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Abstract: An algorithm for solving axisymmetric contact problems of thermoelasticity taking into account creep
processes is considered. To account for the contact interaction of bodies, the mortar method was used, and the
modified Jacobi method was used to solve the resulting system of linear equations. For the numerical solution
of the problem simulating the creep process, time discretization based on the implicit Euler method was applied,
and the Newton method was used to linearize the resulting system of equations. An algorithm with automatic step
selection based on obtaining an estimate of the local error of the method is proposed. The results of applying
the proposed algorithm to a demonstration problem simulating thermomechanical processes in a section of a fuel
element comprising from 1 to 100 fuel pellets are presented.
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1 Introduction
Taking into account the contact interaction of various
functional components of the equipment is an impor-
tant component in assessing the stress-strain state of
most structures. It is impossible to obtain an analytical
solution for practically important contact problems,
and numerical methods are used to determine the dis-
placement and stress fields. Therefore, the problem
of creating new effective algorithms and modern ap-
plication software based on them for solving contact
problems of computational thermomechanics is ur-
gent. The numerical solution of such problems can be
carried out using the domain decomposition method
[1], the penalty method [2], various variants of the La-
grange multiplier method [3], in particular, the mortar
method [4].

The paper presents the formulation of a quasi-
stationary multicontact problem and presents an algo-
rithm for the numerical solution of such problems tak-
ing into account changes in time of deformations and
stresses due to the creep effect. The application of the
proposed algorithm to a problem simulating processes
in a section of a fuel element operating in the mode of
constant heat dissipation power is considered. To ac-

count for the creep effect, an algorithm based on the
implicit Euler method in combination with the New-
ton method for linearization is considered. Calcula-
tions with constant and variable time steps were car-
ried out and the results obtained were compared.

2 Mathematical formulation of the
problem

Let us limit ourselves to solving the following axisym-
metric problem simulating thermomechanical pro-
cesses occurring in a fuel element: inside the cylin-
drical cladding GN there is a column of N − 1 identi-
cal cylindrical pelletsG1, . . . , GN−1 stacked on top of
each other, having an inner hole and chamfers at both
ends. Fig. 1 shows the modeling area corresponding
to half of the longitudinal section of the fuel element
section. We introduce the following notation for the
surfaces of bodies: S1 is the surface area on which the
1st kind condition for the normal displacement com-
ponent is set, S2 is the inner surface of the pellets, S3
is the upper end of the upper pellet, S4 is the outer sur-
face of pellets, S5 is the inner surface of the cladding,
S6 is the outer surface of the cladding.
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Figure 1: Scheme of the area model

Suppose that the coupling effect can be neglected,
so we will solve the problem of thermal conductivity
separately, and use the resulting temperature field to
solve the contact problem of thermomechanics. When
solving the thermal conductivity equation, the influ-
ence of the resulting mechanical deformations is not
taken into account.

Consider the following initial boundary value
problem for a nonlinear heat equation in the domain

G =
N⋃
α=1

Gα, t > 0 [5]:

c(T )ρ
∂T

∂t
= (kij(T )T,j),i + q(x, t), x ∈ G; (1)

T (x, 0) = T0(x), x ∈ G; (2)

T (x, t) = T1(x), x ∈ S6; (3)

−nikij(T )T,j(x, t) = 0, x ∈ ∂Gp\S4; (4)

− nikij(T )T,j(x, t) = α[T (x, t)−

− Tf (x̄, t)], x ∈ S4, x̄ ∈ S5,
(5)

where c(T ) is the specific mass heat capacity of the
medium, ρ is density of the medium, x is a vector of
spatial coordinates, t is time, kij are the components

of the thermal conductivity tensor, T,j =
∂T

∂xj
, q(x, t)

is the power of internal heat sources (different from
zero in pellets), T0(x) is initial temperature, T1(x, t)
is surface temperature S6, T (x, t) is temperature at

time t, ni are the components of the unit vector of
the external normal to the boundary ∂G, α is the heat
transfer coefficient on the surfaces S4 and S5, Tf (x)
is temperature at a similar point lying on the inner sur-
face of the cladding.

