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Abstract: - The intention of this paper is to investigate the boundary roughness of a mounted obstacle which is 

inserted into an incompressible, external and viscous flow field of a Newtonian fluid. In particular, the present 

study focuses on the cross – sectional area of the obstacle, which is assumed to be a non deformable body (rigid 

object) with a predefined shape of random roughness. For facility reasons and without violating the generality, 

one may select the cross – section of the body which contains its center of gravity and is perpendicular to the 

main flow direction. The boundary of this cross – sectional area is mathematically simulated as the polygonal 

path of the length of a single – valued continuous function. Evidently, this function should be of bounded 

variation. The novelty of this work is that the formulation of the random roughness of the boundary has been 

carried out in a deterministic manner. 
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1 Introduction 

In the current literature, the irregular boundaries are 

mostly modeled as spatially homogenous random 

processes. However, the spatial variations are many 

times very small for computational grids [1]. 

Nonetheless, the majority of geometric models 

which currently appear in literature and are based on 

an Analytical or Differential Geometry viewpoint, 

have not included any particular deterministic 

formulation for the roughness of the 

circumstantial boundaries [2], [3], [4], [5]. On the 

other hand, referring to the influence of the 

roughness of  an  arbitrary surface,  one may 

report  that  any  surface  which is  inserted  into  

an  external  viscous  flow  is called  “smooth”,  

when   its   roughness   is  less than the 

averaging thickness of the viscous sub layer, 

which is evidently at least the 1%  of  the 

thickness  of  the  self  –  preserving turbulent 

boundary layer [6],[7]. In the meanwhile, 

during conceptual design process of aircrafts 

or some special architectural forms, the rigid 

body can be mathematically simulated by 

creating a stack of cross sections and then 

lofting in between these sections to create a 

smooth shape [8], [9], [10]. 

In such cases, the boundaries of these cross 

sectional areas are not self – intersecting 

or continuously constructing curves [11].  In the 

past years, there is a lot of recent research work 

carried out for the investigation of boundary 

roughness concerning mounted and/or rotated 

obstacles. In Ref. [12] a unified approach to 

time periodic incompressible viscous fluid flow 

problems is presented. Besides, a considerable 

study on the influence of surface roughness on 

shear viscosity was performed in Ref. [13]. 

Moreover, in Ref. [14] a comprehensive 

investigation into how the boundary 

roughness affects a fluid flow through a 

corrugated pipe is presented, whereas for a 

detailed study on the influence of surface 

roughness on a separating turbulent boundary 

layer one may refer to Ref [15]. Further, in Ref. 

[16] an experimental study of rotating – disk 

boundary layer flow with surface roughness was 

carried out. In this context, it was shown that if 

the surface is sufficiently rough, laminar–

turbulent transition can occur via a 

convectively unstable route ahead of the onset 

of absolute instability.  Finally, in Ref. [17] 

an applicable investigation on the influence of 

rotating wheels, ride height and wheelhouse 

geometry on the drag coefficient of electric vehicle
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was carried out by means of Computational Fluid 

Dynamics (CFD) techniques.  The objective of the 

present work aims at examining the roughness of 

the boundary of a mounted obstacle inserted for 

an incompressible viscous flow field. The 

mathematical formalism that we shall develop 

here in order to carry out a deterministic 

approximation of the roughness of a two – 

dimensional boundary, premises beforehand two 

fundamental assumptions which concern the 

geometrical features of this boundary. In 

particular, the rough boundary of the cross sectional 

area of the mounted obstacle, due to its random 

roughness, has not been considered as: 
i) Piece – wise smooth and parameterized surface

from Differential Geometry standpoint.

ii) Smooth surface from Fluid Dynamics standpoint.

In this framework, the boundary has been simulated 
as the polygonal path of the length of a single – 
valued continuous function. Evidently, this function 
should be assumed beforehand to be of bounded 
variation. The novelty of this work is that the 
formulation of the random roughness of the 
boundary has been carried out by means of a 
deterministic method and thus does not involve 

stochastic random processes. 

