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Abstract: - The paper is focused on an implementation of a predictive controller with a colouring filter
C in a disturbance model. Both single-input-single-output (SISO) and multi-input-multi-output
(MIMO) cases were considered and analysed. The filter is often essential for practical applications of
predictive control based on input-output models. It is commonly considered as a design parameter
because it has direct effects on closed loop performance. In this paper a computation of predictions for
the case with the colouring polynomial is introduced. The computation is based on particular models
of the controlled systems in the form of transfer function in case of SISO system and matrix fraction
in case of MIMO system which are commonly used for description of a range of processes.
Performances of closed loop systems with and without the colouring polynomial in the disturbance
model were also compared.
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1 Introduction PID controllers largely do not yield satisfactory
Model Predictive Control (MPC) or only Predictive results. The_re are many different z_jldvanced methods
Control [1], [2], [3] is one of the control methods of controlling multi-input-multi-output (MIMO)
which have developed considerably over a few past systems. The problem of selecting an appropriate
years. Predictive control is essentially based on control technique often arises. Perhaps the most
discrete or sampled models of processes. popular way of controlling MIMO processes is by
Computation of appropriate control algorithms is 9'95|9n|f_19 decoupling Compen_sat_ors to suppress the
then realized especially in the discrete domain. interactions [6] and the designing multiple SISO
When using most of other approaches, the control coptrollers [7]. This requires determlnl_ng how to
actions are taken based on past errors. MPC uses pair the controlled and manipulated variables. One
also future values of the reference signals. The basic of the most effective approaches to control of
idea of the generalized predictive control [4], [5] is multivariable systems is modgl _predlctlve cpntrol.
to use a model of a controlled process to predict a An advantage of model predictive control is that
number of future outputs of the process. A trajectory multivariable systems can be handled in a
of future manipulated variables is given by solving straightforward manner.
an optimization problem incorporating a suitable Implementation of predictive controllers based
cost function and constraints. Only the first element on input-output models with a colouring filter C in a
of the obtained control sequence is applied. The disturbance model is described in this paper. Both
whole procedure is repeated in following sampling single-input-single-output (SISO) and multi-input-
period. This principle is known as the receding multi-output (MIMO) cases were considered and
horizon strategy. analysed. The filter is often essential for practical
Typical technological processes require the applications of predictive control based on input-
simultaneous control of several variables related to output models. Surveys of practical applications of
one system. Each input may influence all system predictive control are presented in [8], [9], [10]. Itis
outputs. The design of a controller for such a system commonly  considered as a design parameter
must be quite sophisticated if the system is to be because it has direct effects on closed loop
controlled adequately. Simple decentralized PI or performance. A computation of predictions for the
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case with the colouring polynomial is introduced.
The computation is based on particular models of
the controlled systems in the form of transfer
function in case of SISO system and matrix fraction
in case of MIMO system which are commonly used
for description of a range of processes. The filtering
of variables is the equivalent of the colouring
polynomial in the noise model. It is practically very
difficult to estimate the coefficients of the colouring
polynomial. A model with the C-polynomial is then
utilized as an example with filtering of input and
output variables when the polynomial C is a tuning
parameter. In the paper are derived prediction
equations for both SISO and MIMO input-output
models both for the case with the C-filter and
without the C-filter. Performances of closed loop
systems with and without the colouring polynomial
in the disturbance model were also compared.

2 Model of the Controlled System

2.1 Model of SISO System

A model of the second order which is widely used in
practice and has proved to be effective for control of
a range of various processes was applied. It can be
expressed by following transfer function

) B(z‘l)_ b,z +b,z7?
G(Z 1)_ A(z’l)_1+lalz’1+;22’

; 1)

A widely used model in general model predictive
control is the CARIMA (controller autoregressive
integrated moving average) model which we can
obtain by adding a disturbance model as

A(z’l )y(k) = B(Z’l)J(k)+i4) n(k)

g @

where n is a non-measurable random disturbance
that is assumed to have zero mean value and
constant covariance and4=1-z'. C is the
colouring polynomial. For purpose of simplification
it is often supposed to be equal to 1[1]. In Model
Predictive Control it is also common to treat C as a
design parameter [4], [5], [13]. In this paper will be
compared cases when C=1 and when C is supposed
as the design parameter.

