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Abstract: In the present paper buckling problems of constructions with a single delamination are conducted. 

Structures are made of laminates and functionally graded materials (FGM). The first part of the work is devoted to 

the formulation of contact problems with the aid of various functional inequalities. Then computational models are 

discussed. Finally two particular problems dealing with buckling of spherical shells and compressed rectangular 

plates. The results demonstrate that the unsymmetric configurations of FGM structures leads to the reduction of 

buckling loads for structures with delamination.  
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1.

Introduction

ULTI-layered composite structures (laminates and those

made of functionally graded materials or nanostructures)

asymptotic methods, the Ritz method. 

In the literature the current investigations are carried out for 

different material properties of structures, i. e. isotropic, 

laminates [14], [15], [16], [17], [18], [19]. It should be 

mentioned that Lazarev, Kovtunenko [20] considered the 2D 

Signorini-Fichera problem for composites bodies with a rigid 

inclusion..  

 In 1981 Chai et al. [21] considered the problem of single 

delamination with local buckling. The one 

dimensional problem was solved in an analytical way with 

the use of the Rayleigh-Ritz method. Whitcombe [22] 

implemented FEM to the solution of two dimensional plate 

problems. In the area local buckling with delaminations a 

broder review of literature is presented by Smitses [23] and 

Muc et al [24], [25].

Fig.1 Buckling of plates subjected to transverse shear loads 

M 
may be subject to various forms of local (matrix, fiber 

cracking, fiber separation or delamination) or global (buckling 

or free vibration) failure. In the case of the simultaneous 

occurrence of global and local forms of damage, the 

mathematical and numerical description of the deformation 

and final failure of the analyzed structures is drastically 

changed and becomes difficult – see the experimental results 

shown in Fig. 1.  

The efficient modeling of unilaterlal (contact) problems is 

still a challenge in non-linear implicit  structural analysis. The 

broader discussion and studies of possible contact problems in 

mechanics is presented in Ref. [1], [2]. In this area the variety 

of problems can be formulated and solved:  

- three dimensional (3D) static and dynamic analysis [3],

[4] 

- two dimensional (2D) static and dynamic problems 
connected with the analysis of beam/plated or shell problems 

[5] 

However, it should be pointed out that the correct and 

accurate solution of the above problems requires a different 

than classical approach due to existence unilateral boundary 

conditions. The mathematical formulation of such problems is 

carried out with the use of the variational inequalities – see 

Panagiotopoulos [6], Muc [7]. 

The importance and complexity of numerical approach is 

underlined in different papers [8], [9], [10], [11], [12],
[13] where various numerical methods have been 

studied characterizng the application of dual methods, 

nonlinear programming methods, 
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2. A Brief description of contact 

problems associated with local buckling 

The description of contact problems for composite 

structures can be divided into two classes: 

 One dimensional contact problems - the delamination is 

represented by a single line that separates (or not) the 

sublaminates – Fig. 2 

 Two dimensional contact problems – the delamination is 

described by a surface – Fig.3. 

 

 
 

a)   ρ = 4.5   

 

 
 

b)    ρ = 6   

 
                               c)    ρ = 10 

 

Fig.2 Buckling modes of axisymmeteic spherical shell with a 

single delamination  being the function of the shallowness 

parameter ρ defined in the next sections 

 

 
 

Fig.3 Two dimensional elliptical delamination (top view) 
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Fig. 4 The effects of the delamination length a on the buckling 

pressures p. 

 

Fig. 4 shows two characteristic cases: when the 

delamination length a <acrit is not the critical length and does 

not cause local sublaminate stability loss, and the second, 

when the sublaminate stability loss above the critical length 

occurs. Therefore, it is obvious that the construction of models 

characterizing the local loss of stability by the sublaminate 

should allow for the determination of both the critical length of 

acrit delamination as a function of geometrical and material  

parameters, as well as the assessment (after local buckling) of 

the degree of decrease in the value of the critical load as a 

function of length of the gap a (or its surface area A for two-

dimensional delamination) - see Fig. 3. 

3. Variational formulations of  contact 

problems  with local buckling 

The composite structure represents 3D body (laminates or 

functionally graded material - FGM) that is a space occupied 

by layered structures  

N

k kV
1

 where Vk is a space occupied 

by the individual k-th layer.description of the layered 

structures.  
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The functional characterizing composite structures J can be 

divided into three parts: 

 

ubcbbcen JJJJ        (1) 

 

The first part Jen corresponds to the strain (internal) energy. 

The classical approaches are presented below: 
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-the Hellinger-Reissner 
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-the Lagrange 
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where σ is the stress tensor, e the strain tensor and u denotes 

the components of the displacements. The relation between 

stresses and strains is described by the linear elastic relation. 

For laminated composite the traditional relation takes the 

classical form presented e.g. by Jones [26]. For the FGMs the 

physical relation takes the following form: Considering the 

thickness stretching the stiffness matrix components Qij are 3D 

relations given by: 
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The elastic modulus E variation characterizes the 

distribution of porosity along the   thickness direction z and is 

defined in the following way:  
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where the symbols t and b refer to the material properties on 

top and bottom surfaces, n is power index. ν (const) is the 

Poissons ratio. 

