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Abstract: - This research proposes an explicit formula for the Average Run Length (ARL) on a new modified 
EWMA (new MEWMA) control chart. This study proposes a mathematical algorithm for determining the ARL 
of a new MEWMA control chart for detecting autocorrelated processes for zero-state. The integral equation 
method is called Fredholm Integral Equations of the second kind can be effectively employed to calculate ARL. 
Banach’s fixed point theorem is utilized to demonstrate the existence and uniqueness of the ARL solution. A 
process for constructing one-sided and two-sided new MEWMA control charts is presented, and the results 
were compared to the accuracy with numerical integral equations relying on various quadrature rules. This 
algorithm will utilize the autoregressive with the exogenous variables model (ARX(p,r)) and apply the 
algorithm to examine empirical data in the economic area. The effectiveness of control charts can be further 
evaluated using the expected average run length and the expected standard deviation of run length measures. 
Our analysis indicates that the new MEWMA control chart surpasses the MEWMA and EWMA control charts 
in performance. Comparisons are conducted for varying magnitudes of the process mean shift and varied levels 
of autocorrelation. 
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1  Introduction 
The industrial sector extensively employs statistical 
process control (SPC) techniques to enhance 
quality and monitor processes. Conventional SPC 
charts rely on the fundamental assumption of 
normally distributed and statistically independent 
process data under control, [1], [2].  

Early on, the study [3] invented the first control 
chart, called the Shewhart control chart. Later, 
many researchers developed various control charts 
for tracking changes in the process. Later, the 
cumulative sum control chart (CUSUM) proposed 
by [4] and the exponential weighted moving 
average (EWMA) control chart proposed by [5] 
were two important techniques for detecting small 
changes in the process. In many processes, the 
main assumption of observations being 
independently and identically distributed does not 
always hold. This assumption is wrong when the 
process data points are autocorrelated. More 
recently, [6] introduced the modified exponential 
weighted moving average (MEWMA) control 

chart, which added an observation term to the 
EWMA control chart statistic, which was found to 
be effective in detecting small changes. It was 
found that MEWMA control charts have been used 
in various practical applications, such as data with 
high correlation, such as in chemical temperature 
measurement. Later, [7] developed a statistic of the 
MEWMA control chart by modifying the 
observation term invented by [6] by increasing the 
constant value from 1 to any constant value so that 
the process changes can be detected more quickly. 
Recently, a study [8] proposed a new MEWMA 
control chart using the concept of unequal 
weighting of constants to assign more weight to the 
current data compared to the past data. It was found 
that this control chart can detect changes faster than 
the MEWMA control chart and uses equal 
weighting of the current data to the past data. 
Nevertheless, the conventional SPC methods may 
not be suitable for the monitoring, control, and 
enhancement of process quality in practice, as 
process data are not always independent. For 
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instance, the study [9] applied the Shewhart, 
EWMA, CUSUM, or GMA control charts on the 
uncorrelated residuals of the time series process. 
This approach is a primary method for addressing 
both the stationary first-order autoregressive model 
and the trend stationary first-order autoregressive 
model, also known as trend AR(1). In many fields, 
including finance, economics, and the stock market, 
time series are extensively employed. The ARIMA 
model is extensively used as an analysis model for 
time series data. Nevertheless, exogenous variables 
that impact the variable of interest are frequently 
overlooked in prior studies. Most prior research 
concentrates on only the variable of interest. This 
research investigates the effect of potential 
exogenous inputs. The autoregressive with 
exogenous variables (ARX) model is a model 
employed in this study to determine the relationship 
between multiple variables, [10], [11]. 
Additionally, it is necessary to use time series 
models correctly to fit the autocorrelation 
observations. This can be done by looking at the 
ACF and PACF functions from the time series data. 
By determining the appropriate time series model 
and estimating the parameters of the selected 
model, the control chart will be more effective. 
Selecting the appropriate control chart for the data 
under consideration is crucial. Typically, the 
residual yields white noise. Nonetheless, 
exponential white noise can appear in certain 
datasets, [12], [13]. In economics, exponential 
white noise can represent random fluctuations in 
time series data, such as financial variables, stock 
returns, and commodity prices, [14], [15]. 
Consequently, this research examines ARX(p,r) 
with an exponentially distributed residual.  

In the literature, two varieties of ARL are 
addressed: in-control ARL (ARL0) and out-of-
control ARL (ARLΔ). ARL0 represents the 
anticipated number of samples until a control chart 
signals, assuming that the process is under control. 
One may interpret this as a false alarm signal. The 
process is under control, so ARL0 should be as 
large as possible. ARLΔ represents the expected 
number of samples until a control chart indicates a 
signal, presuming that the process is out of control 
due to a shift in the mean. ARLΔ is intended to be 
as minimal as possible. 

A variety of methodologies, such as Monte 
Carlo simulation, numerical integral equation 
(NIE), the Markov Chain approach (MCA), and 
explicit formulations, may be utilized to evaluate 
ARL. For instance, the study [16] aims to create a 
triple HWMA (THWMA) chart for effective 
monitoring of process mean conditions. The 

suggested chart is tested against HWMA, 
DHWMA, EWMA, and double EWMA control 
schemes using the ARL criterion and Monte Carlo 
simulations to see how well it works. Using the 
numerical integral equation (NIE) method, the 
study [17] gets a rough idea of the average run 
length (ARL) for a long-memory fractionally 
integrated moving-average process with an 
exogenous variable (FI-MAX). The research [18] 
presents an estimated average run length (ARL) 
that utilizes four quadrature rules: the composite 
midpoint, trapezoidal, Simpson’s, and Gauss-
Legendre rules, to identify shifts in the process 
mean on a modified EWMA control chart. The 
observations originate from gamma or Weibull 
distributions. The criteria for evaluation were the 
ARL1 and CPU time. The results show that all four 
quadrature methods for approximating the ARL on 
a modified EWMA control chart were about as 
accurate as each other. The study [19] looks at how 
to use a Markov Chain to estimate the average run 
length (ARL) for a Poisson EWMA chart with 
linear drifts. The results indicate that the MCA 
method yields an accurate estimation of the ARL in 
comparison to the Monte Carlo 
simulation. Utilizing explicit formulas. Numerous 
researchers have investigated this technique. The 
study [20] analyses the Average Run Length (ARL) 
for long memory in detecting mean shifts in the 
Max process on the Exponentially Weighted 
Moving Average (EWMA) control chart. 

The research [21] formulated an explicit 
equation by integral analysis of the ARL on the 
Cumulative Sum (CUSUM) chart for the Seasonal 
Autoregressive Integrated Moving Average with 
Exogenous Variables (SARX(P,r)L) model. The 
correctness of the ARL obtained using numerical 
integral equations utilizing the midpoint rule was 
evaluated through comparison. The study [22] 
demonstrates the ARL of the DEWMA control 
chart for identifying minor changes. The trends and 
seasonality of an autoregressive model were 
examined on the DEWMA chart. The explicit ARL 
was developed for simulated data and contrasted 
with the numerical integral equation (NIE) method. 

The previously mentioned study revealed that 
no researcher had validated the average run length 
calculation for the new MEWMA control chart 
under the ARX(p,r) model. Consequently, this 
research derived the explicit formula for the 
Average Run Length (ARL) of the new MEWMA 
control chart under the zero-state, evaluated its 
efficacy in detecting shifts in the process mean, and 
compared it to both EWMA and MEWMA control 
charts. Ultimately, this study implemented the 
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novel MEWMA control chart on empirical 
economic data. 

 
 

2  Materials and Methods 
 

2.1  Change Point Detection  

Let 1 2, ,...,   be sequentially observed independent 

random variables with a distribution  , ,F x   
where   is a parameter. The change-point model 
for the exponential distribution can be expressed 
as follows. It is reasonable to presume that: 

0

1

( ),     1,2,..., 1
,

( ),    , 1, 2,...t

Exp t

Exp t

 


   

 


  
  

where 0  and 1  are known parameters. 
Typically, it is considered that the in-control state is 
defined by the parameter 0 ,  while the out-of-
control state is indicated by the parameter 1.  It 
can be presumed that the value 0  is sustained 
until some unknown time 1   and  at the time   
the parameter changes to the new value 0. 

