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Abstract: - The paper is focused on an implementation of a predictive controller with a colouring filter 

C in a disturbance model. Both single-input-single-output (SISO) and multi-input-multi-output 

(MIMO) cases were considered and analysed. The filter is often essential for practical applications of 

predictive control based on input-output models. It is commonly considered as a design parameter 

because it has direct effects on closed loop performance. In this paper a computation of predictions for 

the case with the colouring polynomial is introduced. The computation is based on particular models 

of the controlled systems in the form of transfer function in case of SISO system and matrix fraction 

in case of MIMO system which are commonly used for description of a range of processes. 

Performances of closed loop systems with and without the colouring polynomial in the disturbance 

model were also compared.  
 

Key-Words: - predictive control, disturbance modelling, colouring polynomial, filtering of variables, transfer 

function models, matrix fraction models  

 

1 Introduction 
Model Predictive Control (MPC) or only Predictive 

Control [1], [2], [3] is one of the control methods 

which have developed considerably over a few past 

years. Predictive control is essentially based on 

discrete or sampled models of processes. 

Computation of appropriate control algorithms is 

then realized especially in the discrete domain. 

When using most of other approaches, the control 

actions are taken based on past errors. MPC uses 

also future values of the reference signals. The basic 

idea of the generalized predictive control [4], [5] is 

to use a model of a controlled process to predict a 

number of future outputs of the process. A trajectory 

of future manipulated variables is given by solving 

an optimization problem incorporating a suitable 

cost function and constraints. Only the first element 

of the obtained control sequence is applied. The 

whole procedure is repeated in following sampling 

period. This principle is known as the receding 

horizon strategy. 

Typical technological processes require the 

simultaneous control of several variables related to 

one system. Each input may influence all system 

outputs. The design of a controller for such a system 

must be quite sophisticated if the system is to be 

controlled adequately. Simple decentralized PI or 

PID controllers largely do not yield satisfactory 

results. There are many different advanced methods 

of controlling multi-input–multi-output (MIMO) 

systems. The problem of selecting an appropriate 

control technique often arises. Perhaps the most 

popular way of controlling MIMO processes is by 

designing decoupling compensators to suppress the 

interactions [6] and the designing multiple SISO 

controllers [7]. This requires determining how to 

pair the controlled and manipulated variables. One 

of the most effective approaches to control of 

multivariable systems is model predictive control. 

An advantage of model predictive control is that 

multivariable systems can be handled in a 

straightforward manner. 

Implementation of predictive controllers based 

on input-output models with a colouring filter C in a 

disturbance model is described in this paper. Both 

single-input-single-output (SISO) and multi-input-

multi-output (MIMO) cases were considered and 

analysed.  The filter is often essential for practical 

applications of predictive control based on input-

output models. Surveys of practical applications of 

predictive control are presented in [8], [9], [10]. It is 

commonly considered as a design parameter 

because it has direct effects on closed loop 

performance. A computation of predictions for the 
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case with the colouring polynomial is introduced. 

The computation is based on particular models of 

the controlled systems in the form of transfer 

function in case of SISO system and matrix fraction 

in case of MIMO system which are commonly used 

for description of a range of processes. The filtering 

of variables is the equivalent of the colouring 

polynomial in the noise model. It is practically very 

difficult to estimate the coefficients of the colouring 

polynomial. A model with the C-polynomial is then 

utilized as an example with filtering of input and 

output variables when the polynomial C is a tuning 

parameter. In the paper are derived prediction 

equations for both SISO and MIMO input-output 

models both for the case with the C-filter and 

without the C-filter. Performances of closed loop 

systems with and without the colouring polynomial 

in the disturbance model were also compared. 

 

2 Model of the Controlled System  

2.1 Model of SISO System 
A model of the second order which is widely used in 

practice and has proved to be effective for control of 

a range of various processes was applied. It can be 

expressed by following transfer function 
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A widely used model in general model predictive 

control is the CARIMA (controller autoregressive 

integrated moving average) model which we can 

obtain by adding a disturbance model as  
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where n is a non-measurable random disturbance 

that is assumed to have zero mean value and 

constant covariance and 11  zΔ . C is the 

colouring polynomial. For purpose of simplification 

it is often supposed to be equal to 1[1]. In Model 

Predictive Control it is also common to treat C as a 

design parameter [4], [5], [13]. In this paper will be 

compared cases when C=1 and when C is supposed 

as the design parameter. 