2.2 Model of MIMO System

Let us consider a two input — two output system.
The two — input/two — output (TITO) processes are
the most often encountered multivariable processes
in practice and many processes with inputs/outputs
beyond two can be treated as several TITO
subsystems [11].
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A general transfer matrix of a two-input-two-output
system with significant cross-coupling between the
control loops is expressed as:

1 Gu (Z) Gy, (Z)
S A | o
Y(2)=G(z(z) (4)

where U(z) and Y (z) are vectors of the manipulated
variables and the controlled variables, respectively.

U(2)=[u,@)u,@ Y@)=[%:(2)y. T (5)

It may be assumed that the transfer matrix can be
transcribed to the following form of the matrix
fraction:

G(2)=A"(")Blz*)=B,(")A) (6)
where the polynomial matrices
AcR,[2?] BeR,[2?] are the left coprime
factorizations of matrix G(z) and the matrices
AieRzz[z*ll BleRzz[z*l] are the right coprime
factorizations of G(z). The model can be also
written in the form

Az N (2)=Bl () )

As an example a model with polynomials of second
degree was chosen. This model proved to be
effective for control of several TITO laboratory
processes [12], where controllers based on a model
with polynomials of the first degree failed. The
model has sixteen parameters. The matrices A and B
are defined as follows

A(z’l)z 1+alzl‘1+azzz‘2 asz‘lira4z‘2 2 ®)
asz— +azz” l1+a,z7 +a42"”

B(z’l): blz’1+bzz’z b32’1+b4z’2 ©)
bsz™ +bgz™® b,z +bgz”

the CARIMA model in the MIMO case is as follows

A(z’l )y(k): B(Z’l )u(k)+ C(z ’l)A’1 (Z’l )n(k) (10)
where
Alz?)- r—ozl 1_02 -1J (11)

In case of TITO system. C is the colouring
polynomial matrix. For purpose of simplification it
is often supposed to be equal to the identity matrix
[1]. In a single input — single output case we have a
colouring polynomial C instead of the matrix C.
Analogically the polynomial matrix C could be
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expected as the design parameters in a multivariable
case. Nevertheless considering the polynomial
matrix C as the design parameter is computationally
unsolvable and practically inapplicable. A
simplified model when the non-measurable random
disturbance was a scalar was then considered

AA(Z’1 )y(k) = B(z’l)Au(k)Jr C(z’l)w(k)

Further will be compared cases when C is the
identity matrix and when the input and output
variables are filtered with a colouring polynomial C
which is supposed as the design parameter.

predictive

(12)

3 Implementation of

controller

The basic idea of MPC is to use a model of a
controlled process to predict N future outputs of the
process. A trajectory of future manipulated variables
is given by solving an optimization problem
incorporating a suitable cost function and
constraints. Only the first element of the obtained
control sequence is applied. The whole procedure is
repeated in following sampling period. This
principle is known as the receding horizon strategy.
The computation of a control law of MPC is based
on minimization of the following criterion

30)= Selcr 1 + 23 aulk

N
N, =l

(13)

where e(k+j) is a vector of predicted control errors,
Au(k+j) is a vector of future increments of the
manipulated variable (for the system with two
inputs and two outputs each vector has two
elements), N is a length of the prediction horizon, N,
is a length of the control horizon and A is a
weighting factor of control increments.

A predictor in a vector form is given by

§=GAu+y, (14)

A

where § is a vector of system predictions along the

horizon of the length N, Au is a vector of control
increments, Yy, is the free response vector. G is a
matrix of the dynamics. It contains values of the
step sequence. In SISO case it is given as

9, O U 0
G=|0s 9, 9y - 0 (15)
Ov Ona On-2 On-n,+1 |
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In TITO case the matrix G takes the following form

Gl GO 0 0

e= R (16)
. GO 0
GN 1 GO

where sub-matrices G; have dimension 2x2 and
contain values of the step sequence.

