consider that T(9;) S t(w), therefore we can
choose Y, Ew with ¢ =t(9,) € T(Y;). By
assumption 2 we have 9; < U,.
Futhermore, since t(,) € T(Y9,) then by Lemma
2.4, we can find ¢, € T (19,) such that
p(';z' t(ﬁz)) = HP(T(ﬁz),T(ﬁﬂ)-
Since k > 1 then for comparable element J; < 9,
we get
p(';z't(ﬁz)) = KHP(T(ﬁz),T(I%))-
By assumtion (1), there exist ¥; € w with ¢, =
t(¥3) € T(I,).
In general, for 9,,_1; € w we can find 9,, where ¢ €
t(9n41) € T(¥,,), and also
p(5,t(0n)) < ke HP(T(n), T(Op-1)),
for all n > 1 and comparable element 9,_; < U,
for every n. Since 9,, comparable for all n, then we
have

p(tfﬁrwl)rt(ﬁn)) <k HP(T(97), T(On-1))
< % -C max{p(t(ﬁn), t(ﬁn—l))r p(t(ﬁn): T(ﬁn));

P(t(Wn-1), T(Wn-1)), 1/2 (¢ @), T(9n-1))
+p(t@n-1), Tn)))}
< Ve max{p(t(9), t On-1)), (@), T Bn)),
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P(tWn-1), T(Wn-1)), 1/2 (p(t @), T(On-1))

+p(t@n-1), T(O)))}
< Ve max{p(t (@), tOn-1)), p(t (), tOn+1)),

p(t(W0n-1), t(®)), 1/2 (), t ()

+D(t@n-1), t(In11)))}
< \/E max{p(t(ﬁn)l t(ﬁn—l))J p(t(ﬁn)' t(ﬁn+1))'

1/2 ((t@n), tBn)) + p(t(Bn), tOn+1)))}
< ‘/E max{p(t(ﬁn)' t(ﬁn—l)): p(t(ﬁn), t(ﬁn+1))}
iee, P(tWrs1), t®)) < VE (), t(Bmr)) for
all n > 2. Therefore, by continuing this process
P(t0ne1), W) < (VO)" p(£(52), £(®)), B)
for every mne€N. Since +c<1, then
p(t(z?n+1), t(ﬁn)) — 0 as n — oo. It means (t(ﬁn))
is Cauchy sequences in w. Since partial metric
spaces w is complete, it implies t(9,,) — 1, where
1 € w. Furthermore, from inequalities (3) we get

HP (T (), T()) < ¢ p(t(8), t(0-1)).
Since (t(9,)) is the Cauchy sequence, this must
imply (T(ﬁn)) is also a Cauchy sequence in
(CBP(w), H?). Since (CBP?(w),HP)is complete,
thus we have set Y € CBP(w) such that T(9,) > Y
as n — oo. Furthermore,
M, Y) <p(n,t(Wn)) + (), Y)
_p(t(ﬁn): t(ﬁn))
=< P(U, t(ﬁn)) + p(t(0,),Y)
< p(n, t@) + HP(T(Dp), Y)

Since p(n,t(ﬁn)) -0 and HP(T(,),Y) =» 0 as
n — oo, then p(n,Y) = 0. Since Y € CBP(w) then

ney.
Since T and t are compatible, then

HP(Tt(9,),tT(9,)) = 0
as n — oo, then
p(tm), T(m)
< p(t(m), tt(8y)) + p(tt(9,), T(m))
_p(tt(ﬁn): tt(ﬁn))
< p(tm), tt@y)) + p(tt(¥,), T(n))
< p(t), tt(®y)) + HP (tT(9,), T(n))
< p(t(), tt(9,)) + HP (tT(9y), Tt(V,))
+HP(Tt(9,),T())
By compatibility of mappings T and ¢, and also
t(9,) = n asn — oo therefore
p(t(m),T(m)) = 0.
Since T(n) € CBP(w), it implies t(n) € T(n). This
result completes the proof.