The mathematical formulation of the quasi-
stationary problem of deformable solid mechanics for
the case when there are no volumetric forces includes
[5] the following relations for each body with the
number α (i, j = 1, 3), t > 0:

• equilibrium equations

σji,j(u, t) = 0, x ∈ Gα; (6)

• kinematic boundary conditions

u(x, t) = u0(x, t), x ∈ SD; (7)

• force boundary conditions

σji(u, t)nj = pi(x, t), x ∈ SN ; (8)

• Cauchy relations for a linear full strain tensor

εij(x, t) =
1

2
(ui,j(x, t) + uj,i(x), t), x ∈ Gα;

(9)

• defining equations (Hooke’s law)

σij(x, t) = Cijkl(εkl(x, t)−ε0kl(x, t)), x ∈ Gα,
(10)

where xi are the coordinates of the vector x ∈ Gα;
σij are the components of the stress tensor; εkl are
the components of the full strain tensor; ε0kl are the
components of the inelastic strain tensor; ui are the
components of the displacement vector; Cijkl are the
components of the tensor of elastic constants; pi are
the components of the vector of surface forces; nj are
the components of the vector of the external normal to
the corresponding surface Sj ; SD and SN is the union
of surfaces on which kinematic and force boundary
conditions are set, respectively.

In the calculations carried out, it was assumed that
the lower ends of the cladding and the lower pellet are
fixed vertically, pi(x) differs from zero only on the
upper end of the upper pellet SN−13 (constant pres-
sure 50 MPa) and on the outer surface of the cladding
SN4 (constant pressure 10 MPa). The model took into
account that each pellet (exceptG1 andGN−1) comes
into contact with two adjacent (top and bottom) pellets
and the cladding (it is assumed that there is no initial
gap between them). Thus, there areN−2 pellet/pellet
contact pairs (Sα1 , S

α+1
3 ) and N − 1 pellet/cladding
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contact pairs (Sα4 , S
N
2 ). Sliding conditions without

friction are set on the contact surfaces.
Consider a pair of potentially contact surfaces re-

lated to bodies with numbers α1 and α2. To sim-
plify the record, we will use the index ”1” instead
of ”α1” and ”2” instead of ”α2”. For pellet/pellet
contact pairs, the index ”1” denotes the upper end of
the lower pellet, and the index ”2” denotes the lower
end of the upper pellet, and for pellet/cladding con-
tact pairs, the index ”1” denotes the outer surface of
the pellet, and the index ”2” denotes the inner surface
of the cladding. Then the additional conditions on the
surface S1

k for the case of frictionless contact are as
follows (for the surface S2

k conditions are written in
the same way):

σ1τ (x1) = 0; (11)

σ1n(x1) = σ2n(x̄2) 6 0; (12)

u1n(x1) + u2n(x̄2) 6 δ0n(x1); (13)

σ1n(x1)
(
u1
n(x1) + u2

n(x̄2)− δ0n(x1)
)

= 0. (14)

Here x1 is a some point lying on the surface of S1
k , and

x̄2 is a similar point, i.e. located opposite (normal to
S1
k) the point x1 on the surface of S2

k , δ0n(x1) > 0
is the function that sets the initial gap (the surface
areas could not touch each other at the initial mo-
ment), uαn = uα · nα, σατ = (σ (uα) · nα) · τα,
σαn = (σ (uα) · nα) · nα.

The conditions (11)–(14) guarantee that if S12
k

surfaces S1
k and S2

k coincide (in advance, the config-
uration and position of this section unknown), then
compressive contact forces will act on the contacting
areas. The conditions (11)–(12) are forceful, the con-
dition (13) is kinematic.

These conditions describe two possible situations:
1) in the final configuration, sections of potentially
contacting surfaces are in contact, kinematic condi-
tions (the corresponding coordinates coincide) and
force conditions (contact pressure modules coincide)
are met or 2) areas of potentially contacting surfaces
are not in contact: there is a gap between them, con-
tact pressures are equal to 0.