The criterion (12) can be written in a general vector
form

J=(9-w)" (§—w)+Au" Au a7

where w is a vector of the reference trajectory. The
criterion can be modified using the expression (15)

to
J =29 " Au+Au’ HAu (18)

where the gradient g and the Hess matrix H are
defined by following expressions

g’ =G"(y,-w)

H=G'G+.l

(19)
(20)

Handling of constraints is one of main advantages of
predictive control. General formulation of predictive
control with constraints is then as follows

min 29" Au+Au’ HAu (21)
owing to
AAU<D (22)

The inequality (22) expresses the constraints in a
compact form.

4 Computation of

unfiltered variables
4.1 Computation of predictions for SISO system
An important task in predictive control is
computation of predictions for arbitrary prediction
and control horizons.

The difference equation of the CARIMA model
without the unknown term can be expressed as:

y(k)=(-a)y(k 1)+ (a,-a,)y(k -2)+
+a,y(k —3)+bAu(k —1)+b,Au(k - 2)

predictions —

(23)

It was necessary to directly compute three steps-
ahead predictions in a straightforward way by
establishing of previous predictions to later
predictions. The model order defines that
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computation of one step-ahead prediction is based
on the three past values of the system output.

9k +1)=(-a,)y(k)+ (a —a,)y(k 1)+ a,y(k —2)+
+bAu(k)+b,Au(k —1)

yk+2)=(1-a)yk +1)+ (- a,)y(k)+ay(k-1)+  (24)
+bAu(k +1)+b,Au(k)

9k +3)=(1-a,)9(k +2)+ (8, ~a, )9k +1)+ a,y(k)+

+bAu(k +2)+b,Au(k +1)

The predictions after modification can be written in
a matrix form

jlk+1 gp 0 Au(k) 7
J\k+2)1=199 91 {
ik +3 03 0 Au(k+1)_

+

b UG % Y[yl (25)
I Py ulk-1)+ Uy 99y U3 y:—g
y —_
Py U %5y O3]

e 5T ygskz% -

jlk+3 ylk -2

y(k+1)=GAu(k + j—1)+ PAu(k —1)+Qy(k + j-1)

27
J<N ( )
where
Au(k)
G|:Au(k +1)i| -
by 0 (28)
= bl(l - al) ;’ by by AuA(uk(li)l):|
(al - aZ)bl + (1 - a1) by + (1* al)oz (1* al)bl +by
b2
pau(k -1) [l—al)bz aufk-1) 29)
2
(1—a ) b2 +(a1—a2jb2
y(kJ
{5&::3}
[:1“1\/‘ ‘/a 8 \‘ B )
‘/1 a\‘z \/1 2\1 ‘1 @ \a1 az} % Z[l a\ Mfiﬂ
T e N N T SN e B R N S O
(30)

The coefficients of the matrices G, P and Q for
further predictions are computed recursively. Based
on the three previous predictions it is repeatedly
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computed the next row of the matrices P and Q in
the following way:

P, = (1—a1)p3 +(a1 _az)pz +a,P; (31)
Qg = (l_ a )q31 +(a1 -a, )q21 +a,0,
Q4 = (1_ a )q32 + (al a, )QZz +a,0;, (32)

Qa3 = (1_ a )q33 +(a1 —a, )%3 +a,0

The recursion of the matrix G is similar. The next
element of the first column is repeatedly computed
and the remaining columns are shifted. This
procedure is performed repeatedly until the
prediction horizon is achieved. If the control horizon
is lower than the prediction horizon a number of
columns in the matrix is reduced. Computation of a
new element is performed as follows:

9,=(1-a)0;+(a-2a,)9, +8,0; (33)
4.2 Computation of predictions for MIMO
System

The difference equation of the CARIMA model
without the unknown term can be expressed as:

yl(k +1) = (1_ ai)yl(k)+ (a’.l - az)yl(k _1)+ azYl(k - 2)_
_a3y2(k)+(a3_aa)yz(k_l)+a4y2(k_2)+ (34)
+bAu, (k) +b,Au, (k —1)+ byAu, (k) +b,Au, (k —1)

yz(k +1) = (1_ a7)Y2(k)+ (a7 - ae)Yz(k _1)"" aeyz(k - 2)_

- asy1(k)+ (as - as)Yl(k _1)"" asyl(k - 2)+

+byAu, (K )+ byAu, (k —1)+ b, Au, (k) + byAu, (k —1)