Example 3.2. Let we consider this conditions:

w = {(0,0),(0,—1/4),(1/4,0),(—/4,1/4)} € R?
with the order < defined as (94,9,) and (¢1,¢,) €
w with (91,9,) < (61,62) iff 91 < ¢y and 9, < ¢,.
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Let p: w X w — R? be a partial metric on w, where

p(®,¢) = p((¥1,9,). (51,52))
r=max{|9, — ¢1], [92 — 621},
for all 9,¢ € w so that the partial metric spaces
(w,p) is complete. Let mappings t:w — w and
T:w — CBP(w) be defined as follows:
t@) =9

and

{(010)} 191 > 192
T = T(01:9) = {0y, 0,-1/4)) 0, <.
T and t are continuous T'(w) € t(w) = w. Let9,, =
(1/n,1/(n+ 1)) is sequence in w, thus we have
T(®,) - {(0,0)} and t(9,) = (0,0) as n - co. It
implies

HP(Tt(9,),tT(9,)) - 0

as n — oo. This means that T and t are compatible
mappings. We get three pairs of comparable
elements from w: (0,—1/4) and (0,0), (0,—1/4)
and (1/4,0) and (0,0) and (1/4,0). Suppose that
¢ = 1/2, that all assumptions in Theorem 3.1 are
satisfied. We are reviewing the following cases:
Case 1.
If9 = (0,—1/4) and ¢ = (0,0) then
HP(T(9),T(5)) = 0, and
max{p(t (), ¢(s)), p(t(®), T®)), p(t(5), T(s)),
1/2 (p(t@), T(5)) + p(t(5), T(9)))} is equal to
max{1/4,1/4,0,1/2(1/4+1/4)} =1/4

Case 2.

If9 = (0,0) and ¢ = (1/4,0) then
HP(T(9),T(5)) = 0, and

max{p(t(®),t()), p(t®), T®)), p(t(s), T(5)),
1/2(p(t(), T(5)) + p(t(s), T(9)))} is equal to
max{1/4,0,1/4,1/2(1/4 + 1/4)} = 1/4

Case 3.

If9 =(0,-1/4) and ¢ = (1/4,0) then
HP(T(9),T(¢)) =0, and

max{p(t(9),t(s)), p(t@), T(®)), p(t(s), T(S)).
1/2(p(t (@), T(5)) + p(t(s), T(9)))} is equal to
max{1/4,1/41/4,1/2(1/4+ 1/4) = 1/4.

In all the above cases, it is clearly shown that

HP(T(9),T(5))

< c max{p(t(9), t(s)), p(t(@), T (), p(t(5), T(5)),
1/2(p(t(@), T (s + p(t(5), TN}

for all comparable element. Therefore, the

conditions of Theorem 3.1 are satisfied, confirming

that {(0,0)} is the coincidence point for t and T.

By replacing assumption 3 on Theorem 3.1 with
the condition: "t(n) € T(n) for some n € w", we
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will have results that t and T are compatible by
referring to Lemma 2.12. Furthermore, referring to
Theorem 3.1 and Lemma 2.13, we obtain Corollary
3.3 below.

Corollary 3.3. Let (w, p, <) be a complete partially

ordered partial metric space. Suppose that

mappings t:w - w and T:w — CBP(w) are

continuous mappings and satisfy

HP(T(®),T(s))

< ¢ max{p(t(9), t(c)), p(t(¥), T (I)), p(t(s), T(¥)),
1/2(p(t@), T(s) + p(t(s), T(@)))}

for some ¢ with 0 < ¢ < 1 and for all comparable

element 9,¢ € w. If the specified conditions are

satisfied

1. T(w) € t(w),

2. Ift(¢) eT()thend <g,

3. tTE) =Tt®),

it implies there exist n € w where t(n) € T(n).