A characteristic feature of the considered problem
is that it considers many contact pairs, while there is a
strong change in the configuration of the contact sur-
faces during the operation of the fuel element. For
each pellet/pellet contact pair, as a result of heating, a
significant number of grid nodes located closer to the
chamfer come out of contact. Due to the large length
of the structure along the z axis, the fuel pellets, espe-
cially in the upper part of the column, are displaced by
a considerable distance relative to their initial position
(and relative to the cladding).

To simulate the creep process, we will use the
flow theory, the main provisions of which include [6]:

• additive decomposition of the derivative of the
full strain tensor in time

ε̇ij = ε̇eij + ε̇Tij + ε̇cij ; (15)

• incompressibility of creep deformation

ε̇cii = 0; (16)

• the relation for the derivative of the creep strain
tensor in time

ε̇cij = µσ
′
ij , (17)

where µ = 1
2
ε̇ci
σi

, σi =
√

3
2σ

′
klσ

′
kl, ε̇

c
i = f(T, σi),

σ
′
kl = σkl − 1

3σjjδkl.
Solving the problem (6) – (10) at time tm is equiv-

alent to [7] minimizing the functional

Π =
1

2

∫
Gα

σT (ε− ε0) dG−
∫
SN

uTp dS+

+

∫
Sk

λn (u2n(x) + u1n(x)− δ0n) dS (18)

when the kinematic boundary conditions (7) are met,
where λn —Lagrange multipliers that are projections
of stress vectors on the directions of external normals,
un = urnr + uznz .

For spatial discretization of the functional (18),
the finite element method was used, second-order el-
ements on a quadrangular grid were used in calcula-
tions. The discretization of the integral over the con-
tact surfaces is performed using the mortar method
[8], which is the variant of the Lagrange multiplier
method for the case of inconsistent meshes. The al-
gorithm and some features of the application of the
mortar method are described in [9].

The choice of the most effective method for solv-
ing systems of linear equations arising during the dis-
cretization of the problem was carried out. For this
purpose, the contact problem was solved in a ther-
moelastic formulation for a large number of pellets
(up to 100). The use of modified iterative methods
(in particular, the modified Jacobi method) turned out
to be more effective than the use of standard meth-
ods for solving systems of linear equations (for ex-
ample, the Gauss method for sparse matrices or GM-
RES). The selected preconditioner [9] enables us to
automatically take into account the exit from the con-
tact without additional intervention in the algorithm.
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Since stresses depend on creep deformations, the
equation (17) can be represented as the following sys-
tem of ordinary differential equations in vector form:

ε̇c = f(εc, t). (19)

If the implicit Euler method is used to solve (19),
then at time tm+1 the formulas for the local vector are
valid (for the element with the number (e)) increments
of creep strain and local stress vector

∆εc(e) = εc(e)(tm+1)− εc(e)(tm) =

= τmµ(tm+1)σ
′(e)(tm+1); (20)

σ(e)(tm+1) = D(e)(ε(e)(tm+1)− εT (e)(tm+1)−
− εc(e)(tm)−∆εc(e)), (21)

where D(e) is the elasticity matrix. The equation (18)
is nonlinear, the Newton method is used for lineariza-
tion [10].

The numerical algorithm can be described as fol-
lows:

1. For the moment of time tm+1, at the iteration
with the number i + 1, after summing local vectors
and matrices into global ones, the following system of
linear algebraic equations is solved using a modified
Jacobi method [9](

Ki(tm+1) Ml

MlT 0

)(
∆ui+1

∆λi+1

)
=

(
R(tm+1)

0

)
(22)

where ∆ui+1 = ui+1(tm+1)−ui(tm+1) is the vector
of increment of displacements per iteration, ∆λi+1 =
λi+1(tm+1)−λi(tm+1) is the vector of increments of
Lagrange multipliers per iteration, the matrix Ml re-
flects the contribution of the contact surface integral to
(18), the matrix Ki takes into account the contribution
of temperature deformation and creep deformation, it
is calculated anew at each iteration and has the follow-
ing structure [10]:

Ki =


c1 c2 c2 0
c2 c1 c2 0
c2 c2 c1 0
0 0 0 c3

 , (23)

where c1 =
1

3
(2C ′ + Cm), c2 =

1

3
(Cm − C ′), c3 =

1

2
C ′, C ′ =

1

aE + τkεc
, Cm =

E

1− 2ν
, aE =

1 + ν

E
,

τm = tm+1 − tm.