2.2 Model of MIMO System 
Let us consider a two input – two output system. 

The two – input/two – output (TITO) processes are 

the most often encountered multivariable processes 

in practice and many processes with inputs/outputs 

beyond two can be treated as several TITO 

subsystems [11]. 

A general transfer matrix of a two-input–two-output 

system with significant cross-coupling between the 

control loops is expressed as: 

 
   
   








zGzG

zGzG
z

2221

1211
G                                            (3) 

     zzz UGY                                                        (4) 

where  zU  and  zY  are vectors of the manipulated 

variables and the controlled variables, respectively. 

      Tzuzuz 21 ,U       Tzyzyz 21 ,Y                 (5) 

It may be assumed that the transfer matrix can be 

transcribed to the following form of the matrix 

fraction: 
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where the polynomial matrices 
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22 ,   zRzR BA  are the left coprime 

factorizations of matrix  zG   and the matrices 

   1

221

1

221 ,   zRzR BA  are the right coprime 

factorizations of  zG . The model can be also 

written in the form 

       zzzz UBYA
11                                             (7) 

As an example a model with polynomials of second 

degree was chosen. This model proved to be 

effective for control of several TITO laboratory 

processes [12], where controllers based on a model 

with polynomials of the first degree failed. The 

model has sixteen parameters. The matrices A and B 

are defined as follows 
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the CARIMA model in the MIMO case is as follows  
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where  
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In case of TITO system. C is the colouring 

polynomial matrix. For purpose of simplification it 

is often supposed to be equal to the identity matrix 

[1]. In a single input – single output case we have a 

colouring polynomial C instead of the matrix C. 

Analogically the polynomial matrix C could be 
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expected as the design parameters in a multivariable 

case. Nevertheless considering the polynomial 

matrix C as the design parameter is computationally 

unsolvable and practically inapplicable. A 

simplified model when the non-measurable random 

disturbance was a scalar was then considered 

           knzCkzkz 111   ΔuByΔA                   (12) 

Further will be compared cases when C is the 

identity matrix and when the input and output 

variables are filtered with a colouring polynomial C 

which is supposed as the design parameter. 

3 Implementation of predictive 

controller  

The basic idea of MPC is to use a model of a 

controlled process to predict N future outputs of the 

process. A trajectory of future manipulated variables 

is given by solving an optimization problem 

incorporating a suitable cost function and 

constraints. Only the first element of the obtained 

control sequence is applied. The whole procedure is 

repeated in following sampling period. This 

principle is known as the receding horizon strategy. 

The computation of a control law of MPC is based 

on minimization of the following criterion  
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where e(k+j) is a vector of predicted control errors, 

Δu(k+j) is a vector of future increments of the 

manipulated variable (for the system with two 

inputs and two outputs each vector has two 

elements), N is a length of the prediction horizon, Nu 

is a length of the control horizon and λ is a 

weighting factor of control increments.  

A predictor in a vector form is given by 

0
ˆ yuGy                                                           (14) 

where ŷ   is a vector of system predictions along the 

horizon of the length N, Δu is a vector of control 

increments, y0 is the free response vector. G is a 

matrix of the dynamics. It contains values of the 

step sequence. In SISO case it is given as    
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In TITO case the matrix G takes the following form 
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where sub-matrices Gi have dimension 2x2 and 

contain values of the step sequence. 

The criterion (12) can be written in a general vector 

form  

    uuwywy  TT
J ˆˆ                                 (17) 

where w is a vector of the reference trajectory.  The 

criterion can be modified using the expression (15) 

to   

uHuug  TTJ 2                                            (18) 

where the gradient g and the Hess matrix H are 

defined by following expressions 
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IGGH  T                                                       (20) 

Handling of constraints is one of main advantages of 

predictive control. General formulation of predictive 

control with constraints is then as follows 
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buA                                                                 (22) 

The inequality (22) expresses the constraints in a 

compact form. 