The time   is referred to as "the change-point 
time". 

The common criterion for on choice of 
stopping times   will be as follows: 

( ) ,E L    
where L is given (usually large), and (.)E

 
denotes that the expectation under distribution 

0( , )F x  , in the control process is that the change-
point occurs at point   (where    ). In quality 
control literature, this is referred to as the Average 
Run Length for an in-control process ( 0ARL ). 
Consequently, by definition, the conventional 
practical constraint is:  

0 ( ) .ARL E L    
Another common constraint consists of 

minimizing the quantity: 
 1 1 ,ARL E          

where (.)E
 is the expectation under distribution 

1( , ),F x   1  is the value of the parameter after the 
change point. In this research, the zero-state is 
usually studied as the special case 1  . The 
quantity 1( )E   is called the ARL for the out-of-
control process 1( )ARL  A sequential chart is likely 
to exhibit near-optimal performance when 1ARL

approaches its smallest value. 

2.2  The ARX(p,r) Model 
 An autoregressive model with exogenous 
variables, referred to as the ARX(p,r) model, is 
defined as: 

1 1 2 2
1

...

      +       ; 1,2,3,...,

r

t t t p t p i it

i

t

Y Y Y Y X

t

    



  



     



         (1)                              

where   is a constant ( 0),   i  is an 
autoregressive coefficient for 1,2,..., ,i p

1p   and t  is i.i.d. sequence ( ~ ( )).t Exp   
The initial value for the ARX(p,r) is 

1 2, ,..., 1.t t t pY Y Y     
  
2.3  Control Charts 
This research examines three control charts: The 
EWMA, the MEWMA, and the new MEWMA 
control charts. The details of each control chart are 
outlined below: 
 
2.3.1  The EWMA Control Chart  

The EWMA control chart usually employed for 
identifying small variations in the process mean is 
delineated as 

  11            ; 1,2,3,...t t tE E Y t                (2) 
where tE  is the EWMA statistic, tY  is the sequence 
of the ARX(p,r) process, and   is an exponential 
smoothing parameter (0 1)  . The stopping 
time is defined as the time when the initial 
detection of an out-of-control observation occurs, 
which is acceptable to conclude that the process is 
out of control.  
 
The UCL and LCL of the EWMA control chart are 
determined as follows: 

0 1UCL LCL
(2 )

L


 


 


,               (3) 

where 0  is the target mean,   is the process 
standard deviation, and 1L  is an appropriate control 
width limit 1( 0)L  . 
 
The stopping time b  for the EWMA control chart 
can be written as: 

 inf 0;  or b t tt Z a Z b     ,              
where a  and b  are constant parameters known as 
the lower control limit (LCL) and the upper control 
limit (UCL).  
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2.3.2  The MEWMA Control Chart 

The study, [7], created a MEWMA control chart 
adapted from the MEWMA statistic proposed by 
[6], which incorporates both historical and present 
observations of the process. The fundamental 
concept is to adjust the weight of the observation 
term to a constant value. The MEWMA control 
chart is characterized as: 

   1 11 ; 1,2,3,...t t t t tME ME Y d Y Y t        , 
                                                   

(4)  
where tME  is the MEWMA statistic, tY  is the 
sequence of the ARX(p,r) process, and d  is a 
constant ( 0).d   
 

For the control limit, the UCL and LCL of the 
MEWMA control chart can respectively be 
expressed as: 

2

0 2
( 2 2 )UCL LCL

(2 )
d d

L
 

 


 
 


         (5) 

where 2L is an appropriate control width limit 

2( 0).L    
 
The stopping time h  for the MEWMA control 
chart can be written as: 

 inf 0;   or ,h t tt ME g ME h              
where g  is the LCL, h  is the UCL.  
 
2.3.3  The New MEWMA Control Chart 

The new MEWMA control chart is an enhancement 
of the original MEWMA control chart provided by 
[7], incorporating an additional constant to 
prioritize current data over historical data, 
specifically, d1>d2. It is important to observe that if 
d1 equals d2, the new MEWMA control chart will 
correspond to the MEWMA control chart 
introduced by [7]. The new MEWMA control chart 
can be written as: 

  1 1 2 11  ; 1,2,3,...t t t t tNM NM Y d Y d Y t       

    (6) 
where tNM  is the new MEWMA statistic, tY  is the 
sequence of the ARX(p,r) process with exponential 
white noise, 0NM   and 1d  and 2d are constants 

1 2( 0)d d  . 
 

Meanwhile, for the control limit, the UCL and 
LCL of the new MEWMA control chart can be 
described as: 

2 2 2
0 1 2 2 2 1 2 1 2

1 2 3
( ) 2 2 2 2UCL LCL ( )

(2 )
d d d d d d d d

d d L
    

 
  

     
   



                                                               (7)  
where 3L is an appropriate control width limit 

3( 0)L  .  
 
The stopping time 

q  for the new MEWMA control 
chart can be written as: 

 inf 0;   or q t tt NM l NM q     ,       
where l  is the LCL, q  is the UCL.  
 
 
3  Performance Evaluation Measures 
 

3.1 Explicit Formulas for the ARL of an 

 ARX(p,r) Process on the New MEWMA 

 Control Chart 
In the analysis of time series data, stationarity can 
be assessed by unit root tests, as well as consider 
the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) graphs to inform 
model selection. The ARX model can be expressed 
as follows: 

1 1 2 2
1

...

      +       ; 1,2,3,...,

r

t t t p t p i it

i

t

Y Y Y Y X

t

    



  



     



            (8)  

 

3.1.1  The Explicit Formulas 

The explicit formulas for the ARL of the new 
MEWMA control chart for an ARX(p,r) process 
are derived as follows:  

       

   

1 1 1 1 1 1

1 1 2 1
1

1 ...

          .

t t t p t p

r

i it t t

i

NM NM d d Y d Y

d X d d Y

      

   

  





        

    

 
If 1Y  signals the out-of-control state 1NM , 0NM   
then: 

     

     

1 1 1 1 1

1 1 1 1 2
1

1

...

t

r

p t p i it

i

NM d d Y

d Y d X d d v

     

     







     

       

 
If 1  is the in-control limit for 1NM , then

1l NM q  . Consider function ( )J   

1 1 1( ) 1 ( ) ( ) ( )J J NM f d     .                (9) 
Eq. (9) is a Fredholm integral equation of the 

second kind [23], and thus ( )J  can be rewritten as 
By modifying the integral variable, we derive the 
subsequent integral equation: 
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1

2 1
1 1

11 1

11 *

1
... .

q r
t

t p t p i it

il

J
d

w d Y
J f Y Y X dw

d d




 
    

 


 



 


   
      

   


                                                                     (10)   

If  tY Exp   the  
1 y

f y e 





 ; 0y  , then 

 

 

 

   
2 1

1 1
1 1 1

1

11 ...

11 *

1
r

t
t p t p i it

i

w d Yq Y Y X
d d

l

J
d

J w e dw

 
   

  







 



   
       

   

 






                                      (11) 
 
Let function 

  
 

   

1 1
2 1 1

1 1

...
1

r

t p t p i it

t i

Y Y X
d Y

d d
O e

  
  

     


 

 

  


  
 



 , then we 
have 

 
 

 
   1

1

1 ; 
wq

d

l

O
J J w e dw l q

d

 
 

 




   

  . 

Let    1

wq

d

l

P J w e dw
 




  , then 

 
 

 1

1
O

J P
d




 
  


.  