2. For each finite element with index (e) by dis-
placement values in nodes u(i+1)(e)(tm+1) the defor-
mation vector ε(i+1)(e)(tm+1) and the stress vector are
calculated as follows:

σ(i+1)(e)(tm+1) = D(e)(ε(i+1)(e)(tm+1)−
− εT (e)(tm+1)− εc(i)(e)(tm+1)). (24)

3. The formula (20) calculates the values of
∆εc(i+1)(e) and new creep strain values are found:

εc(i+1)(e)(tm+1) = εc(e)(tm) + ∆εc(i+1)(e). (25)

4. The convergence of the iterative process within
the time step under consideration is estimated: if the
following inequality holds

max
1en
||εc(i+1)(e)(tm+1)− εc(i)(e)(tm+1)|| < δ, (26)

where δ is the specified accuracy, then there is a transi-
tion to the next time step (if the specified time interval
has not yet been passed (tm+1 < tend)), otherwise —
to the next iteration.

To automatically select the length of the time step
at time tm+1, we will use the following algorithm
[11], based on Richardson extrapolation:

τnew = τ ·min

f1,max

f2, f3 · ( tol
err

) 1
p+1

 ,

(27)
where f3 is the guarantee coefficient, f1, f2 are the co-
efficients that ensure not too fast increase or decrease
of the step, in this case p = 1 is the order of accuracy
of the explicit and implicit Euler method, tol is the re-
quired level of accuracy. The implicit Euler method is
A-stable, so when choosing the step length, one only
needs to follow the approximation of the data [11].

The estimation of the local relative error for the
moment of time tm+1 is carried out as follows:

err =
1

2p − 1
max
j

∥∥∥∥∥ ε̂cj − εcjεcj

∥∥∥∥∥
2

(28)

where ε̂cj(tm+1) is the component of the global creep
strain vector obtained after from the time point tm−1
the calculation was performed for one time step of
length 2τ , εj(tm+1) is the component of the global
creep strain vector obtained after from the point tm−1
the calculation is performed for two time steps of
length τ . If err 6 tol, then the resulting values
are εj(tm+1) are accepted and a new calculation cy-
cle is performed from the point tm+1: 2 time steps
of length τnew and one time step of length 2τnew. If
er > tool, then the resulting values are εj(tm+1) are
considered rejected, there is a return to the point tm−1
and a new calculation cycle is performed, taking into
account that τnew < τ .
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3 Results of the numerical solution

We will carry out a series of calculations for the fuel
element section, which includes from 1 to 100 fuel
pellets. The inner radius of the pellets is 0.8 mm, the
outer radius is — 3.88 mm, the height is — 10 mm,
the outer radius of the cladding is 4.55 m [12]. We
will consider inconsistent grids: pellets are divided
into 10 elements in the directions of r and z, and the
cladding — into 5 elements in the direction of r, in
the direction of z, each section of the cladding corre-
sponding to the height of one pellet is divided into 10
elements. The average fuel element usage time in the
reactor is several years, so let’s choose the calculation
time tend = 3.2 · 108 c (≈10 years).

Let us consider the creep models used for the ma-
terials of fuel pellets and claddings, which are ele-
ments of the fuel element. The pellets are made of ura-
nium dioxide, the cladding is made of zirconium alloy.
Let’s give these models in more detail, described in
[13].

The rate of stationary creep deformation for fuel
pellets is determined by the expression:

ε̇ci =
(A1 +A2F )σe−

Q1

RT

(A3 +D)G2
+

+
(A4 +A7F )σ4,5e−

Q2

RT

A5 +D
+A6σFe

− Q3

RT , (29)

where ε̇ci is the rate of stationary creep deformation
(1/s), F is the density of divisions ((divisions/m3)/c),
σ is the stress (Pa), R — universal gas constant
(Cal/(mol K)), T is temperature (K),D is density (per-
centage of theoretical density), Q1, Q2, Q3 is acti-
vation energy (Cal/mol), A1, . . . , A7 are the constant
coefficients.