 The second term in the functional (1) corresponds to the 

bilateral boundary conditions formulated in the equality form: 
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They determine values of the displacement field W or the 

distributed external loads s. 

The third component in the functional J (1) represents the 

unilateral boundary conditions, i.e. the kinematic boundary 

conditions between layers : 
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and  transverse shear and normal stress continuity conditions at 

the contact interfaces: 
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They takes the following form: 

 

-the Hu-Washizu 
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-the Hellinger-Reissner 
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-the Lagrange 
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where λ denotes the Lagrange multiplier 
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4. Compuational Models

Sublaminaty

(1)

(3)
(2)

(4)

S(1,2)

S(1,3)

S(2,3)

S(3,4)

S(2,4)

C

D

Fig.5 Single, axisymmetric delamination – the division of the 

structure into sublaminates 

The construction of composite structures with the 

delamination is presnted in Fig. 5. The total area V is divided 

into three (Fig. 2a) or four parts (Figs 2b and 2c). Two of areas 

(1) and (4) represents the domains without delaminations, and

the domains (2) and (3) corresponds to division of the

thickness along the line of the delamination (unilateral

boundary condition). For each of the areas (2) and (3) the

independent sets of kinematical relations is formulated,

whereas in the areas (1) and (4) the global system of

coordinates is used.

Correct numerical modeling of the problem of development 

of delamination and subsequent loss of stability by 

sublaminate requires taking into account the following factors 

in the analysis: 

- application of the large displacement (or deformation)

option to determine the bifurcation point , 

- structure modeling using 2D or 3D elements; it is

necessary for the analysis of the sublaminate buckling state, 

because the classic FEM packages contain only shell elements 

based on the 3D or first order transverse shear theory, and as 

stated previously, in the delamination problems, the theories of 

higher order shells should be used, 

- the area where delamination occurs and its surroundings

should be discretized using 2D or 3D elements with a 

triangular base in order to better approximate, especially at the 

edge of delamination, the values of the G energy release 

factors, 

- along the thickness of FGMs the division should include d

15 to 20 FE since the material properties vary significantly 

along the coordinate z – see Eq (6) 

5. Numerical Results

Using the above formulations it is possible to solve various for 

delaminated composite structures with local buckling. The 

problems shown below deals with a single delamination. 

5.1 Spherical Shells under External Pressure 

r
h(r)

a

R

Fig.6 Cross-section and geometry of spherical shells 

The cross-section of spherical shells is presented in Fig. 6. The 

shell geometry is characterized by the shallowness parameter ρ 

defined below.  

Rh

a
4

2112 )1(12   . (13) 

For isotropic (quasiisotrpic) material properties the 

dimensionless value of the external buckling pressure is 

described by the following relation: 

 
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2
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hE
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The variations of buckling pressures with the shallowness 

parameter are plotted in Fig. 7 for laminated shells. The single 

delamination reduces values of buckling pressures. The 

buckling forms of such structures are plotted in Fig. 2 – 

see also [27]. 
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p
c

ri
t/
p

d
im

quasiisotropy

single
delamination

Fig.7 Distributions of buckling pressures for laminated 

spherical shells with and without of single delamination 

located at the shell mid-surface. 
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Fig. 8 Distributions of buckling pressures for spherical shells 

made of FGMs with and without of single delamination 

located at the shell mid-surface. 

The unsymmetric properties of the FGM structures decrease 

buckling pressures (Fig. 8) since they reduce shell bending 

stiffnesses being the most significant in the evaluation of 

buckling loads – see Eq (14). The values of buckling pressures 

(Fig.8) vary with the change of the Et/Eb ratio and of the n 

coefficient – see Eqs (6). The distributions of buckling 

pressures are similar for both symmetric laminates and 

unsymmetric configurations of structures made of functionally 

graded materials. The broader discussion of the results is 

presented in [28].

5.2 Compressed Rectangular Plates with a 

Single Delamination 
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Perfect plate

Fig.9 Pre- and post-buckling deformations of compressed 

plates with delaminations (w is a normal deflection at the 

moddle of the plate). 

Now, let us consider the buckling problem of compressed 

plates with delamination having the form plotted in Fig.3. 

Delamination results in the both pre- and post-buckling 

behaviour of structures – see Fig.9. For perfect plates without 

delamination the rapid change between pre- and post-buckling 

deformations is observed. For structures with delaminations 

the initiation and then the development of delaminated area 

leads to the nonlinear behaviour (Fig. 9). Similarly as for 

spherical shells the effect of unsymmetry of FGM 

configuration is lower than for composite laminates. 

The value pdim corresponds to buckling loads of compressed 

isotropic (quasiisotropic) plates and is equal to: 
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where the symbol L denote the length of the plate along x and 

y directions. 

The post-buckling form of the shell is drawn in Fig. 10. The 

elliptical delamination is located at z=h/3. Such a construction 

of the delamination is assumed in order to simplify 

computation and derivation of buckling pressures. 

Fig. 10 Post-buckling form of compressed simply supported 

rectangular plate with a single elliptical delamination. 
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