4 Computation of predictions – 

unfiltered variables 

4.1 Computation of predictions for SISO system 
An important task in predictive control is 

computation of predictions for arbitrary prediction 

and control horizons.  

The difference equation of the CARIMA model 

without the unknown term can be expressed as: 
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It was necessary to directly compute three steps-

ahead predictions in a straightforward way by 

establishing of previous predictions to later 

predictions. The model order defines that 
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computation of one step-ahead prediction is based 

on the three past values of the system output. 
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The predictions after modification can be written in 

a matrix form 
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The coefficients of the matrices G, P and Q for 

further predictions are computed recursively. Based 

on the three previous predictions it is repeatedly 

computed the next row of the matrices P and Q in 

the following way:   
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The recursion of the matrix G is similar. The next 

element of the first column is repeatedly computed 

and the remaining columns are shifted. This 

procedure is performed repeatedly until the 

prediction horizon is achieved. If the control horizon 

is lower than the prediction horizon a number of 

columns in the matrix is reduced. Computation of a 

new element is performed as follows: 
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4.2 Computation of predictions for MIMO 

System 
The difference equation of the CARIMA model 

without the unknown term can be expressed as: 
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These equations can be written into a matrix form 

       
   1

211

21

321





kk

kkkk

uBuB

yAyAyAy
            (35) 

where 















75

31

1
1

1

aa

aa
A 














8765

4321

2
aaaa

aaaa
A  











86

42

3
aa

aa
A                                                       (36) 











75

31

1
bb

bb
B 










86

42

2
bb

bb
B                                 (37) 

It was again necessary to directly compute three 

steps-ahead predictions in a straightforward way by 

establishing of previous predictions to later 

predictions.  

       
   1

211ˆ

21

321





kk

kkkk

uBuB

yAyAyAy
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       
   kk

kkkk

uBuB

yAyAyAy





21

321

1

112ˆ

            (38) 

       
   12

123ˆ

21

321





kk

kkkk

uBuB

yAyAyAy
 

It is possible to divide computation of the 

predictions to recursion of the free response and 

recursion of the matrix of the dynamics. The free 

response vector can be expressed as: 

 
 

 
 

 
 
 
 

 
 

 
 

 
 

 
 













































































































































































2

11

2

11

2

2

1

1

1

1

333231

232221

131211

3

2

1

2

1

2

1

2

1

6665

5655

6463

5453

6261

5251

4645

3635

4443

3433

4241

3231

2625

1615

2423

1413

2221

1211

2

1

6261

5251

4241

3231

2221

1211

0

k

k

k

k

k

k

k

k

ky

ky

ky

ky

ky

ky

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

qq

ku

ku

pp

pp

pp

pp

qp

pp

y

y

y

QuP

y

y

y

QQQ

QQQ

QQQ

u

P

P

P

y

                                                                           (39) 

The coefficients of the matrices P and Q for further 

predictions are computed recursively. Based on the 

three previous predictions it is repeatedly computed 

the next row of the matrices P and Q in the 

following way: 

113212311

8281

7271

4 PAPAPAP 









pp

pp
                     (40) 

113212311

8281

7271

41 QAQAQAQ 









qq

qq
                (41) 

123222321

8483

7473

42 QAQAQAQ 









qq

qq
               (42) 

133232331

8685

7675

43 QAQAQAQ 









qq

qq
                (43) 

The recursion of the matrix G is analogical to the 

SISO case. The technique is apparent from the 

equations (44) and (45). 