 
As a result, we acquire 

 

 

   

1 1
2 1 1

1 1

...
1

1

1( ) 1

r

t p t p i it

t i

Y Y X
d Y

d d
J e P

d

  
  

     


 

 

 

  


  
 



  


                (12) 
 
By solving for constant P , we obtain  

   1

wq

d

l

P J w e dw
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1

1
wq

d

l

P
O w e dw

d
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2 1 1

1 1
1 1

...
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1
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t i

Y Y X
w d Y
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1 1
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By substituting constant P into Eq. (12), we arrive 
at: 
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2 1 1

1 1

1 1

1 1
2 1 1
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1 1

...
1
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( ) 1 *
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1
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Y Y X
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(13) 
 

Thus, the corresponding explicit formulas for 
the Average Run Length (ARL) of an ARX(p,r) 
process operating on a new MEWMA control chart, 
utilizing the Fredholm integral equation of the 
second kind, can be articulated as 

 

     

     

1 1 1

1 1
2 1 1

1 1 1

1

2
...

1
r

t p t p i it

t i

q l

d d d

sided
Y Y X

d Y q l

d d d

e e e

ARL

e e e

 

     

  
  

       





 

 

  

  


  

 
 

  

 
 

  
 



 

                                     (14) 
 

For 0l  , the one-sided explicit formulas for 
the ARL on the new MEWMA control chart are 
expressed: 

 

   

   

1 1

1 1
2 1 1

1 1
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1
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1
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d d
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WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.26 Yupaporn Areepong, Saowanit Sukparungsee

E-ISSN: 2224-2880 272 Volume 24, 2025



3.1.2  The Existence and Uniqueness of Explicit 

Formulas 

We demonstrate the existence and uniqueness of 
the solution to the integral equation presented in 
Eq. (11). Initially, we delineate: 

 

 

   
2 1

1 1
1 1 1

1

11 ...

1( ( )) 1

1
r

t
t p t p i it

i

w d Yq Y Y X
d d

l

T J
d

J w e dw

 
   

  







 



   
       

   

 






                                                      (16) 
 

Theorem 1. (Banach’s fixed-point theorem) 
Let’s represent the set that contains all of the 
continuous functions on complete metric  , ,X d  
and presume that :T X X  is a contraction 
mapping with contraction constant 0 1s  ; i.e.,  

1 2 1 2 1 2( ) ( )  ,T J T J s J J J J X     .  
 

Subsequently, (.)J X  is unique
( ( )) ( )T J J  ; i.e., it has a unique fixed point in 
.X  

Proof: To show that T  defined in Eq. (16) is a 
contraction mapping 1 2, [ , ]J J C l q , we use the 

inequality 1 2( ) ( )T J T J  1 2  s J J   

1 2, ( , )J J C l q  with 0 1s  . Consider Eq. (11) 
and (16), then 
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  ; 
0 1s  . 

 
Consequently, as verified through the 

application of Banach’s fixed-point theorem, the 
solution is both existent and unique. 

3.2  The Numerical Integral Equation for 

the ARL of an ARX(p,r) Process on the 

new MEWMA Control Chart 
The NIE methodology is extensively employed for 
assessing the ARL. It may rely on various 
quadrature rules (midpoint, trapezoidal, Simpson’s 
rule, and Gauss-Legendre), all of which provide 
ARLs that are quite similar to the others, [14]. 
Consequently, this study employed the Midpoint 
rule to assess the ARL. The second-kind integral 
equation for the ARL on the new MEWMA control 
chart for the ARX(p,r) process, as presented in Eq. 
(14) and Eq. (15), can be approximated utilizing the 
quadrature formula. The midpoint rule is 
implemented in the following manner: 

Given  
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                                    (17) 
 
The approximation for the integral is in the form: 

     
1

q m

j j

jl

J w f w dw w f a


 ,        (18) 

where ( )
j

q l
w
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  and 1 ; 1,2,..., .

2j ja j w j m
 

   
 

     

 
Using the midpoint rule, numerical 

approximation ( )J   for the integral equation can 
be found as the solution for the following linear 
equations: 
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This set of m  equations with m  unknowns can be 
described in matrix form. The column vector is:  

      1 1 2, ,..., .m mJ J a J a J a


  

 
Since 11 (1,1,...,1)m

  is a column vector of ones 
and Rm m

 is a matrix, we can define  to thm m  as 
elements of the matrix R  as follows: 
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and  I 1,1,...,1m diag as a unit matrix of order m . 

If  
1I R 

  exists, the numerical approximation for 
the integral equation in matrix form can be 
expressed as  

1
1 1J I R 1 .m m m m m



     
 

Finally, by substituting ia  within  iC a , the 

numerical integration equation for function  J   
can be derived as: 
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                                                                 (19) 
 

Equation (19) can be approximated using a 
numerical integral equation, which can be 
computed by many approaches. This study employs 
the composite midpoint rule, the trapezoidal rule, 
Simpson's rule, and the Gauss-Legendre 
quadrature.     

   
A. Midpoint Rule 

Given 
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The Integral Equation (19) can be approximated by 
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1( ) 1 ( )
1
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             (20) 

where ( )
j

q l
w

m


  and 1 ; 1,2,..., .

2j ja j w j m
 

   
 

          

      
B. Trapezoidal Rule 
Similarly, it can be written as follows: 

 
1

11

1( ) 1 ( )
1

m

T j j j

j

J w J a f A
d








 


              (21) 

where j ja jw  and ( ) ; 1,2,..., 1,j

q l
w j m

m


      

in other cases, ( ) .
2j

q l
w

m




 
 
C. Simpson’s Rule 
By Simpson’s rule, ARL can be solved as follows 
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           (22) 

where j ja jw  and 
4 ( ) ; 1,3,..., 2 1,
3 2j

q l
w j m
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D. Gauss‐Legendre quadrature 

Given 
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The approximation for the integral in [l, q] is in the 

form      
1

q m

j j

jl

J w f w dw w f a


  where  

( ) 1, 1 1.J w w     
 
The Integral Equation can be approximated by 

 
11

1( ) 1 ( ).
1

m

G j j j

j

J w J a f A
d


 

 


            (23) 

 
3.3  Overall Performance Measures 
The accuracy of the ARL is quantified by the 
percentage of accuracy that has been derived from:                                                   

( ) ( )% 100 - 100%.
( )

J J
Accuracy

J

 




   

 
The effectiveness of control charts is 

additionally examined by the Standard Deviation 
Run Length (SDRL), [24]. The SDRL for the 
control process is computed as follows.  
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0
0 0 2

0 0

11 , ,ARL SDRL


 


               (24) 

where 0 represents a type I error. In this study, 
ARL0 was set at 370, which can be determined 
using SDRL0 via Eq.(24). To calculate SDRL

 for 
an out-of-control situation, replace 0 with 1  
where 1 represents type II error. The control chart 
that performs the best at detecting changes in the 
process mean will have the lowest ARL

and 
SDRL

 values. 
 

We employ a few performance measures to 
evaluate the efficacy of control charts. This study 
provides the expected average run length (EARL) 
and the expected standard deviation run length 
(ESDRL) as follows [25]: 
 
The EARL can be expressed mathematically by: 

max

min

1 ( )EARL ARL


 






  

The ESDRL is described by 
max

min

1 ( )ESDRL SDRL


 






  

where the min and represents the lower and upper 
bounds of shift parameter ( ), ( )ARL  is the ARL
  value for a specific shift and   denotes the total 
number of increments between min and max .  

( )SDRL   can be computed in a manner comparable 
to ( ).ARL   
 
3.4 The ARL Procedure for the New 

MEWMA Control Chart 
The steps for determining the ARL value using the 
NIE approach and the explicit formula will be 
described in this section. When the process is in 
control, 0  is given to the exponential white noise 
parameter. Additionally, 1 0(1 )     is set when 
the process is out of control. The following are the 
ARL computations used to compare the ARL 
values from the two techniques: 
 
Step 1:  Determining the parameters of the control 
chart and ARX(p,r) process: 

  The autoregressive coefficients  i , the 

coefficient exogenous variables  j , the 

constant   , and the exogenous variables 

 jtX  in the ARX(p,r) model 
 Set the initial values for the ARX(p,r)  

process and the new MEWMA statistic. 