Corollary 3.4. Let (w, p, <) be a complete partially
ordered partial metric space. Assume that mappings
ttw—->w and T:w - CBP(w) are continuous
mappings and satisfy

HP(T(9),T(5)) < ¢ p(t(9), (),
for some ¢ with 0 < ¢ < 1 and for all comparable
element 9, ¢ € w. If the following assumptions hold
1. T(w) € t(w),
2. Ift(¢) e T()thenV <,
3. tTW) =Tt®),
it implies there exist n € w where t(n) € T(n).

3.2 Generalized Results for Compatible
Hybrid Mapping Pairs

Following the notations of [10], we used Y to

represent the family of all real functions 1y of [0, o)

into [0,00), with 3 is right-continuous, non-

decreasing, and Y () <9 for each ¥ > 0. We can

see one of Y's properties on the Lemma 3.5 below.

Lemma 3.5. [7], [35] Let real function : [0, ) —
[0,0) be non-decreasing and right-continuous on
[0, 00). We have Y (9) — 0, as n — oo iff

Y@) <9,

for every 9 > 0.

By assuming that f dominates maps, then using
Lemma 3.5, we have results as in Theorem 3.7
below. Theorem 3.6 is the generalization of
Theorem 3.1.

Theorem 3.6. Suppose (w,p,<) be a complete
partially ordered partial metric space, and if
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mappings t:w - w and T:w — CBP(w) are

continuous mappings and

HP(T(9),T(s))

< Y(max{p(t(¥),t(s)), p(t(@),T(¥)), p(t(5), T(I)),
1/2(p(t(9), () + p(t(s), TN},

for all comparable elements 9,¢ € w, and i a real

function that meets the conditions specified in

Lemma 3.5. If the specified conditions are satisfied

1. T(w) € t(w),

Ift(¢) € T(W) thend < ¢,

The hybrid pairs T and t are compatible,

t is dominating mapping, i.e. 9 < t(9) for

each 9 € w,

then hybrid mapping pairs t and T have a common

fixed point on w.

~w

Proof. Let 9y € w be any arbitrary element. Since
T(w) € t(w), we can take ¥; € w where ¢; =
t(¥1) € T(Yy) then we have 9, < ¥;. Repeating
this argument, we obtain: if 9,,_; € w there is 9,, €
w where
Yn = t(Oy) € T(On-1),
so we have 9,,_4 < U, for each n. Furthermore,
p(t(ﬁn)' t(ﬁn+1)) < Hp (T(ﬂn—l)'T(ﬁn))
< Yp(max{p(t@p-1), t(Dn)), P(tBn-1),
T(0n-1)), p(t(D), T (Fn)),
1/2(p(t(9n-1), T(Wn)) + p(t(Fn), T (Fn-1)))}
< TP(maX{P(t(ﬁn-l). t(ﬁn))' p(t(ﬁn—l)' t(ﬁn))'
p(t(), t(Bn+1)), 1/2(P(t(Fn-1), t On41))
+p(t(9n), t(9)))}
< Y(max{p(t@On-1), t (@), P(t D), t(On11)),
1/2(p(t(9n-1), t(Fn)) + p(t(Fn), t(In+1)))}
< Y(max{p(t(Dn-1), t(In)), (D), t(Dn+1))-

Therefore, we obtain:

P(E@), tWns1)) < ¥ (p(EWn-1), E@))). (4)

By continuing this process then, we obtain

P(E@), tWns1)) < W (p(EWn-1), EW)))
< (p(¢(On1), t(W0n-1)))

= 2 (p(t(On-2), t(On-1)))

< 2 (p(tWn—2), t(Wn-1)))

= 3 (p(t(On-3), t(On—2)))

< 9" (p(t(0), t(®1)))
Therefore
P(t (), t(Wns1)) < ¥ (P(£90), £ (9)))
Since p(t(I9y), t(91)) > 0, then
Y (p(t(ﬁo), t(ﬁl))) —s0asn— o