2 Problem Formulation 

2.1 Towards an analytical simulation of 

boundary geometry 

It is known that for any type of external viscous 

flow patterns, along the boundary, which marginally 

constitutes a stream surface, the following statement 

holds [6],[18] 

0 zyx VVV    

0 zyx VVV      (1)

Thus, taking into consideration the well-known 

relationship which describes the network of the 

streamlines according to Eulerian formalism for 

the description of a flow field [18],[19], one may 

obtain the following relationship:  

zyxzyx VVV

dzdydx

V

dz

V

dy

V

dx




  (2)          

Eqns. (1) and (2) can be combined to yield  

ctzyx    (3)

Moreover, according to eqn. (2) one may deduce 

that 
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where 
*

RQ

QThus,   given a specific value of the  parameter  , 

one  may  also derive the  equation of  the  

corresponding osculating  sphere  for  an arbitrary  

point  lying on  the boundary of the mounted 

obstacle.     

In the meanwhile, it is known that any two – 

dimensional curve the tangent lines of which have 

geometric properties independent of the 

circumstantial contact point, leads to an 

Ordinary Differential Equation (ODE) of Clairaut 

type [20], [21].    It is well – known that the 

complete solution of this ODE constitutes a single – 

parameter bundle of lines [20],[21]. Obviously, 

these lines have the same geometric features with 

the tangent lines of the aforementioned curve. In 

this context, one may also deduce that the 

envelope of this bundle of lines coincides with 

any level curve of the surface – area of the 

mounded obstacle for each seperate value of the 

parameter.  In a motionless rectangular Cartesian 

frame of reference, the coordinates of any 

tangent line are given as:
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'
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Hence the differential form of the curve is: 
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where cxy   
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The complete solution of eqn. (5) is expressed in the 

following single – parameter representation 

[20], [21]: 




 1,
1
c

c

c
cxy



  02  ycxyxc    (6)  

where 1c  

Apparently, eqn. (6) constitutes a single – parameter 

family of lines.  

Consequently, the envelope of eqn. (6) can be 

estimated as 

   04
2

xyxy 

   xyxy 4
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yxxy 2 

        

yxxy 2 

 yxxy 2
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 yx (7)    
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 yx (9)                           

Evidently, the mathematical disjunction consisting 

of eqns. (7)   (8)   (19) is equivalent to eqn. (6). 

Besides, eqns. (7), (8) and (9) can be solved for the 

variable y , resulting in the following mathematical 

disjunction: 

 2

xy       (10)



 2

xy             (11)     

2.2 Towards an analytical formulation of the 

     boundary roughness 

Suggestively, let us select eqn. (10) letting the 

variable x  lie over an arbitrary interval ],[ ba .  

p

],[ ba

Then we shall evaluate the polygonal approximation 

of the length of this function. 

In this context, to formulate the roughness of any 

possible curve motivated by eqn. (10) from the 

differential point of view, we need to estimate the 

polygonal approximations of the lengths of these 

functions with respect to an arbitrary partition of 

the interval  taking also into account that these 

functions are of bounded variation in their 

domain of definition [22], [23]. Hence, we can write 

out: 
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Apparently, the following mathematical conjunction 

holds: 

),(),(min pfVpfL     (13)    
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Evidently when the cardinality of this partition 

increases, also the roughness of the boundary does. 

On the other hand, it is also known [22], [23] that 

any finite summation can be represented 

equivalently as the Riemann - Stieltjes integral of 

an appropriate single – valued function, which 

cannot be obtained in a direct manner. In this 

context, one may proceed as follows:  

Let  Rh ),0[:  be a continuous single valued 

function.  

Then for every interval: ],0[ x : 1x  the following 

relationship holds: 

 

  


xx

n

tdthnh
01

)()( (16)        

Hence one may request the validity of the following 

equality: 

 
x

tdthpfL
0

)(),(    (17)                                                                            

On the other hand, it is known from Calculus that 

referring to the integer part of any real variable the 

following statements hold: 

0][10  tt     (18A1)                                                                            

1][21  tt         (18A2)

0]2[32  tt     (18A3)                                   

1]2[43  tt (18A4)                                                                                            

…………… 

…………… 

 1 [x] 2 [x] t 01][x][t     (18Ax-1)

 [x]t1[x] 11][x][t      (18Ax)                   

Consequently, over the interval )2,0[  one may infer 

)(][ tHt  (19)                                                                                       

where )(tH  denotes the Heaviside step function, 

which is also known as the Unit Step Function.     

Evidently the following relationship holds, 

 ][,0]2,0[ x    (19A)  

In this framework, one may proceed in the same 

manner respectively, over the next intervals 

 [x] 2, - [x] ,  ... [[2,4], . 