These equations can be written into a matrix form

y(k+1)= A y(k)+ A, y(k—1)+ A, y(k - 2)+

35
+B,Au(k)+ B, Au(k—1) (35)
where
S e I ]
L~ 9% 4y 5 %6 7 98
a, a
A=l 36
=h an (36)
b, b b, b
Blz 1 3 BZZ 2 4 (37)
1bs b, by by

It was again necessary to directly compute three
steps-ahead predictions in a straightforward way by
establishing of previous predictions to later
predictions.

gk +1)= Ay(k)+ A, y(k -
+B,Au(k)+B,Au(k -1)

)+ A y(k 2)
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Ik +2)= A y(k+1)+ A, y(k)+ A y(k —1)+
+B,Au(k +1)+ B,Au(k) (38)
Ik +3)= A y(k+2)+ A, y(k +1)+ A, y(k)+

+B,Au(k + )+ B,Au(k +1)

It is possible to divide computation of the
predictions to recursion of the free response and
recursion of the matrix of the dynamics. The free
response vector can be expressed as:

Py Pu G G G O | Ghs G | Yilk)
p21 qzz qu qZZ q23 q24 qZS qzﬁ ( )
Vo= P P {AW(k*l)}ﬁ_ O Oz | O3z Oss | Oss Ose y1(k 1) _
*Pa Py [AUK-1)] |Gy Gy [ Gu | Qi Ga | Yolk— 1)
P Pe Oy O O Ose | Qs Oso yl(k 2)
Per  Pe2 Ge1 Us2 | Ges Yea | Ges Yoo 2)
P, Qi Q. Quf vk
_|:Pz]Au(k_1)+]:Q21 Qx Qza]{y(k_l)]_PAUk 1)+ |: :l
Py Qu Qi Qu Y(k_z)
(39)

The coefficients of the matrices P and Q for further
predictions are computed recursively. Based on the
three previous predictions it is repeatedly computed
the next row of the matrices P and Q in the
following way:

|
oy
oy
ol

an = A1P31+A2P21 + A3P11 (40)

Ps>

re =A Q4 +AQ, +AQy (41)

Qs |

q74 _ 42

q =AQy»n+AQ, +AQ,, ( )
84 |

276 =AQu+AQp + AQ, (43)
86 |

The recursion of the matrix G is analogical to the

SISO case. The technique is apparent from the
equations (44) and (45).

91) g@2)| o 0 ]
g21) g9(22)| o 0 [ Aulk)

oy 9B 9B 90 902)| Awk) |
0(41) 9(42)]9(21) 9(2,2)| Au(k+1
06D 962 | 06D ¢G2)|ank+y)] Y
19(61) 9(62)|9(41) 9(42)]

Gy o Au(k)

=1G(21) G(L1)

L(3 1) G(2,1)][Au(k +1)}
1 O | + 4

G41_{981 gszJ_A1631 A2621 ASG].]. (45)
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The predictions can be written in a compact matrix
form

§(k + j)=Gau(k + j—1)+ PAu(k 1)+ Qy(k
j<N

—j+1) (46)

5 Computation of predictions with

colouring filter C

5.1 Computation of predictions for SISO system
Computation of predictions for C#1 is solved for
example in [14]. Including the C-filter the CARIMA
model takes the form

AA(Z ‘1)y(k)= B(Z_l)Au(k)+ C(z ‘1)1(k) (47)
Equation (49) can be modified to

) k) _ g0y 4ulk)
aA(z I Bz /C(Z—1)+ n(k) (48)

Where the unknown term is supposed to be the
white noise and the input and output variables are
filtered. Using of (48) for prediction improves
prediction accuracy.