   
   
       
       
       
       

 
 

 
 

 
   
   

 
 





















































































1
1,21,3

1,11,2

01,1

1

1

2,41,42,61,6

2,31,32,51,5

2,21,22,41,4

2,11,12,31,3

002,21,2

002,11,1

2

1

2

1

k

k

GG

GG

G

ku

ku

ku

ku

gggg

gggg

gggg

gggg

gg

gg

u

u

uG

     (44) 

113212311

8281

7271

41 GAGAGAG 









gg

gg
                   (45) 

The predictions can be written in a compact matrix 

form 

       
Nj

jkkΔjkΔjk



 111ˆ QyuPuGy
 (46) 

5 Computation of predictions with 

colouring filter C  
5.1 Computation of predictions for SISO system 
Computation of predictions for C≠1 is solved for 

example in [14]. Including the C-filter the CARIMA 

model takes the form 

           knzCkΔuzBkyzΔA 111                      (47) 

Equation (49) can be modified to  

   
 

   
 

 kn
zC

kΔu
zB

zC

ky
zΔA 









1

1

1

1                         (48) 

Where the unknown term is supposed to be the 

white noise and the input and output variables are 

filtered. Using of (48) for prediction improves 

prediction accuracy. 

The filtered variables are defined as 

 
 
 1


zC

ky
ky f                                                       (49) 

 
 
 1


zC

ku
ku f                                                       (50) 

In this case the polynomial C is a design parameter. 

It is a stable polynomial. In case of the system (1) it 

was chosen to be of the second order as 

  2

2

1

1

1 1   zczczC                                         (51) 

The input and output data are filtered before 

prediction. 1/C is a low-pass filter which reduces 

high frequency noise. It is easy to prove by 

simulation that the cases when the noise is coloured 

(47) and when the noise is white and the input and 

output variables are filtered (48) are equal.  

The prediction equation for filtered variables takes 

the following form 

       

Nj

jkkjkjk ffff



 111ˆ QyuPuGy
         

                                                                        (52) 

For practical application the equation (52) is 

inapplicable. Prediction of the unfiltered output 

must be expressed by means of future control 

increments. 

The relationship between filtered and unfiltered 

variables can be expressed as follows 
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 
 

2

2

1

11  


zczc

ky
ky f                                           (53) 

       21 21  kyckyckyky fff                   (54) 

For three step ahead predictions  

       

       

       1233ˆ

122ˆ

111ˆ

21

21

21







kyckyckyky

kyckyckyky

kyckyckyky

fff

fff

fff

        (55) 

In a matrix form the equations (31) can be expressed 

as follows 

 
 
 

 
 
 

 
 
 



































































































2

1

000

00

0

3

2

1

1

01

001

3ˆ

2ˆ

1ˆ

2

21

12

1

ky

ky

ky

c

cc

ky

ky

ky

cc

c

ky

ky

ky

f

f

f

f

f

f

                   (56) 

The relationship between filtered and unfiltered 

control increments can be expressed similarly. 

Using matrix notation we can define following 

equations 

     1ˆ  jkjkjk fCfC yHyCy                 (57) 

     1 jkjkjk fCfC uHuCu          (58) 

Where matrices Cc and Hc are defined as follows 



















1

01

001

12

1

cc

cCC                                                   (59) 



















000

00

0

2

21

c

cc

CH                                                  (60) 

From equations (57) and (58) we can express the 

filtered variables  

      1ˆ1



jkjkjk fCCf yHyCy            (61) 

      1
1




jkjkjk fCCf uHuCu      (62) 

After substitution of equations (61) and (62) to 

equation (52) we obtain 

    

    
   11

11

1ˆ

1

1











jkk

kjk

jkjk

ff

fCC

fCC

QyuP

uHuGC

yHyC

                    (63) 

After modification we obtain resulting equation of 

the predictor 

       

   1

11ˆ





jk

kjkjk

fCC

fCC

yQCH

uGHPCuGy
    (64) 

We can establish following substitutions 

 CC GHPCP 
~

                                                   (65) 

 QCHQ CC 
~

                                                     (66) 

The prediction equation then can be written in the 

form 

       1
~

1
~

1ˆ  jkkjkjk ff yQuPuGy       

                                                                          (67) 

 

5.2 Computation of predictions for MIMO 

System 
Including the C-filter the multivariable CARIMA 

model takes the form 

           knzCkzkz 111   ΔuByΔA                   (68) 

As it was previously mentioned, a simplified model 

when the non-measurable random disturbance was a 

scalar was considered. 