For the cladding, the rate of steady-state creep de-
formation has the form:

ε̇ci =
(B1 +B2F )σ

(A3 +D)G2
e−

Q4

RT +B3(1−D)+B4C+

+
(B5 +B6F )σ

(A3 +D)G2
e−

Q4

RT +B7(1−D)+B4C , (30)

where Q4, Q5 is activation energy (Cal/mol), C is the
concentration of oxide mixture (weight percentage),
G is the fuel pellet size (cm), B1, . . . , B7 are the con-
stant coefficients.

Graphs of the dependences of displacements and
stresses at the contact boundaries, as well as their two-
dimensional distributions in pellets and claddings are
presented in [12].

Fig. 2 shows two-dimensional radial, axial and
circumferential stress distributions for pellets, and

Fig. 3 shows similar distributions for the cladding
at the final moment of time. Fig. 4 shows two-
dimensional distributions of radial, axial and circum-
ferential creep deformations for pellets, and Fig. 5
shows similar distributions for the cladding. Frag-
ments of distributions corresponding to the section
from the 5th to the 9th pellets are shown, and when
constructing deformed bodies, the applied displace-
ments are increased 10 times for pellets and 50 times
for the cladding for greater clarity. It can be seen from
the graphs presented that radial stresses are compres-
sive in almost the entire pellet, the greatest compres-
sive stresses are achieved in the center of the pellets.
The greatest axial and circumferential stresses are ob-
served at the outer surface of the pellets, the smallest
stresses occur at the inner surface.

(a) (b) (c)

Figure 2: Two-dimensional distributions in the nodes
of pellet elements for the moment of time

t = 3, 2 · 108 s: a — radial stresses; b — axial
stresses; c — circumferential stresses

(a) (b) (c)

Figure 3: Two-dimensional distributions in the nodes
of the cladding elements for the moment of time
t = 3, 2 · 108 s: a — radial stresses; b — axial

stresses; c — circumferential stresses
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(a) (b) (c)

Figure 4: Two-dimensional distributions in the nodes
of pellet elements for the moment of time

t = 3, 2 · 108 s: a — radial creep deformations; b —
axial creep deformations; c — circumferential creep

deformations

(a) (b) (c)
Figure 5: Two-dimensional distributions in the nodes 

of the cladding elements for the moment of time
t = 3, 2 · 108 s: a — radial creep deformations; b —
axial creep deformations; c — circumferential creep 

deformations

Fig. 6, Fig. 7 shows graphs of the dependences 
of the average values of radial stresses on the outer 
surface of fuel pellets for the case of 100 pellets 
(one point corresponds to one pellet) at various 
points in time. The heat dissipation power is 
constant (Fig. 6) or varies according to the 
sinusoidal law according to the height of the fuel 
column (Fig. 7). It can be seen from the above 
graphs that radial stresses decrease 5–10 times over 
10 years compared to the initial stresses in the 
structure. Thus, taking into account creep defor-
mations leads to a noticeable decrease in stress values 
in the structure.

In Fig. 8,  Fig. 9 graphs of the average values of 
radial and axial displacements on the outer surface 
of pel-lets are presented (one point corresponds to 
one pel-let, the total number is 100 pellets) for cases 
of con-stant and sinusoidal heat dissipation power at 
various

Figure 6: Dependences of the average values of the
radial stress σr(z) at r = 0.0038 m: constant heat

dissipation power

Figure 7: Dependences of the average values of the
radial stress σr(z) at r = 0.0038 m: sinusoidal heat

dissipation power

points in time. As can be seen from the figures, there
is a significant displacement of the column of fuel pel-
lets relative to the initial position (up to 1.5 cm, which
is comparable to the height of the pellet).