 The smoothing constant   and the initial 
value of the new MEWMA control chart 
 0E   

 The exponential white noise parameter for 
 the in-control state, 0 . 

 Determine acceptable ARL0 = 370 for the in-
control state and the shift sizes ( ).  

 

Step 2: Calculate the UCL (q) that yields the 
 desired ARL for the control process using 
 Eq. (14) or Eq.(15). 
 

Step 3: Evaluating of ARL: 
 Calculate ARL via the explicit formula Eq. 

(14) or Eq. (15). 
 Approximate ARL using the NIE approach 

by using Eq. (20), Eq. (21), Eq. (22) and 
Eq. (23). 

 

Step 4: Examination of ARL: 
 Compare the ARL values obtained using 

the explicit formula and NIE methods in 
Step 3. 

 

Step 5: Comparison of the performance of new 
 MEWMA with MEWMA and EWMA 
 control charts. 
 
 
4  Numerical Results 
In Table 1 (Appendix), the ARL from explicit 
formula against NIE method using four quadrature 
rules for the new MEWMA control chart on 
ARX(1,2), ARX(2,1)   and ARX(3,1) models given 

0a  , 1  , 1 0.05  , 2 0.025   and ARL0=370 are 
presented.  The study's results showed that the ARL 
values found using the explicit formula method 
were the same as those found using the four 
numerical integral equation methods: midpoint, 
trapezoidal, Simpson, and Gauss-Legendre 
quadrature across all shift levels from 0.005 to 
2.00. The ARL values obtained from the four 
numerical integral equation approaches were 
closely comparable, with the midway method often 
requiring the least processing time. Consequently, 
the next investigation will employ the midpoint 
approach for comparing the ARL values against the 
results obtained via the explicit formula method. In 
Table 2 (Appendix), a one-sided comparison of the 
ARL derived using explicit formulas and the NIE 
method is presented. The ARX(3,2) processes on the 
new MEWMA control chart wit 11, 0.1,  
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2 0.2,  1 20.5, 1.5,   1 3,d  2 2,d 

3 0.3, 0.05,0.10    0 370ARL   are given. The 
results show that the ARL values obtained from the 
explicit formula method align with the results 
obtained from the numerical integration method 
across all change levels from 0.001 to 0.30. The 
explicit formula technique requires about 0.01 
seconds, whereas the numerical integration method 
takes approximately 2.5 seconds to process. In Table 
3 (Appendix), a two-sided comparison of the 
Average Run Length (ARL) calculated using 
explicit formulas and the NIE technique for 
ARX(2,1) processes on the new MEWMA control 
chart is shown. The given parameters are l=0.10,

12, 0.1,   2 0.2,   0.05,0.10,  1 0.5, 

1 2,d  2 1,d  0 370.ARL   After confirming the 
accuracy of the ARL values obtained from the 
explicit formula, we proceed with analyzing the 
performance of the control charts displayed in 
Appendix in Table 4 and Table 5. Table 4 
(Appendix) presents a comparative analysis of the 
performance of one-sided EWMA, MEWMA, and 
the new MEWMA control charts for ARX(2,2) 
processes. The parameters given for the simulation 
are the comparative analysis of control chart 
efficiency indicating that at   of 0.05 and 0.10, the 
findings aligned consistently, demonstrating that 
the novel control chart exhibited superior efficiency 
at d2 equal to 0.5, yielding the lowest ARL and 
SDRL values across all shift levels from 0.0001 to 
0.10. Upon evaluating the EARL and ESDRL 
criteria, it was determined that they yielded the 
lowest values. A comparison of the ARL for the 
ARX(2,3) process on two-sided EWMA, MEWMA 
and new MEWMA control charts is presented in 
Table 5 (Appendix). The specific parameters 
2.5,3.0, 0.05,0.10  and 0 370.ARL   The 
comparative analysis of the efficiency of the 
control charts revealed a consistent direction with 
the evaluation of one-way control charts. 
Specifically, at   of 0.05 and 0.10, the new 
MEWMA control chart demonstrated superior 
efficiency at d equal to 0.5, yielding the lowest 
ARL and SDRL values across all shift levels from 
0.0001 to 0.10. Upon evaluating the EARL and 
ESDRL criteria, it was determined that they 
exhibited the lowest values. Consequently, the 
simulation results indicated that the revised control 
chart exhibited superior efficiency in identifying 
alterations in the process mean. 
 
 
 

4.1 Application 
This section presents economic data, specifically 
gold futures, which are significant for investment 
planning. The monthly data will be collected from 
January 2, 2024, to May 31, 2024. Gold futures are 
influenced by the following factors: The United 
States 5-Year Bond Yield is designated as model 1, 
and the EUR/USD currency is assigned as model 2. 
After fitting the model with the data, the ARX(1,1) 
model is produced, with estimated parameter values 
shown in Appendix in Table 6 and Table 7.  Note 
that, for data obtained from data collection, it is 
necessary to study and select appropriate sampling 
methods and estimation techniques, [26], [27].  The 
equations are as follows: 
Model 1: 1

ˆ 0.912 503.304t t tY Y X   
Model 2: 1

ˆ 0.994 1999.361t t tY Y X   
 

After obtaining the parameter estimates for the 
two models, the ARL values obtained from the 
explicit formula on the new MEWMA control chart 
were compared with the performance of the 
MEWMA and EWMA control charts, as shown in 
Appendix in Table 8 and Table 9. The results were 
summarized by the results presented in Appendix in 
Table 4 and Table 5. The new MEWMA control 
chart had the lowest ARL and SDRL values at all 
levels at d2 equal to 0.5 and also had the lowest 
EARL and ESDRL values. In conclusion, the 
explicit formula method is the best method for 
practical applications in detecting changes in the 
process mean using the new MEWMA control 
chart. When the statistics of three control charts 
were plotted, it was found that for the data from 
Model 1, the new MEWMA control chart could 
detect the fastest, i.e., it could detect from the first 
observation. The MEWMA control chart records 
the 2nd observation as the first out of its control 
limits, while the EWMA control chart records the 
64th observation as the first out of its control limits, 
as illustrated in Figure 1 (Appendix). For the 
second model, it was found that the new MEWMA 
control chart was able to detect the fastest, finding 
that the first observation outside the control limits 
was the 2nd observation, while the first observation 
outside the control limits of the MEWMA control 
chart was the 9th observation, and the first 
observation outside the control limits of the 
EWMA control chart was the 8th observation, as 
shown in Figure 2 (Appendix).  
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5   Conclusion 
This research proved the explicit Average Run 
Length (ARL) formula for the ARX(p,r) model on 
both one-sided and two-sided new MEWMA 
control charts. When comparing the ARL values 
derived from the explicit formula against the values 
obtained by the four numerical integral equation 
methods: midpoint, trapezoidal, Simpson, and 
Gauss-Legendre quadrature rules. The results were 
not different, with the percentage of accuracy equal 
to 100. When considering the processing time, the 
recommended explicit formula for ARL takes the 
minimum time, as shown in the results. The 
findings indicate that the new MEWMA control 
chart is superior at detecting process changes 
compared to the MEWMA and EWMA control 
charts, evidenced by its lowest EARL and ESDRL 
values. This research employed the novel 
MEWMA control chart to analyze the economic 
data. Future studies may formulate ARL values for 
further novel control charts, attractive models, and 
applications in other fields. This formula yields the 
precise value and significantly reduces computing 
time. Nevertheless, if the explicit formula remains 
unprovable, the numerical integral equation 
approach may be employed to approximate the 
ARL instead. 
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APPENDIX 
 