)
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by Lemma 3.5. This condition implies
p(t(9,),t(9p41)) > 0 as n > co. It means that
sequence (t(9,)) is Cauchy in w. As we know that
w 1is complete, this condition guarantees the
existence of 7 € w such that t(9,) - n as n = .
Furthermore, from the inequality (4) and (5) also
show that

HP(T(0n-1), TW0)) < 9 (p(tWn-1), t(5)) )

<" (p(t(0), t(W1)) )
Therefore, (T(ﬁn)) is the Cauchy sequence in
(CBP(w), H?). Since (CBP(w),HP) is complete,
then there exist set Y € CBP(w) where T(9,) = Y
as n — oo. Furthermore, we have
p(,Y) < p(n,t(¥)) + pt®), V)
_p(t(ﬁn): t(ﬁn))
< p(n,t(@) + P, V)
< p(n, £(8)) + HP (T(8,),Y).
Taking n — oo then p(n,Y) = 0. It implies n €Y,
since Y € CBP(w). By assumption 3, T and t, the
hybrid pair mappings are compatible then
Hp(Tt(ﬁn), tT(ﬁn)) — 0, as n — oo, Furthermore,
we have t?(9,41) € tT(9,) and by assumption 4
we have 9, < t(9,) thus 9, and t(9,41) are
comparable. Therefore,
HP (Tt(9341), T (9))
< Yp(max{p(t*Gns1), t(Bn)),
p(tz (1971+1)' Tt(ﬁn+1))' p(t(ﬁn):T(ﬁn))v
1/2(p(t* (9n+1), T(n))
+p(t(9n), Tt(In+1)))})
< Y(max{p(tT (9,), t(9n)), HP (tT (95), Tt (In+1)),
p(tDn), T(9n)),1/2(HP (tT (), T (95))
+p(t(Fn), Tt(9n+1)))})
< Y(max{HP (tT (9,), Tt(9,))
+HP(Tt(9,), T (9n)) + p(T (Un), t(In)),
HP (£T(8,), Tt(9,) + p(Tt(0,), t(9)))

+p(t(19n): Tt(ﬁn+1))v p(t(ﬁn)' T(ﬁn));
1/2(@T (n), T(9n))

+p (), Tt(On+1)))})

< Y (max{HP? (tT(9,), Tt(9,))
+HP(Tt(9,), T(0,)) + (T (), t(9)),
HP (tT (9,), Tt(9n) + p(Tt(Iy), t(Ip))
+p (), Tt(Vn+1))})

< Y(max{HP (Tt(I,), tT (9,))
+HP(Tt(9,), T(0,)) + p(T (), t(9r)),
HP (Tt(9,),tT(9,)) + p(Tt(¥n), t(9,))
+p(t(0n), Tt(On+1))})