Equation (70) can be modified to  

   
 

   
 

 kn
zC

kz
zC

kz 








1

1

1

1 11
ΔuByΔA       (69) 

where the unknown term is supposed to be the white 

noise and the input and output variables are filtered. 

Using of (69) for prediction improves prediction 

accuracy. 

The filtered variables are defined as 

 
 

 
   1

2

1

2

1 1

























zCky

ky

ky

ky

f

f
                                     (70) 

 
 

 
   1

2

1

2

1 1

























zCku

ku

ku

ku

f

f
                                      (71) 

The polynomial C is a design parameter. It is a 

stable polynomial. For the system with polynomials 

of the second degree (8), (9) it was chosen to be of 

the second degree as well 

  2

2

1

1

1 1   zczczC                                         (72) 

The prediction equation for filtered variables takes 

the following form 

       

Nj

jkkΔjkΔjk ffff



 111ˆ QyuPuGy

                                                                        (73) 

The relationship between filtered and unfiltered 

variables can be expressed as follows 
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 
 

 
  2

2

1

12

1

2

1

1

1
 

























zczcky

ky

ky

ky

f

f
                       (74) 

 
 

     
     



























21

21

22212

12111

2

1

kyckycky

kyckycky

ky

ky

fff

fff
      (75) 

For three step ahead predictions  

       

       

       1233ˆ

122ˆ

111ˆ

21

21

21







kckckk

kckckk

kckckk

fff

fff

fff

yyyy

yyyy

yyyy

        (76) 

In a matrix form the equations (76) can be expressed 

as follows 

 
 
 
 
 
 

 

 
 

 
 

 

 

 
 

 
 

 





































































































































































2ˆ

2ˆ

1ˆ

1ˆ

ˆ

ˆ

000000

000000

00000

00000

0000

0000

3ˆ

3ˆ

2ˆ

2ˆ

1ˆ

1ˆ

1000

0100

00100

00010

000010

000001

3ˆ

3ˆ
2ˆ

2ˆ
1ˆ

1ˆ

2

1

2

1

2

1
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The relationship between filtered and unfiltered 

control increments can be expressed similarly. 

Using matrix notation we can define following 

equations 

     1ˆ  jkjkjk fCfC yHyCy                 (78) 

     1 jkjkjk fCfC uHuCu          (79) 

where matrices Cc and Hc are defined as follows 
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CH                              (81) 

From equations (78) and (79) we can express the 

filtered variables  

     1ˆ  jkjkjk fCfC yHyCy                 (82) 

     1 jkjkjk fCfC uHuCu            (83) 

After substitution of equations (82) and (83) to 

equation (73) we obtain 

    

    
   11

11

1ˆ

1

1











jkk

kjk

jkjk

ff

fCC

fCC

QyuP

uHuGC

yHyC

                 (84) 

After modification we obtain resulting equation of 

the predictor 

       

   1

11ˆ





jk

kjkjk

fCC

fCC

yQCH

uGHPCuGy
  (85) 

We can establish following substitutions 

 CC GHPCP 
~

                                                 (86) 

 QCHQ CC 
~

                                                  (87) 

The prediction equation then can be written in the 

form 

       1
~

1
~

1ˆ  jkkjkjk ff yQuPuGy (88) 

6 Simulation Verification  
6.1 SISO control  

Verification by simulation was carried out on a 

range of plants with various dynamics. The control 

of the model below is given here as an example. 

 
165

3
2 


ss

sG                                                  (89) 

It does not exist a systematic way for selection of 

the filter C. Its selection is mostly based on 

intuition. In our example the filter was chosen as 

  211 05,08,01   zzzC                                     (90) 

The sampling period was tuned experimentally 

and the best value was T0 = 2 s. The controlled 

variable was affected by a noise with zero mean 

value and constant covariance. Simulation sampling 

of noise was 0,1 s.  

In figures 1-6 are simulation results. Figures 1,3 

and 5 show time responses of the control without 

the filtering of the variables introduced in section 4. 

Figures 2, 4 and 6 show time responses of the 

control with the filtering of variables described in 

section 5.  