Table 1. The ARL from explicit formula against NIE method using four quadrature rules for the new MEWMA 
control chart on ARX(p,r) model given 1  , 0.05   and ARL0=370 

ARX 

, ,i j b   
  Explicit 

(CPU Time) 

NIE (CPU Time in seconds) 

Midpoint Trapezoidal Simpson’s Gauss- Legendre 

ARX(1,2) 

1 = 0.1 

1 = 0.5 

2 = 0.8 

1d =3, 2d =2.5 
q = 0.3811 

0.000 370.50095 
(<0.001) 

370.50095 
(2.328) 

370.50095 
(2.328) 

370.50095 
(9.234) 

370.50095 
(26.577) 

0.005 54.71463 
(<0.001) 

54.71463 
(2.344) 

54.71463 
(2.328) 

54.71463 
(9.125) 

54.71463 
(26.501) 

0.010 29.87347 
(<0.001) 

29.87347 
(2.297) 

29.87347 
(2.344) 

29.87347 
(9.187) 

29.87347 
(26.610) 

0.025 13.00216 
(<0.001) 

13.00216 
(2.344) 

13.00216 
(2.359) 

13.00216 
(9.157) 

13.00216 
(26.375) 

0.050 7.00453 
(<0.001) 

7.00453 
(2.329) 

7.00453 
(2.360) 

7.00453 
(9.187) 

7.00453 
(26.453) 

0.100 3.93626 
(<0.001) 

3.93626 
(2.313) 

3.93626 
(2.313) 

3.93626 
(9.250) 

3.93626 
(26.188) 

1.000 1.21138 
(<0.001) 

1.21138 
(2.312) 

1.21138 
(2.328) 

1.21138 
(9.282) 

1.21138 
(26.531) 

ARX(2,1) 

1 = 0.1 

2 = 0.2 

1 = 0.5 

1d =3, 2d =2.5 
q = 0.6962885 

0.000 370.58524 
(<0.001) 

370.58524 
(2.375) 

370.58524 
(2.390) 

370.58524 
(9.500) 

370.58524 
(26.625) 

0.005 63.10727 
(<0.001) 

63.10727 
(2.375) 

63.10727 
(2.390) 

63.10727 
(9.531) 

63.10727 
(26.265) 

0.010 34.84638 
(<0.001) 

34.84638 
(2.390) 

34.84638 
(2.359) 

34.84638 
(9.515) 

34.84638 
(26.422) 

0.025 15.25197 
(<0.001) 

15.25197 
(2.406) 

15.25197 
(2.390) 

15.25197 
(9.469) 

15.25197 
(26.406) 

0.050 8.20429 
(<0.001) 

8.20429 
(2.359) 

8.20429 
(2.407) 

8.20429 
(9.453) 

8.20429 
(26.313) 

0.100 4.57837 
(<0.001) 

4.57837 
(2.390) 

4.57837 
(2.390) 

4.57837 
(9.406) 

4.57837 
(26.484) 

1.000 1.30165 
(<0.001) 

1.30165 
(2.422) 

1.30165 
(2.360) 

1.30165 
(9.469) 

1.30165 
(26.484) 

ARX(3,1) 

1 = 0.1 

2 = 0.2 

3 = 0.3 

1 = 0.5 

1d =3, 2d =2.5 
q = 0.5150228 

0.000 370.52344 
(<0.001) 

370.52344 
(2.360) 

370.52344 
(2.313) 

370.52344 
(9.375) 

370.52344 
(26.407) 

0.005 58.66220 
(<0.001) 

58.66220 
(2.360) 

58.66220 
(2.391) 

58.66220 
(9.468) 

58.66220 
(26.296) 

0.010 32.19711 
(<0.001) 

32.19711 
(2.406) 

32.19711 
(2.375) 

32.19711 
(9.469) 

32.19711 
(26.266) 

0.025 14.04814 
(<0.001) 

14.04814 
(2.406) 

14.04814 
(2.406) 

14.04814 
(9.610) 

14.04814 
(26.406) 

0.050 7.56089 
(<0.001) 

7.56089 
(2.391) 

7.56089 
(2.406) 

7.56089 
(9.453) 

7.56089 
(26.314) 

0.100 4.23320 
(<0.001) 

4.23320 
(2.390) 

4.23320 
(2.406) 

4.23320 
(9.532) 

4.23320 
(26.297) 

1.000 1.25199 
(<0.001) 

1.25199 
(2.391) 

1.25199 
(2.406) 

1.25199 
(9.500) 

1.25199 
(26.360) 
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Table 2. ARL comparison using explicit formulas and the NIE method for an ARX(3,2) process on the one-sided 
new MEWMA control chart with 11, 0.1    2 0.2  1 20.5, 1.5,   1 23,  2,d d   and 0 370ARL  . 

  3  q Shift Explicit NIE Timea %Accuracy 

   0.00 370.39640 370.39640 2.359 100.00 
100.0100.0    0.001 151.59420 151.59420 2.406 100.00 

    0.003 69.80943 69.80943 2.421 100.00 
100.00 

 
   0.005 45.52333 45.52333 2.375 100.00 

  0.3 0.160329 0.01 24.56818 24.56818 2.390 100.00 
    0.03 9.03358 9.03358 2.422 100.00 

100.0100.0    0.05 5.76221 5.76221 2.390 100.00 
    0.10 3.27882 3.27882 2.375 100.00 

100.00 
 

   0.20 2.04161 2.04161 2.422 100.00 
 

0.05 
  0.30 1.63968 1.63968 2.407 100.00 

   0.00 370.93590 370.93590 2.453 100.00 
100.0100.0    0.001 164.82820 164.82820 2.500 100.00 

    0.003 78.38761 78.38761 2.453 100.00 
100.00 

 
   0.005 51.60251 51.60251 2.484 100.00 

  -0.3 0.292472 0.01 28.05832 28.05832 2.515 100.00 
    0.03 10.33744 10.33744 2.485 100.00 

100.0100.0    0.05 6.57466 6.57466 2.500 100.00 
    0.10 3.70783 3.70783 2.547 100.00 

100.00 
 

   0.20 2.27092 2.27092 2.547 100.00 
    0.30 1.79922 1.79922 2.531 100.00 
    0.00 370.26140 370.26140 2.515 100.00 

100.0100.0    0.001 151.30950 151.30950 2.532 100.00 
    0.003 69.63982 69.63982 2.500 100.00 

100.00 
 

   0.005 45.40576 45.40576 2.500 100.00 
  0.3 0.161451 0.01 24.50208 24.50208 2.562 100.00 
    0.03 9.00959 9.00959 2.531 100.00 

100.0100.0    0.05 5.74753 5.74753 2.578 100.00 
    0.10 3.27134 3.27134 2.563 100.00 

100.00 
 

   0.20 2.03783 2.03783 2.531 100.00 
 

0.10 
  0.30 1.63716 1.63716 2.562 100.00 

   0.00 370.34150 370.34150 2.500 100.00 
100.0100.0    0.001 164.54360 164.54360 2.563 100.00 

    0.003 78.24844 78.24844 2.532 100.00 
100.00 

 
   0.005 51.51024 51.51024 2.484 100.00 

  -0.3 0.294831 0.01 28.00801 28.00801 2.546 100.00 
    0.03 10.31918 10.31918 2.547 100.00 

100.0100.0    0.05 6.56328 6.56328 2.531 100.00 
    0.10 3.70176 3.70176 2.563 100.00 

100.00 
 

   0.20 2.26759 2.26759 2.547 100.00 
    0.30 1.79686 1.79686 2.578 100.00 
 The computations for the NIE method were carried out on a Windows 10 Professional 64-bit with RAM of 8 GB and an AMD RYZEN 7 

CPU. 
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Table 3. ARL comparison using explicit formulas and the NIE method for an ARX(2,1) process on a two-sided 
new MEWMA control chart with l=0.10 12, 0.1    1 0.5   1 22,  1,d d   and 0 370ARL  . 
  2  q Shift Explicit NIE Timea %Accuracy 