< Y(max{HP (Tt(Iy), tT (Ip))
+HP (Tt(9,), T(9,)) + p(T ), t(9)),
HP(Tt(9,),tT () + HP(Tt(9,), T(9n-1))
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+HP(T(9n-1), Tt(In+1))})-
Since 1P is non-decreasing, right-continuous, and
also T and t are compatible then by taking n — oo
HP(T(m), Y)
< Y(max{0 + HP(T(n),Y) + p(Y,n),
0+ HP(T(m),Y)+HP (Y, T(m)})
< Y(max{0 + HP(T(n),Y) + 0,
0+ HP(T(n),Y)+HP(Y, T(m)})
< Y(max{HP(T(n),Y),2H? (T (1), Y)})
<$(2HP(T(),Y))
< 2ZY(HP(T M), Y))
Since Y(I¥) <9 for every 9 > 0, then we have
HP(T(n),Y) = 0. Thus,
T(m =Y.
Let’s consider that
HP (Tt(9,),tT(9,)) = HP(T(n),t(Y)),
as n — oo, On the other side, since T and t are
compatible, then we have
HP(Tt(9,),tT(9,)) = O, (7
as n — oo. So, we obtain HP (T(n),t(Y)) = 0, i.e.,
T(n) = t(Y). ®)
Therefore, since n €Y, t(n) € t(Y) and also from
equation (6) and (8), then
tm €T =t(Y) =Y.
We also have tT(9,) - T(Y).
HP(Tt(9,),T(Y)) - 0asn — o by (7).
Furthermore, by assumption 4 we have t(9,) and
9,, are comparable then we obtain
p(tz(ﬁn+1)v t(ﬁn+1))
< HP(tT (), T(9n))
< HP(tT(9,), Tt(9,)) + HP (Tt(9,), T(9y))
—HP(Tt(9,), Tt(9,))
< HP(tT (0n), Tt(On)) + HP (Tt(9,), T (Dn))
< HP(tT(9,), Tt(9,))
+p(max(p(t2 (9n), (), P2 (9), TEWI)),
P(t(Dn), T(0n)),1/2(p(t? (97), T(Sn))
+p(t (D), Tt(91)))})
Taking n — oo, thus
p(tm),n)
< 0+ y(max{p(t(m),n), p(tm), T(Y)),p(m,Y),
1/2(pm,Y) +p(Mm, t(m))}H)
= 0+ (max{p(t(n),n),0,0,1/2(0 + 0)})

=P, ).
As a result of p(t(n),n) =0, ie, t(n)=7n. It

means the point 7 is the fixed point of t. This
condition allows the results n = t(n) € T(n). This
condition indicates that 77 serves as a common fixed
point of hybrid mapping pairs t and T.

Example 3.7. Suppose that T, t and w are as defined
in Example 3.2. For ¥(9) = 29/3, we can show
that Theorem 3.6 is satisfied, and we obtain 9 =
(0,0) where 9 = t(9) € T().

(6)

Therefore,
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3.3 Compatible t-Weak Hybrid Mapping
Pairs

In this section, we extend Theorem 2.15 in the

setting of partially ordered sets.

Theorem 3.8. Let (w, p, <) be a complete partially

ordered partial metric space. If t:w — w and

T:w - CBP(w) be a continuous mappings and

satisfy

HP(T(9),T())

< c max{p(t(), (), p(t @), T(®)), p(t(5), T(5)),
1/2(p(t(), T(s)) + p(t(s), T(¥)))},

for some ¢ with 0 < ¢ < 1 and for all comparable

element 9,¢ € w. If the specified conditions are

hold

1. T(w) € t(w),

Ift(¢c) e TW) thend < ¢,

t and T are t-weak compatible,

If ¢, € T(®,) such that ¢, = ¢ =t(9) then

9, < ¥ foralln,

5.t is dominating mappings,

thus t(n) € (n) forn € w.

2.
3.
4,

Proof. Analogue with Theorem 3.1's proof, we only
need to verify that n is coincidence point of hybrid
mapping pairs t and T. Considering t and T as t-
weak compatible mappings, then

limy, o HP (¢T(9,), TE(9,))

< limy oo HP (Tt(9,,), T(9n)),
and

limy,oop(tT (9,), Tt(9y))

< limy oo HP (Tt(9,), T(9p)).
Since t and T are continuous then

HP(t(N), () < HP(T(m),Y) ©)

and p(t(Y),n) < HP(T(n),Y). Since n €Y then
p(t(m),n) < p(t(Y),n). Thus

p(t(m),n) < HP(T(m),Y).
Furthermore,
pm), T(m))
< p(t@), ttOn41)) + P(ttOn41), T(0)

—p(tt(On+1), tt(In+1))
< p(t), ttOn41)) + HP(tT (), T())
—p(tt(On+1), tt(In41))
< p(t), tt(Wn41)) + HP (T (0, Tt(Iy))
+HP(Tt(9,),T(m)) — HP (Tt(9,), Tt(9y))