Besides, by differentiating eqn. (19) withy respect 

to t , it implies that 

)(][ tdHtd  (20)

Next, since Heaviside function satisfies Dirichlet’s 

principles, it can be expanded in a Fourier series as 

follows  




 




1 12
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2

1
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Apparently, the above approximation holds over the 

interval    [-  and also at  t  and at  t  

the corresponding series converges to
2

1
. 

Thus, one may deduce that this approximation holds 

if and only if  xt  

Nonetheless, the above restriction does not violate 

the proposed mathematical formalism to estimate 

the boundary roughness.    

In continuing, a differentiation of eqn. (21) with 

respect to t yields 

  dttktttdH )12(cos...3coscos
2

)( 


 (22) 

Eqn. (22) and eqn. (20) can be combined with to 

yield  

  dttktttd )12(cos...3coscos
2

][ 


 (23)

3 Problem Solution 

Now, for facility reasons one may additionally 

assume that the continuous function )(th  which 

first appeared in eqn. (16) is analytical over its 

domain of definition, and therefore it can be 

expanded in Taylor series centred at any point of 

this domain. 
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Hence, this aforementioned function can be 

represented by an Nth – degree polynomial )(xP  

such that 

)0()0(

)0()0(

)()( nn Ph

Ph







    (23)     
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In this framework, eqn. (17), eqn. (22) and eqn. (23) 

can be combined to yield 
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In continuing, to calculate the integral on the right 

hand side of eqn. (24) one may take into 

consideration that the antiderivative 

*,)()cos( RAdxtPAt    is given as 
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Since 0)()1(  tP n

Thus we can write out 
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Then, after the necessary algebraic manipulations 

eqn. (26) finally yields 
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Summarizing, one may infer that should the single - 

valued continuous functions introduced by eqns. 

(10) and (11) be replaced by their 

corresponding Taylor expansions, the “roughness” of 

their graphs drawn in a rectangular Cartesian frame of 

reference, can be reliably simulated in a deterministic 

manner as the polygonal approximation of the length 

L ( f , p).

4  Discussion 

In the previous unit, a deterministic 

mathematical formulation for the roughness of a 

boundary of a mounted obstacle, which is inserted 

into an external incompressible viscous flow of  a 

Newtonian fluid was performed. To accommodate 

our mathematical analysis, we centred on the cross – 

sectional area of the ob                    stacle which con                           tains its  

centroidal axis and is perpendicular to the main 

flow direction. The boundary roughness of the 

obstacle was modeled as the polygonal 

approximation of the length of a function which 

was assumed beforehand to be of bounded 

variation.  This method could be further utilized 

and/or developed, by its implementation in parallel 

with Johnson’s mathematical formalism [24], [25], 
[26], which concerns convex polyhedra with 

regular faces, since all convex functions satisfy 

Lipschitz condition and indeed are of bounded 

variation. In this context, one may take into account 

that the envelope of the cross - sectional area of any            

convex polyhedron constitutes the graph of a 

Lipschitz function. Thus, the cross – sectional area 

of any convex polyhedron, could be considered as 

the polygonal approximation of the length of a 

single – valued convex function. In addition, one 

may say that this proposed method could be 

improved and refined by taking into account some 

exact and / or approximate forms of the unit step 

function presented in Refs.[27], [28], [29].

5Conclusion
The aim of this paper was to present a deterministic 

mathematical formulation for the boundary 

roughness of a mounted obstacle, which is inserted 

into an external viscous flow of a Newtonian fluid. 

In this context, the author considered the cross – 

sectional                              area of th   e    obstacle which contains its 
center of gravity and also is perpendicular to the 

main flow direction. This area was assumed to have a 

predefined shape but random roughness. Then by 

means of a Mathematical Analysis viewpoint,   the 

boundary roughness of this area was simulated as 

the polygonal approximation of the length of a 

continuous function. This function was assumed to 
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be of bounded variation. The novelty of this work is 

that the introduced mathematical model is 

deterministic throughout and does not involve 

stochastic random processes. This method could be 

further exploited and utilized by its implementation 

together with Johnson’s theory for convex 

polyhedra with regular faces, since every convex 

function satisfies Lipschitz condition and evidently 

is of bounded variation. 
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