   0.00 370.40012 370.40012 2.235 100.00 
100.0100.0    0.001 162.70491 162.70491 2.250 100.00 

    0.003 77.02293 77.02293 2.250 100.00 
100.00 

 
   0.005 50.64063 50.64063 2.234 100.00 

  0.2 0.303515 0.01 27.51549 27.51549 2.250 100.00 
    0.03 10.14967 10.14967 2.266 100.00 

100.0100.0    0.05 6.46637 6.46637 2.266 100.00 
    0.10 3.66053 3.66053 2.281 100.00 

100.00 
 

   0.20 2.25342 2.25342 2.253 100.00 
 

0.05 
  0.30 1.79083 1.79083 2.234 100.00 

   0.00 370.28842 370.28842 2.250 100.00 
100.0100.0    0.001 172.44963 172.44963 2.234 100.00 

    0.003 83.69628 83.69628 2.250 100.00 
100.00 

 
   0.005 55.44806 55.44806 2.250 100.00 

  -0.2 0.403998 0.01 30.31624 30.31624 2.250 100.00 
    0.03 11.20988 11.20988 2.266 100.00 

100.0100.0    0.05 7.13032 7.13032 2.219 100.00 
    0.10 4.01419 4.01419 2.250 100.00 

100.00 
 

   0.20 2.44527 2.44527 2.250 100.00 
    0.30 1.92616 1.92616 2.265 100.00 
    0.00 370.53150 370.53150 

 
2.265 100.00 

100.0100.0    0.001 162.79331 162.79331 2.250 100.00 
    0.003 77.06977 77.06977 2.235 100.00 

100.00 
 

   0.005 50.67188 50.67188 2.265 100.00 
  0.2 0.307055 0.01 27.53199 27.53199 2.266 100.00 
    0.03 10.15446 10.15446 2.265 100.00 

100.0100.0    0.05 6.46865 6.46865 2.235 100.00 
    0.10 3.66094 3.66094 2.234 100.00 

100.00 
 

   0.20 2.25302 2.25302 2.219 100.00 
 

0.10 
  0.30 1.79024 1.79024 2.234 100.00 

   0.00 370.08386 370.08386 2.234 100.00 
100.0100.0    0.001 172.59884 172.59884 2.250 100.00 

    0.003 83.82035 83.82035 2.250 100.00 
100.00 

 
   0.005 55.54019 55.54019 2.250 100.00 

  -0.2 0.4096598 0.01 30.37025 30.37025 2.266 100.00 
    0.03 11.22881 11.22881 2.250 100.00 

100.0100.0    0.05 7.14112 7.14112 2.281 100.00 
    0.10 4.01869 4.01869 2.234 100.00 

100.00 
 

   0.20 2.44669 2.44669 2.250 100.00 
    0.30 1.92666 1.92666 2.250 100.00 
 The computations for the NIE method were carried out on a Windows 10 Professional 64-bit with RAM of 8 GB and an AMD RYZEN 7 

CPU. 
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Table 4. Efficiency comparison of one-sided EWMA, MEWMA and new MEWMA control charts for the 
ARX(2,2) process with 2,   1 20.1, 0.3   1 22.5, 1.5    and 0 370ARL  . 

  Shift Control 

Chart 

New MEWMA 
1

( 2.5)d  MEWMA 

( 2.5)d   

EWMA 

 0a  
2

2.0d  
2

1.5d  
2

1.0d  
2

0.5d  

0.05 

  0.00925768q   0.0076092q   0.006254275q   0.00514063q   0.01126333h   0.000081606b   
0.0000 ARL0 370.58950 370.59146 370.53976 370.58461 370.55000 370.55434 

 SDRL0 370.08916 370.09112 370.03942 370.08427 370.04966 370.05400 
0.0001 ARL  323.15776 321.21400 319.25251 317.38458 325.09494 360.56058 

 SDRL
 322.65737 320.71361 318.75212 316.88419 324.59455 360.06023 

0.0005 ARL  213.83407 209.64248 205.59345 201.72462 218.18097 325.40885 
 SDRL

 213.33348 209.14188 205.09284 201.22400 217.68040 324.90847 
0.0007 ARL  182.94091 178.66627 174.57294 170.68175 187.41290 310.26066 

 SDRL
 182.44022 178.16557 174.07222 170.18102 186.91223 309.76026 

0.0010 ARL  150.39405 146.28943 142.39332 138.71146 154.72682 289.98493 
 SDRL

 149.89322 145.78857 141.89244 138.21056 154.22601 289.48450 
0.0030 ARL  69.03301 66.48873 64.12356 61.92350 71.77790 201.61144 

 SDRL
 68.53119 65.98684 63.62160 61.42147 71.27615 201.11082 

0.0050 ARL  44.97052 43.19325 41.55090 40.03048 46.90014 154.14110 
 SDRL

 44.46771 42.69032 41.04786 39.52732 46.39745 153.64029 
0.0070 ARL  33.44119 32.08018 30.82602 29.66763 34.92336 124.51776 

 SDRL
 32.93740 31.57622 30.32190 29.16334 34.41973 124.01675 

0.0100 ARL  24.24425 23.23782 22.33125 21.45936 25.34289 96.37813 
 SDRL

 23.73899 22.73232 21.82552 20.95340 24.83786 95.87683 
0.1000 ARL  3.22471 3.10586 2.99719 2.89747 3.35521 10.42500 

 SDRL
 2.67844 2.55744 2.44662 2.34475 2.81109 9.91240 

EARL 116.13783 113.76867 111.51568 109.38676 118.63501 208.14316 

ESDRL 115.63089 113.26142 111.00812 108.87889 118.12838 207.64117 

0.1 

  0.00929878q   0.00767174q   0.006329425q   0.005221997q   0.011270965h   0.0001650715b   
0.0000 ARL0 370.52270 370.52319 370.53643 370.53960 370.54569 370.51782 

 SDRL0 370.02236 370.02285 370.03609 370.03926 370.04535 370.01748 
0.0001 ARL  322.85209 320.94230 319.06339 317.19806 324.80160 344.97218 

 SDRL
 322.35170 320.44191 318.56300 316.69767 324.30121 344.47182 

0.0005 ARL  213.25614 209.15308 205.20699 201.40250 217.52914 270.38746 
 SDRL

 212.75555 208.65248 204.70638 200.90188 217.02856 269.88700 
0.0007 ARL  182.35618 178.17577 174.18383 170.36328 186.74116 244.00318 

 SDRL
 181.85549 177.67507 173.68311 169.86254 186.24049 243.50267 

0.0010 ARL  149.83549 145.82530 142.02461 138.41444 154.07457 212.84277 
 SDRL

 149.33465 145.32444 141.52373 137.91353 153.57376 212.34218 
0.0030 ARL  68.68913 66.20939 63.90276 61.75123 71.36245 114.91388 

 SDRL
 68.18730 65.70749 63.40079 61.24919 70.86069 114.41279 

0.0050 ARL  44.73090 42.99994 41.39861 39.91271 46.60796 78.66277 
 SDRL

 44.22807 42.49700 40.89555 39.40954 46.10525 78.16117 
0.0070 ARL  33.25812 31.93300 30.71032 29.57857 34.69911 59.77694 

 SDRL
 32.75430 31.42902 30.20618 29.07427 34.19546 59.27483 

0.0100 ARL  24.10934 23.12972 22.22769 21.39438 25.17700 43.92935 
 SDRL

 23.60405 22.62420 21.72194 20.88840 24.67193 43.42647 
0.1000 ARL  3.21014 3.09452 2.98886 2.89124 3.33685 4.91501 

 SDRL
 2.66362 2.54589 2.43812 2.33838 2.79244 4.38661 

EARL 115.81084  113.49589 111.30078 109.21182 118.25887 152.71150 

ESDRL 115.30386 112.98861 110.79320 108.70393 117.75220 152.20728 
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Table 5. Efficiency comparison of two-sided EWMA, MEWMA and new MEWMA control charts for the 
ARX(2,3) process 1.5,   0.1,l  1 20.1, 0.2,    1 2 31.5, 2, 2.5     and 0 370ARL  . 