The filtered variables are defined as

Y ()= aygﬁ) (49)
u, (k)= C”(Zkz (50)

In this case the polynomial C is a design parameter.
It is a stable polynomial. In case of the system (1) it
was chosen to be of the second order as

C(z‘1)=1+clz‘1+czz‘2 (51)

The input and output data are filtered before
prediction. 1/C is a low-pass filter which reduces
high frequency noise. It is easy to prove by
simulation that the cases when the noise is coloured
(47) and when the noise is white and the input and
output variables are filtered (48) are equal.

The prediction equation for filtered variables takes
the following form

9 (k+ j)=GAu, (k + j—1)+ PAu, (k 1)+ Qy, (k — j +1)
j<N
(52)

For practical application the equation (52) is
inapplicable. Prediction of the unfiltered output
must be expressed by means of future control
increments.

The relationship between filtered and unfiltered
variables can be expressed as follows
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yJ"F% (53)
y(k)=y (K)+cyy, (k=1)+c,y, (k-2) (54)
For three step ahead predictions

Ik +1) =y, (k+1)+c,y, (k)+c,y, (k-1)

Jk+2)=y, (k+2)+c,y, (k+1)+c,y, (k) (55)

9(k+3): Y (k+3)+C1Yf (k+2)+czyf (k+1)

In a matrix form the equations (31) can be expressed
as follows

gk+1)) (1 0 0Yy,(k+1)

Jk+2)|=[c, 1 0fy,(k+2)[+

gk +3 c, ¢ 1)y,(k+3

k+3) Lo o hyilees) 50
¢, ¢ 0 yf(k)

+lc, 0 0] vy,(k-1)
0 0 0)y,(k-2)

The relationship between filtered and unfiltered

control increments can be expressed similarly.
Using matrix notation we can define following
equations

Jk+i)=Ccy k+j)+Hcy, (k—j+1) (57)
Au(k+ j)=CcAu (k+j)+HcAu, (k—j+1) (58)
Where matrices C.and H. are defined as follows
1 0 O
C.=|c 1 0 (59)
c, ¢ 1
¢ ¢ O
He=|c, 0 0 (60)
0 0 O

From equations (57) and (58) we can express the
filtered variables

yi (k+ j):Ccil(y(k"' -Hey, (k_j"'l))

Au; (k+ j)=C¢ *(Au(k + j)— HoAu, (k— j+1))

(61)
(62)

After substitution of equations (61) and (62) to
equation (52) we obtain

Ccil(y(k + J)_ Heyy (k -] +1)):
GC. H(Au(k + j—1)- HoAu, (k—1))+
+PAu, (k=1)+Qy, (k- j+1)

(63)

After modification we obtain resulting equation of
the predictor
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J(k + j)=GAu(k + j—1)+[C.P -GH. JAu, (k 1)+

64
- [He +C.Qly, (k- +1) 9
We can establish following substitutions
P=[Cc.P-GH_] (65)
Q=[H.+cQ] (66)

The prediction equation then can be written in the
form

§(k+ j)=GAu(k + j—1)+ PAu, (k—-1)+Qy, (k- j+1)
(67)

5.2 Computation of predictions for MIMO
System

Including the C-filter the multivariable CARIMA
model takes the form

44z y(k)=B(z " u(k)+C(z * (k)

As it was previously mentioned, a simplified model
when the non-measurable random disturbance was a
scalar was considered.

(68)

Equation (70) can be modified to
AA(zl)y(k)ai—l) _ B(zl)Au(k)Eé—l)+ nk)  (69)

where the unknown term is supposed to be the white
noise and the input and output variables are filtered.
Using of (69) for prediction improves prediction
accuracy.

