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1 Introduction and Task Statement 

1.1 The Double Rotating Coordinate System 
The earlier developed mathematical model for the 
flow in double rotating coordinate system [1], [2] is 
implemented for the stability analysis. The first 
rotation is going around z-axis as shown in Fig. 1, 
with the rotation speed Ω. The other rotation is done 
with the rotation speed ω regarding the tangential 
axis to the main rotation circle above-mentioned, at 
the distance R0 from the central axis z (x=y=0) of 
the device.  

Fig. 1 The coordinate systems in a flow 
of the double rotating coordinate system 

There are 3 cylinders rotating with the rotation 
speed  installed around the axis z on the distance 
R0 from the centre, equally distributed by the circle 
of the radius R0. Their radiuses are r0 [1, 2].. The 

flow situation and the varying centrifugal forces are 
shown in Fig. 2: 

Fig. 2 The schematic directions of centrifugal forces 
in flow of the double rotating coordinate system 

The above centrifugal forces are acting as shown 
in Fig. 2, where the centrifugal forces due to the 
main rotation (red colour) are directed in all points 
of the domain to the left in channel (edge of the 
main rotation circle), while the centrifugal forces 
due to rotation of the cylindrical channel (black) act 
by the radius of the channel. Therefore, in the 
position 1, the forces act counter currently causing a 
high strength of liquid (condition for cavitation!).  

In the left side of the cylindrical channel (the 
situation 2) both forces act in the same direction 
causing the dramatic increase of pressure and its 
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oscillation (condition for bursting of bubbles born 
due to cavitation). In all the other points of flow 
region (the situations 3 and 4 for example) a liquid 
is forced from the point 1 to the point 2 counter 
currently from the top and bottom of the channel.  

The channel is rotating around its axis and 
moving in the main rotation around the vertical axis 
at the same time. Flow in the above described 
system is due to the liquid pumped into the rotating 
device from below creating depressurization at the 
entrance to the central vertical channel around the 
vertical axis. Water is supplied to the curvilinear 
helicoidally channel, which uniformly spreads it to 
the three channels (cylindrical cavitators rotating 
around their horizontal axes). More in details it was 

0x y 

described in [1],[2]. 
The rotating coordinate system has the vertical 

axis z ( ) on distance R0 as shown in Fig. 1. 
Also rotation is going on around the axis tangential 
to the circle of the radius R0. Intensive rotational 
movement and mixing flow are fascinating 
phenomena and may be highly effective in a number 
of applications [3],[4],[5].  

Many theoretical aspects have been studied for 
the diverse exciting rotational flows including 
accounting the cavitations effects and stretching 
of the liquid [6],[7],[8],[9],[10],[11],[12],[13],
[14]. But it requires deeper understanding 
of the phenomena for complex rotational flow 
with stretched liquid and alternating fast changing 
mass forces and flow conditions. It is interesting 
both from the theoretical point of view as the new 
class of flow, as well as from the practical 
applications, e.g. for the new technologies 
and devices [2]. 

In the cylindrical system (r,φ,z), the coordinate
surfaces are cylinders r = constant,semi-planes 

const  and planes z const . Differential 
equation array for fluid flow is as follows [1]: 
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Here are:  , , , ,v u v w p  - density, velocity
vector and pressure, µ, /   - dynamic and 
kinematic viscosity coefficients, respectively, The 
water is incompressible liquid, therefore, density is 
constant by comparably small variation of the 
pressure and temperature. 

The careful study of the literature did not reveal 
any papers about the fluid flows under double 
rotations like in was presented in the invented and 
tested by Kujtim Hyseni device [2]. In this case, as 
shown in Fig. 2, the centrifugal forces are varying 
by the angle of rotation of the flow in a turbine 
located on the horizontal disk rotating around the 
vertical axis. Volumetrically distributed can be only 
mass forces, which are rarely met, e.g. 
electromagnetic or centrifugal ones. In the unique 
considered case, as shown in Fig. 2, there are 
positions in a flow with the stretching liquid, which 
may cause negative pressure and strong cavitations 
effect nearly unknown for the moment. The 
first attempts in this direction were made in 
[1], [2]. Further study is presented here by 
stability analysis of rotational flow. 