  Shift Control 

Chart 

New MEWMA 
1

( 2.5)d  MEWMA 

4.0, 0.1 d g  

EWMA 

 0.1a  
2

3.0d  
2

2.5d  
2

1.5d  
2

0.5d  

0.05 

  0.14235217q   0.1374322q   0.12924078q   0.1228422q   0.15421785h   0.100319656b   

0.0000 ARL0 370.51539 370.56248 370.52588 370.59241 370.51340 370.75207 
 SDRL0 370.01505 370.06214 370.02554 370.09207 370.01306 370.25173 

0.0001 ARL  322.00812 320.79056 318.28218 315.88272 324.53699 317.23804 
 SDRL

 321.50773 320.29017 317.78179 315.38232 324.03660 316.73765 
0.0005 ARL  211.44306 208.78620 203.62026 198.72418 216.98604 201.23711 

 SDRL
 210.94247 208.28560 203.11964 198.22355 216.48546 200.73649 

0.0007 ARL  180.50780 177.80199 172.59032 167.68760 186.18689 170.18211 
 SDRL

 180.00711 177.30128 172.08959 167.18685 185.68622 169.68137 
0.0010 ARL  148.06193 145.46869 140.51944 135.90166 153.54189 138.23434 

 SDRL
 147.56108 144.96783 140.01855 135.40074 153.04107 137.73343 

0.0050 ARL  43.97727 42.86280 40.79203 38.91177 46.38845 39.84616 
 SDRL

 43.47440 42.35985 40.28893 38.40852 45.88573 39.34298 
0.0070 ARL  32.68714 31.83436 30.25417 28.82361 34.53705 29.53352 

 SDRL
 32.18326 31.33037 29.74997 28.31920 34.03338 29.02921 

0.0100 ARL  23.69397 23.06370 21.89837 20.84585 25.06408 21.36759 
 SDRL

 23.18858 22.55816 21.39253 20.33971 24.55899 20.86160 
0.1000 ARL  3.18113 3.10638 2.96895 2.84562 3.34451 2.90659 

 SDRL
 2.63410 2.55797 2.41779 2.29171 2.80022 2.35408 

EARL 114.79550 113.30173 110.43772 107.76752 109.13229 117.95821 

ESDRL 114.28844 112.79446 109.93007 107.25947 108.62444 117.45154 

0.1 

  0.1425516r   0.13766403r   0.12950917r   0.12312048r   0.1543132h   0.100639413b   

0.0000 ARL0 370.51735 370.56185 370.53613 370.53182 370.59051 370.55045 
 SDRL0 370.01701 370.06151 370.03579 370.03148 370.09017 370.05011 

0.0001 ARL  321.94345 320.73831 318.26652 315.84368 324.50103 317.09935 
 SDRL

 321.44306 320.23792 317.76613 315.34328 324.00064 316.59896 
0.0005 ARL  211.30142 208.67658 203.57593 198.71659 216.80043 201.19562 

 SDRL
 210.80083 208.17598 203.07531 198.21596 216.29985 200.69500 

0.0007 ARL  180.36325 177.69087 172.54489 167.68498 185.98803 170.15754 
 SDRL

 179.86256 177.19016 172.04416 167.18423 185.48736 169.65680 
0.0010 ARL  147.92306 145.36263 140.47584 135.90266 153.34334 138.22315 

 SDRL
 147.42221 144.86177 139.97495 135.40174 152.84252 137.72224 

0.0050 ARL  43.91703 42.81765 40.77349 38.91471 46.29475 39.85061 
 SDRL

 43.41415 42.31470 40.27039 38.41146 45.79202 39.34743 
0.0070 ARL  32.64097 31.79981 30.23999 28.82596 34.46472 29.53737 

 SDRL
 32.13708 31.29582 29.73579 28.32155 33.96104 29.03307 

0.0100 ARL  23.65978 23.03815 21.88788 20.84763 25.01023 21.37066 
 SDRL

 23.15438 22.53260 21.38204 20.34149 24.50513 20.86467 
0.1000 ARL  3.17693 3.10323 2.96762 2.84578 3.33785 2.90694 

 SDRL
 2.62982 2.554762 2.41643 2.29187 2.79346 2.35443 

EARL 114.71543 113.24036 110.41326 107.76338 109.11008 117.84961 

ESDRL 114.20835 112.73309 109.90559 107.25532 108.60223 117.34292 
 

 

Table 6.  The ARX(p,r,) model parameters and the model fit for Gold Futures 

Model Variables Coefficient t Sig 

Model fit 

MAPE 
Normalized 

BIC 

1  
ARX(1,1) 

AR(1)  1̂  0.912 20.128 0.000 1.391 7.497 

United States 5-Year Bond 
Yield  1̂

 503.304 47.686 0.000   

2 
ARX(1,1) 

AR(1)  1̂  0.99 96.866 0.000 0.658 6.266 

EUR/USD currency  1̂  1999.361 14.802 0.041   
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Table 7. Exponential white noise Testing 

Exogenous variable Mean  0  Kolmogorov-Smirnov Z Sig. 

United States 5-Year Bond Yield 30.1757 0.928 0.356 

EUR/USD currency 14.5520 1.005 0.265 

 
Table 8. ARL comparison for the ARX(1,1) process on  one and two-sided EWMA, MEWMA and new 

MEWMA control charts with 0.1,  1 0.912,   1 503.304,  30.1757,  and 0 370ARL  . 

l  Shift Control 

Chart 

New MEWMA 
1

( 3)d   MEWMA 

3, 0d g   

EWMA 

 0a  
2

2.5d   
2

2.0d   
2

1.5d  
2

0.5d  

0 

  0.606244q   0.60301109q   0.5997955q   0.5934157q   0.609494b   0.019651h   

0.0000 ARL0 370.41791 370.39766 370.39437 370.39076 370.38233 370.39948 
 SDRL0 369.91757 369.89732 369.89403 369.89042 369.88199 369.89914 

0.0001 ARL  365.91549 365.87210 365.84526 365.79449 365.90440 365.92151 
 SDRL

 365.41515 365.37176 365.34492 365.29415 365.40406 365.42117 
0.0005 ARL  348.95228 348.82691 348.71666 348.49899 349.02817 349.04502 

 SDRL
 348.45192 348.32655 348.21630 347.99863 348.52781 348.54466 

0.0007 ARL  341.04865 340.88789 340.74163 340.45201 341.16220 341.17886 
 SDRL

 340.54828 340.38752 340.24126 339.95164 340.66183 340.67849 
0.0010 ARL  329.84425 329.63639 329.44221 329.05687 330.00807 330.02440 

 SDRL
 329.34387 329.13601 328.94183 328.55649 329.50769 329.52402 

0.0030 ARL  270.61912 270.22181 269.83468 269.06531 270.98774 271.00101 
 SDRL

 270.11866 269.72135 269.33422 268.56484 270.48728 270.50055 
0.0050 ARL  229.47134 229.00128 228.53961 227.62299 229.92185 229.93167 

 SDRL
 228.97079 228.50073 228.03906 227.12244 229.42131 229.43113 

0.0070 ARL  199.22015 198.72734 198.24183 197.27878 199.69922 199.70583 
 SDRL

 198.71952 198.22671 197.74120 196.77814 199.19859 199.20520 
0.0100 ARL  166.37505 165.88698 165.40516 164.45049 166.85472 166.85717 