The filtered variables are defined as
(yn (k)J :(yl(k)j 1

Yot (k) Y, (k) clz™

Uy (k) _ u(k)) 1

Uz¢ (k) uz(k) clz™®
The polynomial C is a design parameter. It is a
stable polynomial. For the system with polynomials

of the second degree (8), (9) it was chosen to be of
the second degree as well

C(z’l):1+<:lz’1+czz’2

(70)

(71)

(72)

The prediction equation for filtered variables takes
the following form
9 (k+j)=Gau, (k+ j—1)+Pau, (k-1)+Qy, (k- j+1)
J<N

(73)
The relationship between filtered and unfiltered
variables can be expressed as follows
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Yar (k) B (k) 1
[yzf (k)J_(yz (k)j1+clz‘1 +c,272 (74)
[)ﬁ(k)j _{ Yar (K)+¢, e (k=1)+c,y,, (k _2)j (75)
Y, (k) Ve (k)+cly2f (k _1)+C2 Yot (k _2)
For three step ahead predictions
9(k+1): Ys (k+1)+C1Yf (k)+C2 Yi (k_l)
9(k+2): yf(k+2)+clyf(k+1)+czyf(k) (76)

9(k+3): Yi (k+3)+clyf (k+2)+cz Ys (k"'l)

In a matrix form the equations (76) can be expressed

as follows
C,

g.k+1)) (1 0 0 0 0)¥yk+1)
g, (k+1 0 0 0 09, (k+1)
5. (k+2)| |c, 1 0 0 0f¥yk+2)
g,(k+2)| |0 ¢, 0 1 0 0]y, (k+2)|"
J.k+3) | e, 0 ¢, 0 1 0f 9y (k+3)
9.+3)) {0 ¢, 0 ¢, 0 1) 9, (k+3)
Hc
¢, 0 c, 0 0 0y Vi(k)
0 ¢ 0 ¢ 00 9,0(k)
e 0 00 0 o) vk
0 c, 0 0 0 O0f7Y, (k-1
0 0 0 0f%k-2)
0 0 0 0)\¥,(k-2) 77)

The relationship between filtered and unfiltered
control increments can be expressed similarly.
Using matrix notation we can define following
equations

Jlk+j)=Ccy(k+j)+Hey, (k—j+1)
Au(k+ j)=CcAu; (k+j)+HcAu, (k—j+1)

(78)
(79)

where matrices C.and H. are defined as follows

1 0 0 0 00O
0 1. 0 00O
C. - c,c 01 0 00O (80)
0 cgc 01 00O
c, 0 c, 010
0 c,6, 0 ¢c 01
¢c, 0 ¢, 0 00O
0 ¢cg¢c 0 ¢c OO
H, = c, 0 0 0 00O (81)
0 c,c, 00 O0O
0 0 0 0O
0 0 0 0 00O
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From equations (78) and (79) we can express the
filtered variables

9(k+ j):CC V¢ (k+ J)+ Heyq (k_j+1)
Au(k + j)=CcAu; (k+ j)+HcAu, (k—j+1)

(82)
(83)
After substitution of equations (82) and (83) to
equation (73) we obtain

Ccil(y(k + J)_ Heyy (k -] +l)):
=GC, MAu(k+ j—1)- HoAu, (k—1))+
+PAu, (k=1)+Qy, (k- j+1)

After modification we obtain resulting equation of
the predictor

9(k+ j)=GAu(k + j—1)+[C.P-GH Jau, (k—1)+

(84)

+[He +CcQly, (k—j+1) (®)
We can establish following substitutions

P =[C.P-GH.] (86)
Q=[Hc +ccQ] (87)

The prediction equation then can be written in the
form

§(k + j)=GAu(k + j —1)+ PAu, (k —1)+Qy, (k — j+1) (88)

6 Simulation Verification

6.1 SISO control

Verification by simulation was carried out on a
range of plants with various dynamics. The control
of the model below is given here as an example.

G(s)=——

= 89
552 +65+1 (89)

It does not exist a systematic way for selection of
the filter C. Its selection is mostly based on
intuition. In our example the filter was chosen as
Clz")=1+082" +0,052 (90)

The sampling period was tuned experimentally
and the best value was T, = 2 s. The controlled
variable was affected by a noise with zero mean
value and constant covariance. Simulation sampling
of noise was 0,1 s.

In figures 1-6 are simulation results. Figures 1,3
and 5 show time responses of the control without
the filtering of the variables introduced in section 4.
Figures 2, 4 and 6 show time responses of the
control with the filtering of variables described in
section 5.