—P(tt(Fn+1), tt(In+1))
Taking n — oo then

p(()),T(m)) < HP (t(Y), T(m)).
By (9) we obtain p(t(n)),T(m)) < p(T(M),Y).
Since t(9,,) » n = t(Y¥) by assumption 4 we have
Y, < 9. Also, by assumption 5, t is dominating
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mappings then ¥ < t(J9), then we obtain I, < 7.
Therefore
HP (T (9,),T(n))
< ¢ max{p(t(9,), t()), p(t(n), T (D)),
p((m), T(1)),1/2((t@n), T(M))
+p((), T(On)))}

< c max{p(t(Fn), t(m), p(t (), T (On)),

p((m), T(m),1/2(p(t@n), T(M))

+p(t(), t(On)) + p(t(On), T(9n)))}
Taking n — oo we have
HP(Y,T(n))
< cmax{p(, t(m)), p(n, ), p(t(m), T (M),

172, T(m) +pm),n) + p(, Y))}
< cmax{HP(T(n),Y),p(n,n), H? (¢(Y), T (m)),

1/2(HP(T(m),Y) + p(T(m),Y) + p(n,m)}
then we have

HP(Y,T()) < ¢ (HP(T(n),Y) +p(n,m)).

Since 0 <c¢ <1 and p(n,n) < HP(T(n),Y) then
HP(Y,T(n)) = 0.
Furthermore, since p(t(n),T()) < HP(Y,T(n))
then p(t(n),T(n)) = 0. Let’s consider that T(n) €
CBP(X)thent(n) € T(n). This completes the
proof.

Since the sets of weakly compatible mappings on

partial metric spaces include compatible mappings,

Example 3.2 is also applicable to Theorem 3.8.

3.4 Generalized Results for t-Weak
Compatible Mappings

In this section, we generalize Theorem 3.6 to apply

to t-weak compatible mappings T and t as stated in

Theorem 3.9.

Theorem 3.9. Let (w, p, <) be a complete partially

ordered partial metric space and assume that the

mappings t:w—>w and T:w — CBP(w) are

continuous and satisfy

HP(T(9),T(¢))

< Yp(max{p(t(9), t(5)), p(t(¥), T(¥)), p(t(s), T(@)),

172(p(t (@), t(s)) + p(t(s), TN},

for all comparable elements J,¢ € w, where Y a

real function that satisfies Lemma 3.6's conditions.

If the specified conditions are satisfied

1. T(w) € t(w),

2. Ift(¢) e TW)thend <,

3. The pairs T and t are t-weak compatible,

4. If ¢, € T(9,) such that ¢, - ¢=1t(9) then
9, < 0 foralln,

5. t is dominating mapping, i.e. 9 < t(9) for each
Y € w,

it implies t and T, the hybrid mapping pairs have a

common fixed point on w.
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Proof. The proof of Theorem 3.9 is on a similar line
with Theorem 3.1's proof. We must verify that n is
the coincidence point of hybrid mapping pairs T and
t. When t and T are t-weak compatible hybrid
mapping pairs, then

lim, o HP (¢ T (9,,), Tt(9,))

< limyoHP (Tt(95), T (On)),
and

limp,ep(¢T(9), TE(9,))

< limy o HP (Tt(9,), T (9p)).
By continuity of T and ¢,

HP(t(Y),T(n)) < HP(T(),Y), (10)
and p(t(Y),n) < HP(T(n),Y). Since n €Y then
p(t(m),n) < p(t(Y),n). Thus

p(t(m),n) < HP(T(m), Y).
Therefore

p(tm), T(m)

< p(t), tt(WBns1)) + P(ttGOnr1), T()
=P (tt(Dn+1), tt(In11))

< p(t), tt(Wns1)) + HP(tT (9,), T(m)
=P (Et(Dn+1), tt(On41))

< p(t), tt(Fns1)) + HP (¢T (9,), Tt (9))
+HP (Tt (9,), T(n)) — HP (Tt(In), Tt(In))
=P (tt(Fn+1), tt(In41))

Taking n - oo on the both side, we obtain
p((m), T(m)) < HP(t(Y),T(m)). By (3.7) we have
p(m), T(m) < p(Tm),Y).