1.2 Statement of the Problem 
The equation array (1) is considered for isothermal 
incompressible flow. Parameters of the flow are 
stated as a stable average part plus small deviation 
in a wavy form  i kz m t

e
   : 'u u u  , 'v v v  , 

'w w w  , 'p p p  , with the amplitudes of 
perturbations, respectively: 'v V , 'w W , 'p P .  

After substitution of the introduced parameters in 
(1), the linearized approximation for perturbations 
of the parameters is obtained: 
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It is seen from (2) that such wavy oscillations do not 
satisfy the equations due to dependence on angle φ.  
 
 
1.3 Substantiation of the Problem Statement  
The corresponding above peculiarities must be 
substantiated. Consider the supplied water flow rate 
q (l/s or kg/s) due to the main rotation with the 
speed   (Hz, 1/s).  

The power introduced by this rotation is 
approximately N=  

2
0q R  (W). It is distributed by 

three turbines, the power of each of is ideally about 
Nt=N/3. Without the looses in the system, the power 
of the turbines by their rotation can be estimated as 
1/3 of the total flow rate, Nt=  

2
0 / 3q r . This 

yields the following approximate correlation: 
                         0 0/R r   .                          (3) 
We have 0R =187 mm, 0r =63 mm - for the outer 

channel of the turbine and 57 for the inner channel 
of the turbine of the width 3 mm. In turbine it is 
distributed flow by the rotation and movement along 
the axes. Rotational flow is the most because it is 
arranged for cavitation inside the turbines. Let us 
take for the estimation 0r =60 mm, then it results 
from (3): 3.1   . Accounting the losses it may 
be taken approximately 3   . Then from (2): 
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2 Stability Modelling and Analysis 
The equation array (4) shows that dependence from 
the angle of rotation is principal and cannot be 
neglected. Therefore, it can be used for the 
estimation of the oscillations but not for the precise 
solution. If m, k are real values, then only harmonic 
oscillations are available varying in time. From (4), 
accounting that all equations must satisfy separately 
for their real and imaginary parts yields: 
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2.1 Simplification of the Equations 

By 0U   (estimation: 0U  ), 2
02 /( 1)m Ur     

or    , which means the very high frequency of 
oscillations without instability (strong shaking).  

Further the equation array (5) is simplified to 
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The two contradictions to the assumptions made 
are seen from (6): dependence of the perturbations 
on the angle φ and impossibility to satisfy the 
equations 3 and 5 due to    . Therefore, the 
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perturbations  i kz m t
e

    are considered with the 
parameters: r ik k ik  , r ii    , where ,r ik k  
are the real and imagine parts of the wave number 
k , similarly - ,r i  .  

Then perturbations have the following form:  
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may be wavy by z,φ and time, and exponentially 
growing or decreasing by the axis of the channel, 
while their varying in time is got from solution of 
the equations. Thus, from (4) yields: 
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Here r  determines the oscillation frequency by 
time, while i  is responsible for growing of the 
oscillations ( 0i  ) or their decreasing  ( 0i  ).  

The first four correlations for r , i  and ,U W  
may be transformed from (7) as follows: 
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The correlations (8) shows that the parameters 
,r i   expressed through perturbations’ parameters, 

radius of the channel and average velocities of the 
flow. This is very good result! The relation between 
the velocity amplitudes is comparably simple. Only 

one term in the parameter i , which depends on the 
angle φ, breaks the assumptions made. Thus, 
equation for i  is not accurate and may be used 
only for approximate estimations.  

Inaccuracy caused by dependence i  on φ in the 
last equation (8) is estimated as follows. The 
characteristic oscillations of the curvilinear channel 
are taken as the values similar to the waves 
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neglected. The approximate correlation is the next: 

2
0 0

6
2r r

i i

i i

k vk
wk

k m r k mr





      

2 2
0 0 0

2 12
3r r

i i

i i

k kv
wk wk

k m r r k m r

 
     

 
 

 
. 

Thus, in the above estimations ( =10-6 m2/s - 
kinematic viscosity coefficient for the water): 
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because   100 1/s (6000 rpm) and 40ik   leads 
to 104-40 w . Then the last two equations (7) lead to: 
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2.1.2 Equations for Amplitudes of Perturbations 

Now from (7), with account (9), the following is got 
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. 