Figure 8: Dependences of the average values of the
axial displacement uz(z) at r = 0.0038 m: constant

heat dissipation power

The Table 1 shows constant and maximum time
steps for a different number of pellets and tol = 10−4,
the Table 2 shows calculation time and number of
steps, and the Table 3 shows errors in calculations
with a variable step relative to calculations with a con-
stant step.
Fig. 10 and Fig.11 show graphs of the dependencies 
of
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Figure 9: Dependences of the average values of the
axial displacement uz(z) at r = 0.0038 m: sinusoidal

heat dissipation power

Table 1: Constant and maximum time steps

Number of
pellets

Const.
time step

Max.
time step

1 pellet 2 · 105 s 2, 37 · 107 s
2 pellets 5 · 104 s 1, 09 · 107 s
5 pellets 2 · 104 s 7, 56 · 106 s

10 pellets 1, 5 · 103 s 3, 69 · 106 s
25 pellets 750 s 1, 24 · 106 s
50 pellets 250 s 5, 31 · 105 s
100 pellets — 2, 25 · 105 s

the τ step and estimates of the local relative error err
from time to time for the case of 25 pellets and a given
accuracy tol = 10−4. The figures show how the time
step τ changes and that err does not exceed the value
of tol throughout the calculation.

Figure 10: Dependencies of the τ step from time for
25 pellets

From the results given in the Table 2, it can be
seen that when using a variable time step, it is pos-
sible to reduce the calculation time by 10–15 times
compared to the calculation with a constant step (10

Figure 11: Dependencies of err from time
for 25 pellets

Table 2: Calculation time and number of time steps

Number of
pellets

Const.
time step

Max.
time step

1 pellet
91,4 s

1600 steps
10,9 s

30 steps

2 pellets
122,6 s

6400 steps
23,1 s

52 steps

5 pellets
1623,9 s

16000 steps
134,7 s
85 steps

10 pellets
10075,5 s

213333 steps
664,7 s

176 steps

25 pellets —
3327,6 s
450 steps

50 pellets —
9213,2 s
911 steps

100 pellets —
25377,3 s
1882 steps

pellets). For 100 pellets (125 thousand unknowns) and
an accuracy of 10−4, the calculation time is approxi-
mately 7 hours, 1882 time steps were performed.

The displacement error was calculated as follows:

ε =

√√√√√√
∑
i
Si

(uIIri−u
I
ri
)2+(uIIz −uIzi )

2

(uIri )
2+(uIzi )

2∑
i
Si

, (31)

where the number I denotes a calculation with a con-
stant step, and the number II denotes a calculation
with a variable step.

For the cases of 25, 50 and 100 pellets, instead
of calculating with a constant step (they were not
completed due to high computational costs and the
inability to estimate the maximum possible step in
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Table 3: Errors with respect to the calculation with a
constant step

Number of pellets tol = 10−4 tol = 10−5

1 pellet 6, 72 · 10−3 2, 02 · 10−3

2 pellets 9, 21 · 10−3 3, 59 · 10−3

5 pellets 1, 97 · 10−3 1, 22 · 10−3

10 pellets 4, 90 · 10−2 2, 51 · 10−2

25 pellets 5, 15 · 10−2 2, 86 · 10−2

50 pellets 6, 42 · 10−2 3, 53 · 10−2

100 pellets 8, 36 · 10−2 4, 18 · 10−2

time), a calculation with a variable step was used at
tol = 10−6. When using a variable step, the number
of time steps decreases sharply, and with the increase
in the number of pellets, the errors regarding calcula-
tions with a constant step increase.

4 Conclusion

The formulation of the quasi-stationary problem of
multicontact interaction of a system of axisymmetric
thermoelastic bodies under thermomechanical loading
conditions, taking into account the creep process, is
presented. A numerical algorithm for solving such
problems based on the mortar method is described.
For the numerical solution of the problem simulat-
ing creep processes, an algorithm based on the use of
the implicit Euler method is considered, the Newton
method is used for linearization. The algorithm of au-
tomatic step selection based on Richardson extrapo-
lation was applied, which made it possible to signifi-
cantly increase the time steps and reduce the calcula-
tion time. Other, more complicated algorithms based
on the use of artificial intelligence or neural networks
can also be applied. The results of applying the in-
troduced algorithm to solve a demonstration problem
simulating some processes in a fuel element section
for a mode with a constant heat dissipation power
are presented. In the future, it is planned to include
other significant physical phenomena in the mathe-
matical model that must be taken into account when
fully modeling fuel elements, such as pellet cracking
and plasticity in the cladding.
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