In figures 1 and 2 there is the response of the
controlled variable taken by 0,1 s. It means with the
same sampling period as the simulation noise.
Simulation results in this figure are the closest to the
reality. In figures 3 and 4 there is the controlled
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variable taken by 2 s. It means with the same
sampling period which is used for the control. The
data then simulates measured values. In figures 5
and 6 is the manipulated variable.

The tuning parameters that are lengths of the
prediction and control horizons and the weighting
coefficient 4 were tuned experimentally. There is a
lack of clear theory relating to the closed loop
behavior to design parameters. The length of the
prediction horizon, which should cover the
important part of the step response, was setto N = 5.
The length of the control horizon was also set to N,
= 5. The coefficient A was taken as equal to 0,1.

It is necessary to emphasize that the displayed
inputs and outputs in the graphs are not filtered. The
filtered values are used only for computation of
systems output predictions and consequently for
computation of the control law. The displayed
inputs and outputs are real unfiltered values.
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Fig. 1 Controlled variable sampled by 0,1s — case
without filtering of variables
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Fig. 2 Controlled variable sampled by 0,1s — case
with filtering of variables
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Fig 3 Controlled variable sampled by 2s — case
without filtering of variables
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Fig 4 Controlled variable sampled by 2s — case with
filtering of variables
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Fig 5 Manipulated variable — case without filtering
of variables
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Fig 6 Manipulated variable — case with filtering of
variables

6.2 MIMO Control
The MIMO simulation controlled system was
chosen as follows

3 2
2 2
G(s): 5s +763+1 2s +54s+1 (91)

3s% +10s+1 25 +8s+1

A corresponding discrete model in the form
given by equations (8), (9) and (24) was obtained by
recursive identification. Control in the initial
adaptation phase then has worse quality. The filter
C was chosen as (90).

The best value of the sampling period was found
as Top = 0,5 s. The controlled variable was affected
by a noise with zero mean value and constant
covariance. Simulation sampling of noise was 0,1 s.

In figures 1-6 are simulation results. Figures 1,3
and 5 show time responses of the control without
the filtering of the variables introduced in section 4.
Figures 2, 4 and 6 show time responses of the
control with the filtering of variables described in
section 5.

In figures 1 and 2 there is the response of the
controlled variable taken by 0,1 s. It means with the
same sampling period as the simulation noise. In
figures 3 and 4 there is the controlled variable taken
by 2 s. It means with the same sampling period
which is used for the control. In figures 5 and 6 is
the manipulated variable.

The length of the prediction horizon was set to N
= 5. The length of the control horizon was also set to
N, = 5. The coefficient A was taken as equal to 0,1.
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Fig. 7 Controlled variable sampled by 0,1s — case
without filtering of variables
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Fig. 8 Controlled variables sampled by 0,1s — case
with filtering of variables
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Fig. 9 Controlled variables sampled by 0,5s — case
without filtering of variables
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Fig. 10 Controlled variables sampled by 0,5s — case
with filtering of variables
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Fig. 11 Manipulated variables — case without
filtering of variables
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Fig. 12 Manipulated variables — case with filtering
of variables

E-ISSN: 2224-3429

Marek Kubalcik, Vladimir Bobal

7 Conclusions

Specific self-contained prediction equations for the
input-output models in the form of transfer function
in case of SISO system and matrix fraction in case
of MIMO system were derived for the case with
filtering of the input and output variables.
Simulations, where the filtered variables are used
for computation of the control law and the
manipulated variable, were performed. In the
simulation results are displayed real unfiltered
variables. By simulation control of a range of
systems were compared control results of cases with
and without the C-filter. The C-filter is a tuning
parameter for which setting we do not have
available any exact methodology. The filter was
designed by try it and see approach as a low pass
filter. Obviously better results were achieved in case
with the C-filter particularly regarding rate of
oscillations of the input and output variables. It is
obvious that the variables are more settled in case
with the C-filter. The filter reduces sensitivity of the
closed loop system to high frequency noise. Cost for
this improvement is a relatively difficult setting of
the C-filter as a parameter.
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