All parameters in (10) were got, except , rm k , 
calculating from the last two equations, which are in 
general the cubic and the fourth degree algebraic 
equations, correspondingly. With the estimations 
above: 310rk  , 3m  , 2

0 6 10r


  , thus, 2 2 2
0 >>rr k m   

(3600>>9!). Therefore, the second term in the 
brackets of 2

rk  can be neglected comparing to the 

first one, and 2m - comparing to 2 2
0 rr k . Then yields 

0

0

3
2 sin r

i i

r v
k

m mk mk r
   

  
  

  
 

         0
0

1
2 cosi i

i

dw
wk r k

dz r k
     

 
 
 

    (11) 
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
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  
.                      

 
 
2.2 Calculation of the Wave Parameters 
Solution of the equation (11) is as follows 

    
 
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
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Then the cubic equation in (10) is solved for the 
parameter m. A cubic formula for the roots of  cubic 
equation ax3+bx2+cx+d (with a ≠ 0) is  

01
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,   1 3
2
i


 

 ,    

where  0,1, 2n , 1i   , so that the real root is 
only one in our case (a=1), so that:  
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r
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
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 
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,         (13)
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3

1 2 9 27b bc d    .      

Here are the following expressions for the functions: 
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. 

The value under the square root in (13) must be 
positive because m is supposed to be real value: 

2 3
1 04 0mD      , or 2 3

1 04   . This results in 

   
23 2 2 34 3 3 0b d b c c d bc     .  

In general case from the last fourth degree 
equation of the system (10) yields 
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3
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, 

where from expression for the parameter rk  is got.  
All parameters in (10), (12) are real values, 

therefore kiD , mD , krD  cannot be negative values: 
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The first condition (15) is always satisfied by the 

range of considering parameters ( 310rk  , 5ik   , 

3m  , 2
0 6 10r


  ) because part of the positive 

value to the left in the inequality results 
 6 4 2 2 2 2 2 4

0 08 8 0r rk r r w k m    , where from 

follows   6 4 4 12 2 2 4
08 36 10 10 8 0r rk r k m

 
    .  

 
 

2.3 Analysis of the Flow Stability 
Estimation for the velocity is as follows. The flow 
rate is totally 5.1 l/s, so that for each of the 3 
turbines is 1.7*10-3 m3/s. The cross section is 

estimated as a gap of the area S=2πr0*6*10-3 m2=2π
-2 -36 10 6 10    m2. Thus, w =-0.752 m/s, 0v r

=18 m/s. w <0 because flow is going against the 
axis z, which is the axis of the turbine and tangential 
to the main rotation circular plate with turbine.  

By these estimations, 

  
310

1 10 2.33 3.46 0.9 sin     
 

,  

thus, max  10 10
1 10 2.33 0.346 1.98 10        by 

sin =-1; min 11
1 2.6 10     by sin =1. And max

8
0 5.2 10    by sin =1; min 6

0 3.2 10    by 

sin =-0.9. Therefore, 2 3
1 04    is not satisfied by 

sin =1 ( 2 22
1 6.76 10    while 3 26

04 5.6 10   ). 

By sin =-1 it is approximately 2 20
1 3.92 10    and 

3 20
04 1.31 10   , so that 2 3

1 04    is satisfied. 
Thus, solution for the m is not correct for all values 
of φ and we have to find the other conditions for it. 

The other transformation of (7) is done excluding 
dependence of the equations on   in accordance 
with the assumptions made. Let assume correlations 
for the perturbations similar to the above velocities 
and neglect the first term in cos 3W V   
comparing to the second one. Then in 3 sinU W   
neglect the second term comparing to the first by 
ki >>1, e.g. ik =-10 leads to 2.7ik z

e


  by z=0.1. 

By intensive perturbations, ki  may be higher.  

-6* 0/( )iV k r  in the expression iW  in the last 

equation is compared to  2 sin cos /i rV mk k   . 

It was shown 03/( ) 1ik r  , / cos 1i rmk k    and 

sin 1  ( / 0.1i rmk k  , 100rk  , 1, 10im k   ).  
The first term exceeds the second one. Finally, (7): 
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Separating the imaginary and real parts in the last 
two equations of the system (16) yields  
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Viscous terms are negligibly small, therefore 
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Solution of the equation array (18) is as follows
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mD , kiD must be positive ( ik , m are real). Then 
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Accounting 03v r  , / 0dv dz  for constant
by z rotation, which is the main reason for this 
velocity, and 0w   (flow in turbine is opposite to z-
axis), then the first inequality (20) results by 0ik  :

2 2 272iw k   or 2 2 272iw k    by 0ik  .  
By 0ik  , the perturbations decrease along the 

axis, and by the above estimations approximately 
yields 0.09 ik  , where from for the above 
estimation 0.9 . As far as  100  , ik must be 
too big, which is not real in our case.  