In figures 1 and 2 there is the response of the 

controlled variable taken by 0,1 s. It means with the 

same sampling period as the simulation noise. 

Simulation results in this figure are the closest to the 

reality. In figures 3 and 4 there is the controlled 
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variable taken by 2 s. It means with the same 

sampling period which is used for the control. The 

data then simulates measured values. In figures 5 

and 6 is the manipulated variable.     

The tuning parameters that are lengths of the 

prediction and control horizons and the weighting 

coefficient λ were tuned experimentally. There is a 

lack of clear theory relating to the closed loop 

behavior to design parameters. The length of the 

prediction horizon, which should cover the 

important part of the step response, was set to N = 5. 

The length of the control horizon was also set to Nu 

= 5. The coefficient λ was taken as equal to 0,1. 

It is necessary to emphasize that the displayed 

inputs and outputs in the graphs are not filtered. The 

filtered values are used only for computation of 

systems output predictions and consequently for 

computation of the control law. The displayed 

inputs and outputs are real unfiltered values. 

 

Fig. 1 Controlled variable sampled by 0,1s – case 

without filtering of variables 

 

Fig. 2  Controlled variable sampled by 0,1s – case 

with filtering of variables 

 

Fig 3  Controlled variable sampled by 2s – case 

without filtering of variables 

 

Fig 4  Controlled variable sampled by 2s – case with 

filtering of variables 

 

Fig 5 Manipulated variable – case without filtering 

of variables 
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Fig 6  Manipulated variable – case with filtering of 

variables 

 

6.2 MIMO Control 
The MIMO simulation controlled system was 

chosen as follows 
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A corresponding discrete model in the form 

given by equations (8), (9) and (24) was obtained by 

recursive identification. Control in the initial 

adaptation phase then has worse quality.  The filter 

C was chosen as (90). 

The best value of the sampling period was found 

as T0 = 0,5 s. The controlled variable was affected 

by a noise with zero mean value and constant 

covariance. Simulation sampling of noise was 0,1 s.  

In figures 1-6 are simulation results. Figures 1,3 

and 5 show time responses of the control without 

the filtering of the variables introduced in section 4. 

Figures 2, 4 and 6 show time responses of the 

control with the filtering of variables described in 

section 5.  

In figures 1 and 2 there is the response of the 

controlled variable taken by 0,1 s. It means with the 

same sampling period as the simulation noise. In 

figures 3 and 4 there is the controlled variable taken 

by 2 s. It means with the same sampling period 

which is used for the control. In figures 5 and 6 is 

the manipulated variable.     

The length of the prediction horizon was set to N 

= 5. The length of the control horizon was also set to 

Nu = 5. The coefficient λ was taken as equal to 0,1. 

 
Fig. 7 Controlled variable sampled by 0,1s – case 

without filtering of variables  

 

Fig. 8 Controlled variables sampled by 0,1s – case 

with filtering of variables  

 
Fig. 9 Controlled variables sampled by 0,5s – case 

without filtering of variables 
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Fig. 10 Controlled variables sampled by 0,5s – case 

with filtering of variables  

 

Fig. 11 Manipulated variables – case without 

filtering of variables  

 
Fig. 12 Manipulated variables – case with filtering 

of variables 

 

 

7 Conclusions  
Specific self-contained prediction equations for the 

input-output models in the form of transfer function 

in case of SISO system and matrix fraction in case 

of MIMO system were derived for the case with 

filtering of the input and output variables. 

Simulations, where the filtered variables are used 

for computation of the control law and the 

manipulated variable, were performed. In the 

simulation results are displayed real unfiltered 

variables. By simulation control of a range of 

systems were compared control results of cases with 

and without the C-filter. The C-filter is a tuning 

parameter for which setting we do not have 

available any exact methodology. The filter was 

designed by try it and see approach as a low pass 

filter. Obviously better results were achieved in case 

with the C-filter particularly regarding rate of 

oscillations of the input and output variables. It is 

obvious that the variables are more settled in case 

with the C-filter. The filter reduces sensitivity of the 

closed loop system to high frequency noise. Cost for 

this improvement is a relatively difficult setting of 

the C-filter as a parameter. 
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