
Abstract: We present new fixed point theorems in MR-metric spaces using integral-type contractions. These
results build upon and extend previous research. The concept of an MR-metric space was originally introduced
by Malkawi, who also outlined the idea of sequence convergence in such spaces. Additionally, methods for
constructing MR-metrics from certain real-valued partial functions in three-dimensional Euclidean space were
proposed, along with a study of various convergence types in MR-metric spaces, analyzing the implications and
non-implications among them. In 2002, Branciari introduced a new generalization of the contractive condition
of the integral type. His work focused on the existence of fixed points for mappings defined over complete
metric spaces (X, d), subject to a broad integral-type contractive inequality. This condition is reminiscent of
the Banach-Caccioppoli criterion. Specifically, the study involves mappings f : X → X for which there exists a
constant c ∈ (0, 1) such that for any x, y ∈ X:∫ d(f(x),f(y))

0
Ψ(t) dt ≤ c

∫ d(x,y)

0
Ψ(t) dt

Here, Ψ(t) : [0,+∞) → [0,+∞] is a Lebesgue-integrable function. It is nonnegative, summable on every compact
subset of [0,+∞), and satisfies

∫ ϵ
0 Ψ(t) dt > 0 for each ϵ > 0.
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1 Introduction
The study, [1], recently proposed the notion of an
MR-metric space, which extends the concept of
a D-metric space, [2]. Their research provided
valuable findings related to MR-metric spaces. In
1992, Dhage established the existence of a unique
fixed point for a self-map that satisfies a contractive
condition within a specific type of metric space
known as a generalized metric space or D-metric
space. Building on Dhage’s work, Rhoades broadened
the contractive condition, introducing several fixed
point theorems. Furthermore, Dhage expanded
the contractive condition of Rhoades to encompass
two mappings within a D-metric space. He
also discovered a unique common fixed point in
a D-metric space by employing the concept of
weak compatibility for self-maps. For additional
information, we direct readers to [1], [3], [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13].

Definition 1 [1]. Let X ̸= ∅ be a non-empty set and
R > 1 be a real number. A function M : X×X×X →
[0,∞) is referred to as an MR-metric if it satisfies the
following conditions for all η,κ,ℑ ∈ X:

• (M1) : M(η,κ,ℑ) ≥ 0.

• (M2) : M(η,κ,ℑ) = 0 if and only if η = κ =
ℑ.

• (M3) : M(η,κ,ℑ) = M(p(η,κ,ℑ)), for any
permutation p(η,κ,ℑ) of η,κ,ℑ.

• (M4) : M(η,κ,ℑ) ≤
R [M(η,κ, ℓ1) +M(η, ℓ1,ℑ) +M(ℓ1,κ,ℑ)] .

A pair (X,M) that satisfies these properties is
called an MR-metric space.
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Example 2 [1]. Consider the case where η1, η2, η3 ∈
R. Define:

M1(η1, η2, η3) =
1

R
[|η1 − η2|+ |η2 − η3|+ |η3 − η1|]

M∞(η1, η2, η3) =
1

R
max

{
|η1 − η2|, |η2 − η3|,

|η3 − η1|

}
Therefore, (R,M1) and (R,M∞) represent

MR-metric spaces.

Example 3 [1]. Define the function M on X×X×X
by:

M(η1, η2, η3) =

{
0 if η1 = η2 = η3,

1 otherwise.

This defines the discrete MR-metric on X.

The following remark highlights key properties
observed in the above examples, which play a
significant role in the theoretical outcomes discussed
in this paper.

Remark 4 [1]. The MR-metrics demonstrated
in Examples 2 and 3 possess the following
characteristics:

For any η1, η2, η3, ℓ1, ℓ2 ∈ X:

• (M5) : M(η1, η2, η2) ≤
R [M(η1, η3, η3) +M(η3, η2, η2)] .

• (M6) : M(η1, η1, η2) = M(η1, η2, η2).

• (M7) : M(η1, η2, η2) ≤ RM(η1, η2, η3).

• (M8) : M(η1, η2, η3) ≤
1
R [M(η1, ℓ1, ℓ2) +M(ℓ1, η2, ℓ2) +M(ℓ1, ℓ2, η3)] .

The subsequent example illustrates that the
condition (M6) does not necessarily imply (M7).

Example 5 [1]. Assume X contains at least three
distinct elements. Define the function M on X×X×X
by:

M(η1, η2, η3) =


0 if η1 = η2 = η3,
1
2R if η1, η2, η3 are all different,
1 otherwise.

Thus, (X,M) is an MR-metric space that
satisfies condition (M6) but not (M7).

Definition 6 Let ϕ : X → X. The orbit of ϕ starting
at the point η ∈ X is given by the set o(η) =
{η, ϕη, ϕ2η, . . . }.

We say that the orbit of η is bounded if there exists
a constant k > 0 such that

M(u, v, w) ≤ kϕ for every u, v, w ∈ o(η).