By 0ik  , 2 2 272iw k   , or 0.09 ik  , which 
is satisfied in our situation [1, 2]. The second 
condition (20) yields by the above estimations: 

 
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2 3 3/ 0.26 /rdw dz k m  . 
The last can satisfy only by nearly the same order of 

rk  and m  because the frequency is high. 
The solution (19) with the restrictions (20) may 

be used for calculation of the flow perturbation 
parameters. Also it is interesting to get solution of 
the problem for complex values m, which mean that 
2 counter-current waves by the angle φ going from 
the position φ=0 to     from the top and bottom 
are interacting and growing.  

Suppose m=mr+imi and consider perturbations: 
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   
   
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2
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r

k m mm
P k k

V k r r





  
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  
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,     (21) 
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, 
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r

m mm dv
v wk P

r k r dz r V



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2 2
2 2

2
0

1
6 r ir

i i r i

r

m mm
m k k k
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

 
    

  
  

   
. 

 
2.3.1 Nonviscous Solution of Instability Problem 

Neglecting the viscous terms as it was done above 
we simplify the equation array (21) as follows: 

0

0r r
i i r r
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k m v k w
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  
  

  
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        0

0

rr r

r r r
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w v w P

k r k m V




    

 
 
 

,     (22) 
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k k r kdw v
P m w k w
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


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, 
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m m
v wk P

r r V



   ,   6 r

i i

r

m
m k

k
 
 

 
 

               

0 0 0

i ir
i i

r

m mm dv
v wk P

r k r dz r V



     . 

Analysis of (22) shows that r i i rm k m k  is the 
trivial solution, which leads to U =0 and identically 
satisfies the fourth equation reducing the number of 
equations creating the indefinite solution. Thus, it is 
excluded ( r i i rk km m ). Then follows: 

0

r

r

wm
P V

k r
  , 

1 r
i i

r

kdw
k m

w dz m
  , 

0

0rm
P

r V
 ,    

   
0

r
r r

m
v k w

r
   ,   

0

i
i i

m
v k w

r
   ,             (23) 

06ir r
i i

r r

mm mdv
P r k m

k dz V k
  

 
  

 
. 

From equation 0rm P   follows 0rm   because 
0P   gives also the trivial solution. Then (23) is  

0rm  ,  iU mV ,  0W  ,  
r rk w  ,       

        0/i i ivm r k w   , 0P  , 0r ik m  .      (24) 
If in (24) 0rk  , then 0W P  , 

iU mV , 
0r  , 0/i i ivm r k w   , so that perturbations are 

only in two interconnected velocity components (by 
φ and z), which are not oscillating but just growing 
or decreasing by time and along axis of the turbine: 

 0/i i i
vm r k w t k z

e e
   . If 0im  , then 0U W P   , 

r rk w  , 
i ik w  , only rotation velocity has 

perturbation  ( ) ir
k wt zik z wte e

 . A simple sinusoidal 
kinematic wave z wt const   of length 2 / rk  
spreads along axis with a speed of flow w .  

 
2.3.2 Effect of Viscosity on the Flow Instability  
Solution of (21) with viscous term in third equation 
to the right (product to the left is small nonzero) is:  

0
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
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, 
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
, 

2
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2r r r
i i

r r r

m k m v
k

k w m k r r
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 

 
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2 2 2
0

3r r

i
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k r r v wm
k w

k r m
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 


,                  

           2
0

2r r r
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r r r

m k m
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k w m k r


  

 
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 

,           (25)         
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   
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0

3
0r r i

r

k r v r m k
m w
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



  
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2

2 2
0 0 0

1
12 6

r r r r

r

k m m k wdw w

m r dz r r
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 

    
    

    

 
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2
0 0

0
12

3 0
12

r
i
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r k r
r v k

m w m k w m






    

 
 . 