 SDRL
 165.87430 165.38622 164.90440 163.94973 166.35397 166.35642 

0.1000 ARL  28.69769 28.56204 28.42779 28.16313 28.83433 28.81251 
 SDRL

 28.19326 28.05759 27.92331 27.65861 28.32992 28.30810 
EARL 253.34934 253.06919 252.79943 252.26478 253.60008 253.60866 

ESDRL 252.84842 252.56827 252.29850 251.76385 253.09916 253.10775 

0.1 

  0.70631q   0.7030768q   0.6998609q   0.6934804q   0.7095605b   

 0.1a  
0.119161473h   

0.0000 ARL0 370.32642 370.32027 370.32623 370.32165 370.32368 370.33441 
 SDRL0 369.82608 369.81993 369.82589 369.82131 369.82334 369.83407 

0.0001 ARL  365.82243 365.79278 365.77496 365.72322 365.8434 365.73956 
 SDRL

 365.32209 365.29244 365.27462 365.22288 365.34306 365.23922 
0.0005 ARL  348.8539 348.74099 348.63889 348.42026 348.95899 348.44929 

 SDRL
 348.35354 348.24063 348.13853 347.91990 348.45863 347.94893 

0.0007 ARL  340.94811 340.79924 340.66076 340.37018 341.08958 340.40465 
 SDRL

 340.44774 340.29887 340.16039 339.86981 340.58921 339.90428 
0.0010 ARL  329.74102 329.54426 329.35731 328.97105 329.93096 329.01273 

 SDRL
 329.24064 329.04388 328.85693 328.47067 329.43058 328.51235 

0.0030 ARL  270.50845 270.11859 269.73629 268.96624 270.89469 269.03629 
 SDRL

 270.00799 269.61813 269.23583 268.46577 270.39423 268.53582 
0.0050 ARL  229.36228 228.89761 228.43923 227.52237 229.82543 227.60262 

 SDRL
 228.86173 228.39706 227.93868 227.02182 229.32488 227.10207 

0.0070 ARL  199.11582 198.62712 198.14428 197.18098 199.60438 197.26381 
 SDRL

 198.61519 198.12649 197.64365 196.68034 199.10375 196.76317 
0.0100 ARL  166.27926 165.79411 165.31412 164.35949 166.76548 164.44047 

 SDRL
 165.77851 165.29335 164.81336 163.85873 166.26473 163.93971 

0.1000 ARL  28.67616 28.54068 28.40656 28.14207 28.81291 28.16382 
 SDRL

 28.17172 28.03622 27.90208 27.63755 28.30850 27.65930 
EARL 253.25638 252.98393 252.71916 252.18398 253.52509 252.23480 

ESDRL 252.75546 252.48301 252.21823 251.68305 253.02417 251.73387 
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Table 9. ARL comparison for the ARX(1,1) process on  one and two-sided EWMA, MEWMA and new 
MEWMA with 0.1,  1 0.994,   1 1999.361,  14.552,  and 0 370ARL  . 

l  Shift Control 

Chart 

New MEWMA 
1

( 3)d   MEWMA 

3, 0d g   

EWMA 

 0a  
2

2.5d   
2

2.0d   
2

1.5d  
2

0.5d  

0 

  6.055914q   5.988707q   5.922251q   5.791556q   6.12388h   0.1859969b   

0.0000 ARL0 370.59493 370.58436 370.57734 370.52230 370.59482 370.60208 
 SDRL0 370.09459 370.08402 370.07700 370.02196 370.09448 370.10174 

0.0001 ARL  360.82995 360.72078 360.61511 360.36537 360.92914 360.97726 
 SDRL

 360.32960 360.22043 360.11476 359.86502 360.42879 360.47691 
0.0005 ARL  326.43744 326.02410 325.61485 324.76878 326.84383 327.01782 

 SDRL
 325.93706 325.52372 325.11447 324.26839 326.34345 326.51744 

0.0007 ARL  311.59448 311.07060 310.55134 309.49050 312.11296 312.33257 
 SDRL

 311.09408 310.57020 310.05094 308.99010 311.61256 311.83217 
0.0010 ARL  291.70652 291.05405 290.40713 289.09832 292.35578 292.62823 

 SDRL
 291.20609 290.55362 289.90670 288.59789 291.85535 292.12780 

0.0030 ARL  204.74131 203.78856 202.84639 200.97794 205.70047 206.09176 
 SDRL

 204.24070 203.28795 202.34577 200.47732 205.19986 205.59115 
0.0050 ARL  157.83208 156.89366 155.96766 154.14301 158.78058 159.15935 

 SDRL
 157.33129 156.39286 155.46686 153.64220 158.27979 158.65856 

0.0070 ARL  128.48465 127.61774 126.76353 125.08617 129.36282 129.70616 
 SDRL

 127.98367 127.11676 126.26254 124.58517 128.86185 129.20519 
0.0100 ARL  100.54794 99.79370 99.05153 97.59865 101.31351 101.60326 

 SDRL
 100.04669 99.29244 98.55026 97.09736 100.81227 101.10202 

0.1000 ARL  14.18152 14.04959 13.92024 13.66909 14.31613 14.31928 
 SDRL

 13.67238 13.54036 13.41092 13.15960 13.80708 13.81023 
EARL 210.70621 210.11253 209.52642 208.35531 211.30169 211.53730 

ESDRL 210.20462 209.61093 209.02480 207.85364 210.80011 211.03572 

0.1 

  6.1573q   6.090078q   6.023607q   5.892884q   6.225282h   0.2873186b   

0.0000 ARL0 370.67083 370.67142 370.67155 370.66807 370.70281 370.60392 
 SDRL0 370.17049 370.17108 370.17121 370.16773 370.20247 370.10358 

0.0001 ARL  360.88500 360.78616 360.68702 360.48559 360.99246 360.44631 
 SDRL

 360.38465 360.28581 360.18667 359.98524 360.49211 359.94596 
0.0005 ARL  326.42718 326.02169 325.61715 324.80906 326.84095 324.84665 

 SDRL
 325.92680 325.52131 325.11677 324.30867 326.34057 324.34626 

0.0007 ARL  311.55998 311.04303 310.52785 309.50108 312.0854 309.56672 
 SDRL

 311.05958 310.54263 310.02745 309.00068 311.58500 309.06632 
0.0010 ARL  291.64326 290.99664 290.35309 289.07357 292.29881 289.17206 

 SDRL
 291.14283 290.49621 289.85266 288.57314 291.79838 288.67163 

0.0030 ARL  204.60230 203.65231 202.71168 200.85715 205.56467 201.03700 
 SDRL

 204.10169 203.15169 202.21106 200.35653 205.06406 200.53638 
0.0050 ARL  157.68599 156.74944 155.82458 154.00857 158.63617 154.19166 

 SDRL
 157.18519 156.24864 155.32378 153.50776 158.13538 153.69085 

0.0070 ARL  128.34616 127.48073 126.62750 124.95629 129.22521 125.12746 
 SDRL

 127.84518 126.97975 126.12651 124.45529 128.72424 124.62646 
0.0100 ARL  100.42529 99.67221 98.93090 97.48227 101.19112 97.63233 

 SDRL
 99.92404 99.17095 98.42963 96.98098 100.68988 97.13104 

0.1000 ARL  14.16069 14.02895 13.89981 13.64902 14.29513 13.67559 
 SDRL

 13.65154 13.51971 13.39048 13.13951 13.78607 13.16610 
EARL 210.63732 210.04791 209.46440 208.31362 211.23666 208.41064 

ESDRL 210.13572 209.54630 208.96278 207.81198 210.73508 207.90900 
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(a) 

 

(b) 
 

(c) 
 

Fig. 1: The data plotted on 0.75,  1 0.912,   1 503.304,  30.1757   (a) New MEWMA control chart,  
(b) MEWMA control chart, and (c) EWMA control chart  
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(a) 

 
(b) 

 
(c) 

Fig. 2: The data plotted on 0.75,  1 0.994,   1 1999.361,  14.552   (a) New MEWMA control chart,  
(b) MEWMA control chart, and (c) EWMA control chart  
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