The constant k is referred to as an MR-bound of o(η).
An MR-metric space X is considered ϕ-orbitally
bounded if the orbit o(η) is bounded for each η ∈ X.

Definition 7 [14]. Let (X, d) be a metric space and
let T : X → X be a mapping. Assume Ψ : [0,∞) →
[0,∞) is a Lebesgue-integrable function. If there
exists α ∈ [0, 1) such that for any p, q ∈ X:

∫ d(Tp,Tq)

0
Ψ(t) dt ≤ α

∫ d(p,q)

0
Ψ(t) dt

Here’s a rephrased version of the example while
maintaining the LaTeX format:

Example 8 Consider a metric space (X, d) where
X = R and d represents the standard absolute value
metric: d(p, q) = |p − q| for any points p, q ∈ R.
Define a mapping T : R → R by:

T (p) =
p

2

Let’s also define a Lebesgue-integrable function
Ψ : [0,∞) → [0,∞) by:

Ψ(t) = e−t

We aim to check if the contractive condition is
satisfied for some α ∈ [0, 1).

First, calculate d(Tp, Tq):
For p, q ∈ R, the distance after applying T

becomes:

d(Tp, Tq) =
∣∣∣p
2
− q

2

∣∣∣ = |p− q|
2

=
d(p, q)

2

Now, let’s verify the required inequality:
We need to ensure that:

∫ d(Tp,Tq)

0
Ψ(t) dt ≤ α

∫ d(p,q)

0
Ψ(t) dt

Proceed to evaluate the integrals:

∫ d(Tp,Tq)

0
e−t dt =

∫ d(p,q)
2

0
e−t dt = 1− e−

d(p,q)
2
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∫ d(p,q)

0
e−t dt = 1− e−d(p,q)

Next, confirm if the inequality holds:
We need:

1− e−
d(p,q)

2 ≤ α
(
1− e−d(p,q)

)
This condition is met if we select an appropriate

α ∈ [0, 1). For example, if α = 1
2 , the inequality is

satisfied.
In this case, the function T (p) = p

2 fulfills the
contractive condition using Ψ(t) = e−t and α =
1
2 . Therefore, T meets the criteria specified in the
definition for any p, q ∈ R.

Lemma 9 Let {ηn} ⊂ X be a bounded sequence with
M − bound K satisfying

M(ηn, ηn+1, ηm) ≤ λnk (1.1)

for all positive integers m,n, and some 0 ≤ λ <
1. Then {ηn} is M − Cauchy.

Proof 10 To prove that {ηn} is M -Cauchy, we need
to show that for any given ϵ > 0, there exists a positive
integer N such that for all integers n,m ≥ N , the
following condition holds:

M(ηn, ηn+1, ηm) < ϵ.

Given the condition:

M(ηn, ηn+1, ηm) ≤ λnk,

where k is a positive constant and 0 ≤ λ < 1, we
notice that as n → ∞, λn → 0 because 0 ≤ λ < 1.

Hence, for any ϵ > 0, we can find an integer N
such that λNk < ϵ. Therefore, for all n ≥ N :

M(ηn, ηn+1, ηm) ≤ λnk < λNk < ϵ.

This confirms that {ηn} is indeed a M − Cauchy
sequence because the distances M(ηn, ηn+1, ηm) can
be made arbitrarily small for sufficiently large n.

2 Main Results

Theorem 11 Let (X,M) be an MR-metric space,
and let ϕ be a self-mapping on X. Assume that
there exists some η0 ∈ X such that the orbit o(η0)
is M -bounded and ϕ-orbitally complete. Let Ψ :
[0,∞) → [0,∞) be a Lebesgue-integrable function.
Additionally, suppose that ϕ satisfies the following
inequality:

∫ M(η,κ,ℑ)

0
Ψ(t) dt ≤ λmax

{ ∫M(η,ϕ(κ),ℑ)
0 Ψ(t) dt

,
∫M(κ,ϕ(κ),ℑ)
0 Ψ(t) dt

}
(1)

for κ,ℑ ∈ o(η0), with some 0 ≤ λ < 1. Under
these conditions, ϕ has a unique fixed point in X.

Proof 12 Assume there exists an index n such that
ηn = ηn+1. In this case, ϕ has ηn as a fixed point
in X. Otherwise, we assume all ηn are distinct.

Our goal is to show that for any integers m,n
with m > n, the following holds:∫ M(ηn+1,ηn+2,ηm)

0
Ψ(t) dt ≤ λnk,

where k is the M -bound of o(η0). The proof
proceeds by induction. For any m:

∫ M(η0,η1,ηm−1)

0
Ψ(t) dt ≤ λmax

{ ∫M(η0,η1,ηm−1)
0 Ψ(t) dt,∫M(η0,η2,ηm−1)
0 Ψ(t) dt

}
≤ λk. (2)

Applying inequality (1):

∫ M(η1,η2,ηm−1)

0
Ψ(t) dt ≤ λmax

{ ∫M(η1,η2,ηm−1)
0 Ψ(t) dt,∫M(η2,η3,ηm−1)
0 Ψ(t) dt

}
.