The equation array (25) thus obtained allows 
computing the parameters of the perturbations: 

, , , , , , ,i r i i rU W P m m k   . Here rk  can be stated 
according to curvilinear channel, 2 100 628rk    , 
which means one wave by z on 1 sm distance along 
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the axis. All amplitudes of perturbations are 
expressed through V. The last equations (25) yield 

22 2 2 2
0 0

0 2 2

1
11r r

i

r r

r k r kdw
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w m w dz m


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                 0
03r

r

r k
v r

m 
  ,                         (26) 

2 2
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1 1
6 12

r r
i

r

r k k w m dw wrk
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3
12

r

r r r

k r
v r

w m k w m






  

 
. 

The last equation (26) has  01 / 12w r   estimated 
as 1+0.75/(12*6*10-2*102) 1+0.010 1. It yields: 

2 2
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2 2
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1
6

r r r
i

r

r k k w
k

m

w m d
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 
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w m k w m




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 
 ,   (27)              

where from with account of the first equation (26):  
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            0 0 0
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.                                                            

With the estimation above, (28) is simplified to: 

              3 21
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.               

The estimation of the (29) is as follows:  

 
6

3 24 5 10
1 765 1760 0

3 8r r r

i i

dw
m m m

k dz k
    

 
 
 

, 

therefore, the substantially big term is the last one 
because even 100ik    results huge growing of the 
perturbations by z. And rm  is supposed to be less 
than 10, because by high frequency of rotation it is 
not available high frequency of oscillations by φ. If 
so, then from the above 0.435rm  . Thus, the 
cycles by φ are 4.6n n  , so that it is slightly 
more than 2 total cycles, and the first is 0.31 radian 

after / 2 , then after another 4  and / 5  , so 
that it moves after each 4 . From (27) follows 

 6
0133 0.35 435 138 10 3i

dw
k v r

dz
      

 
 
 

.                                

A specific peculiarity of the system is seen: the 
last term has huge multiplier in front of the small 
value 03v r  , because 03 0v r   . Flow has not 
the same velocity as the rotating turbine but close to 
it. If in a first approach we neglect it, we get  

 133 0.35 435 /ik dw dz   . 
Estimation / 0dw dz   due to nearly constant axial 
velocity (on a short distance 0.1m) yields 47ik   , 
which is close to the assumptions made. Due to 
small viscous forces comparing to the inertial by 
high rotation, if they are neglected, (21) yields: 

r
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Excluding r i i rm k m k  as the trivial solution 
leads to U =0 and identically satisfies the fourth 
equation of the (30) reducing the number of the 
equations and thus doing the indefinite solution: 
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3
2 2

0 02 2 2
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1 i
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k r m k r
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. 

In this case we have arbitrary wave numbers both by 
z and φ (arbitrary wave lengths). We have only mi 

expressed through the other wave parameters and 
the explicit expressions for the wave increment i

and their oscillation frequency in time r . This 
corresponds to 03v r  when the average velocity 
by φ is coinciding with the same velocity of the 
rotation. And / 0dw dz   - constant flow velocity 
along the axis. Quite specific conditions and 
substantially indefinite solution of the problem. 

Thus, this case is excluded ( r i i rm k m k ) as 
before. Then from (30) yields the next solution: 
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v r v
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,       

   r rk w  , iU mV , 0W  , 0P  ,        (31) 

0rm  ,  
0

1
3i

v
m

r
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
,  

1
i

dw
k

w dz
 
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1 2
1 3 3

3
v w v

r v r
r w r w


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. 

Only 2 velocity components (by φ and across the 
channel) are nonzero. The perturbations are: 

 0

0

( )' 3'
,1

3
, ir

k wt zik z wtv

V

v ru
e e

V r

 
 



   
   
    

,   (32) 

where kr is the wave number, e.g. by the wavy form 
of channel 1 sm, kr=628.  

4 Conclusion 
The mathematical modeling and analysis revealed a 
few interesting features of the stability for complex 
rotational flow due to rotations in two perpendicular 
directions. For the flow in rotational channel with 
wavy walls, the nonzero oscillations were got only 
for the cross sectional and rotation velocities. Both 
are kinematic waves spreading along the axis of the 
curvilinear channel with the average flow velocity. 
And both have the growing forefront  ik wt z

e
 . The 

amplitude of oscillations across the channel depends 
on rotation frequency, while the oscillation 
amplitude of rotation velocity does not. The 
revealed features of the flow stability are important 
for the testing and further application of the new 
device [2]. Also it is of interest in theoretical 
development of the fluid flow under double 
rotations absolutely unknown for the moment. 
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