Since t(9,) = n = t(¥) by assumption 4 we will
have 9, <9J. Also, by assumption 5, t is
dominating mappings then 9 < t(39), then we obtain

Y, < 1. Consequently
HP (T (), T())
< Y(max{p(t(Fn), t(1M)), p(t (), T (In)),
pE(m),T(m),
1/2(p(@n), T(m) + p(tm), T (¥}
< ¥ (max{p(t(Fn), t(M)), p(t (), T (In)),
p(tm), T(m),1/2(p(t(¥n), T (1))
+p(EM), t(@n)) + (@), T(On)))})
Taking n — oo we have
HP(Y,T(1))
< Y (max{p(n,t(m), p(n, ), p(t(),T M),
1/2(M, T () +p(t(m),n) +p(,Y))})
< Y(max{H? (T (), Y),p(m,n), H* (t(Y),T()),
1/2(HP(T(m), Y) + p(T(m),Y) + p(n,1)})
< Y((HP(Tm),Y) + p(m,m))-
Since Y(9) < I forJ > 0 and
p(m,n) < HP(T(n),Y)
then HP(Y,T(n)) = 0. Furthermore, since we have
p(t(n), T() < HP(Y,T(0)) then
p((m),T@m) = 0.
Consider T(n) € CBP(w) then t(n) € T(n). Since
HP(Y,T(n)) = 0then T(n) =Y. Since

HP(t(Y),T(n)) < HP(T(n),Y) = 0,
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thus HP(t(Y),T(n)) =0, it means t(Y) =T(n).
Also, sincen € Y and t(n) € T(n) then

t) €Tm) =TY) =Y.
Furthermore, since 9J,, are comparable for every n
and t is dominating mapping then, 9, and t(J,41)
are comparable. Thus

p(tt(On+1), t(On41))
< HP(tT(9,), T(9p))
< HP(tT(9,), Tt(9,)) + HP (Tt(9,), T(9y))
—HP (Tt(9y), Tt(9n))
< HP(tT (Un), Tt(Un)) + HP (Tt(In), T (%))
< HP(tT(9,), Tt(9y))
+p(max{p(tt(9n), t(9n)), p(Et (D), Tt(Vy),
p (690, T(0)),

1/2 (p(tt(,)), TWn) ) + PE(R), TEDR)D.
Taking n — oo on the both side
p(E(m),m)
< HP(¢(Y), T(n))
+(max{p(t(m),n),p(tm), Tm),r(m,Y),

1/2(@m),Y) +p(m, TM)D).
Therefore, p(t(n),n) =0, this means t(n) =n.

Consequently, n = t(n) € T(n).

Similarly, we have the fact that weak compatible
mappings include that of the sets of compatible
mappings, so Example 3.7 also holds for Theorem
3.9.

4 Conclusion

In this article, we prove several theorems, including
coincidence point theorems and common fixed point
theorems, for hybrid mappings: single-valued
mappings and set-valued mappings. These theorems
introduce a novel condition setting within a space
involving partial orders. The compatibility condition
of hybrid mappings is utilized to demonstrate the
existence of coincidence points. Additionally, the
membership relation between single-valued and set-
valued mappings is an extra assumption to establish
common fixed points. The same approach is applied
by exploring the relationship between compatible
and weakly compatible mappings to prove the
existence of coincidence points and common fixed
points  for  t-weak compatible = mappings.
Furthermore, we propose a more general contraction
principle incorporating a non-decreasing, right-
continuous Y function, which is subsequently
employed to prove common fixed point theorems
for both compatible and t-weak compatible
mappings.
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