(3)
From equation (2):

∫ M(η1,η2,ηm)

0
Ψ(t) dt ≤ λmax

{∫ M(η1,η2,ηm−1)

0
Ψ(t) dt, λk

}
.

(4)
The inequality (4) acts as a recursive formula in

terms of m. Thus,

∫ M(η1,η2,ηm)

0
Ψ(t) dt

= λmax

{
max

{ ∫M(η1,η2,ηm−2)
0 Ψ(t) dt,

λk

}}
≤ λ2k.

Assuming the induction hypothesis, from (1):

∫ M(ηn+1,ηn+2,ηm)

0
Ψ(t) dt

≤ λmax

{ ∫M(ηn+1,ηn+2,ηm−1)
0 Ψ(t) dt,∫M(ηn+1,ηm−1)

0 Ψ(t) dt

}
. (6)
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Applying the recursion:

∫ M(ηn+1,ηn+2,ηm)

0
Ψ(t) dt

≤ λmax

{
λmax

(∫M(ηn+1,ηn+2,ηm−2)
0 Ψ(t) dt, λnk

)
,

λnk

}
≤ λn+1k. (7)

Thus, {ηn} is an M -Cauchy sequence by Lemma
1. Given that X is η0-orbitally complete, there exists
a point p ∈ X with limn→∞ ηn = p.

Setting η = ηn and ℑ = p in equation (1):

∫ M(ηn+1,ηn+1,f(p))

0
Ψ(t) dt

≤ λmax

{ ∫M(ηn,ηn,p)
0 Ψ(t) dt,∫M(ηn,ηn+1,p)
0 Ψ(t) dt

}
. (8)

Taking the limit as n → ∞:

∫ M(p,p,ϕ(p))

0
Ψ(t) dt ≤ λ

∫ M(p,p,p)

0
Ψ(t) dt = 0.

Thus, p = ϕ(p).
To confirm uniqueness, assume q is another fixed

point of ϕ. Then:

∫ M(p,p,q)

0
Ψ(t) dt =

∫ M(p,ϕ(p),ϕ(q))

0
Ψ(t) dt

≤ λmax

{ ∫M(p,p,q)
0 Ψ(t) dt,∫M(p,ϕ(p),q)

0 Ψ(t) dt

}

= λ

∫ M(p,p,q)

0
Ψ(t) dt.

This implies p = q, completing the proof.

Example 13 Here’s a revised version of the text with
reduced similarity:

Let X = [0, 2], and define an MR-metric M : X×
X× X → [0,∞) as follows:

M(η,κ,ℑ) = |η − κ|+ |κ −ℑ|+ |ℑ − η|

for any η,κ,ℑ ∈ X. This M -function adheres to
the properties required for an MR-metric space.

Now, define a mapping ϕ : X → X by:

ϕ(η) =
η

2

Take the point η0 = 2 ∈ X. The orbit generated
by η0 under the mapping ϕ is:

o(η0) = {2, 1, 0.5, 0.25, . . . }

This orbit is M -bounded because all elements fall
within the interval [0, 2], and the distance between any
two elements remains finite. Furthermore, the orbit is
ϕ-orbitally complete since it converges to 0, which is
included in X.

Let’s use a Lebesgue-integrable function Ψ :
[0,∞) → [0,∞), defined by:

Ψ(t) = e−t

We now need to check whether the contractive
condition holds. Assume we have points κ, I ∈ o(η0),
for instance, κ = 2 and I = 1. The inequality to
verify is:

∫ M(η,κ,I)

0
Ψ(t) dt ≤ λmax

{ ∫M(η,ϕ(κ),I)
0 Ψ(t) dt,∫M(κ,ϕ(κ),I)
0 Ψ(t) dt

}

Verification:
1. Compute M(η, κ, I) = M(2, 2, 1) = |2−2|+

|2− 1|+ |1− 2| = 2.
2. Compute M(η, ϕ(κ), I) = M(2, 1, 1) = |2 −

1|+ |1− 1|+ |1− 2| = 2.
3. Compute M(κ, ϕ(κ), I) = M(2, 1, 1) = 2.
4. Evaluate the integral:∫ 2

0
e−t dt = 1− e−2

Thus, the inequality simplifies to:

1− e−2 ≤ λmax(1− e−2, 1− e−2)

For 0 ≤ λ < 1, this inequality holds.
Conclusion:
By the theorem, the mapping ϕ has a unique fixed

point in X . In this scenario, the unique fixed point is
0, as:

ϕ(0) =
0

2
= 0

Therefore, the point η = 0 is the only fixed point
for ϕ.
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