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Abstract: - Simply supported plates carrying an added point mass are encountered in many engineering fields, 

like circuit boards or slabs carrying machines at different locations.  Determination of the plate modified 

dynamic characteristics is a quite laborious task, especially in the non-linear regime, which is rarely treated in 

the literature. The added mass effect on the plate linear parameters was first examined using Hamilton’s 

principle and spectral analysis.  The modified plate's non-linear fundamental mode was then calculated and its 

non-linear response to high levels of harmonic excitation was determined. The non-linear formulation, 

involving a fourth order tensor due to the membrane forces induced in the plate mid-plane by large vibration 

amplitudes, led to a non-linear algebraic amplitude equation.  The iterative solution gave the free vibration case 

a better qualitative understanding and a quantitative evaluation of the effect of the added mass. The non-linear 

forced response of the modified plate, examined for a wide frequency range, shows that the added eccentric 

mass induces changes in the area between the mass location and the simple supports and decreases the non-

linear hardening effect. The numerical results, covering new situations, are expected to be useful in engineering 

applications necessitating for some reason the addition to the plate of a point mass or an adaptation of the plate 

frequencies in order to avoid the occurrence of undesirable resonances. 

Key-Words: - Bifurcation, Simply supported rectangular plate, Added masse, Non-linear free vibrations, Non-

linear forced vibrations, Mode shape. 
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1 Introduction 
In various industrial fields, a point mass may be 

added to a structure for given practical reasons. 

Sometimes, this is done to shift, generally to the left, 

the natural frequencies and avoid an undesirable 

resonance. It also happens that the dynamic 

characteristics of a structural component, like a slab 

carrying machines at different locations or a pinned 

circuit board with electronic components, have to be 

identified using theoretical models involving plates 

with added point masses. 

An added point mass to a plate may significantly 

and unexpectedly affect its natural frequencies, 

mode shapes, free and forced linear and non-linear 

vibrations.  As the location of the mass added 

modifies the mode configurations, it induces a 

displacement of their nodal lines and unexpected 

modal participation to the plate response to a given 

external loading.  As will appear through the 

following review, the previous works on the subject 

are mainly concerned with linear frequencies and 

ignore most of the time the above-mentioned 

effects, especially the non-linear behavior.  The 

purpose of the present investigations was to remedy, 

in a unified and systematic manner, the lack of 

information concerning these aspects of the subject. 

This paper is distinguished by: 

1- The derivation of equations: The model is based

on Hamilton’s principle and a spectral analysis

approach using the linear modes of the plate as basic

functions in the series expansion.  This permits a

significant reduction in the number of functions

used which appears to be very efficient in the

treatment of the geometrically non-linear problem

that would be otherwise very difficult to deal with.

The latter explains why such papers investigating

this aspect are rare.

2- The numerical procedure: The linear analysis

made, requires a classical eigenvalue solution

procedure. However, the non-linear analysis

involves many numerical details mentioned partially

in the manuscript, especially in the vicinity of

bifurcation points when determining the non-linear

frequency response functions.

3- Parametric analysis: In this paper, the purpose

was not restricted to the effect of the added mass on
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the plate frequencies. More details are given 

concerning the mode shapes, very often omitted in 

the analyses made, in spite of their crucial 

importance with respect to the plate dynamic 

response.   Also, the plate modified forced response, 

due to the mass addition, was qualitatively and 

quantitatively addressed in both the linear and the 

non-linear regimes.  On the other hand, the method 

presented, and the associated and the developed 

software allow treating the problem systematically 

and in a unified manner.P. A. A. Laura, [1], 

investigated the vibrations of beams and plates 

elastically restrained against rotations at the 

supports with added masses, taking into account the 

rotational inertia. In a series of papers, K. H. Low 

and his co-author, [2], [3], and, [4], studied 

experimentally the vibration of rectangular plates 

carrying multiple masses at different locations and 

estimated the equivalent-center weight factor 

(ECWF). A good agreement was found between 

experimental and theoretical results in which the 

change in the strain energy was included. M. 

Amabili, [5], investigated theoretically Non-linear 

forced vibrations of rectangular plates carrying a 

point mass. The Von-Kármán non-linear plate 

theory was used and the results showed that the 

presence of the mass amplifies the response at its 

location and decreases the natural frequency. D. R. 

Avalos et al, [6], studied the exact solution of a 

simply supported plate carrying an elastically 

mounted concentrated mass, using the Dirac delta 

function. The paper is dealing only with linear 

vibration which corresponds to small amplitude 

oscillations. D. R. Avalos et al, [7], treated the same 

situation cited before with plates with rectangular 

cutouts only in linear vibration, they used the 

Rayleigh-Ritz method. H. A. Larrondo et al, [8], 

treated the transverse vibration of an anisotropic 

plate with elastically mounted concentrated mass 

using the Rayleigh-Ritz method focusing on the 

study of the convergence of the procedure and 

analyzing the behavior of the plate, a good 

convergence is achieved as the number of functions 

is increased from 100 to 900 terms. Z. Zhong et al, 

[9], investigated the transverse dynamic instability 

of a rectangular simply supported plate with 

arbitrary concentrated mass excited by an external 

distributed in-plane force along two opposite edges 

using the Von-Kármán large deflection theory, they 

found that the concentrated mass affects the out-of-

plane dynamic instability of the plate. R. H. 

Gutiérrez and P. A. A. Laura, [10], presented a 

solution for simply supported and clamped 

rectangular plates based on an approximate solution 

of the non-linear partial derivative equation of 

motion obtained as an extension of an old work of 

HN. Chu and G. Herrmann, [11]. Y. Kubota et al, 

[12], discussed the high frequency response of a 

simply supported plate carrying a point mass under 

random forces, and an approximate expression has 

been developed using Asymptotic Modal Analysis. 

The response of the whole plate except near the 

added mass attachment point is the same as that of 

the plate without mass and the local response of the 

point mass is multiplied by a factor less than unity. 

Chai Gin Boay, [13], investigated the natural 

frequencies of plates with various combinations of 

clamped and simply supported edge conditions with 

and without added mass. The frequency of a plate 

with an added mass placed away from the center 

was not well predicted. T. Mizusawa, [14], dealt 

with simply supported and clamped skew plate 

carrying a concentrated mass in different locations 

in linear vibrations using the spline element method.  

He found that the natural frequency is affected by 

the mass ratio and it depends on the mass location 

and aspect ratio and skew angle, the natural 

frequency decreases with increasing the mass ratio. 

J. W. Nicholson and L. A. Bergman, [15], treated 

the vibration of a simply supported square 

rectangular thick plate with added mass at the plate 

center. They gave the natural linear frequencies of a 

thin and thick plate. In [16] X. Pang et al studied the 

vibrations of the elastically added masses to a plate 

by using the non-linear eigenvalue for a new model. 

In [17] P. Mahadevaswamy and B. S. Suresh treated 

by experiment the transverse vibrations of a 

clamped plate by vibratory flap excited 

harmonically and then compared their results with 

those based on a finite element analysis. In [18] M. 

Hamdani et al studied the non-linear free and forced 

vibration of an SCSC plate with added mass. P.A. 

Martin and A. J. Hull, [19], dealt with the dynamic 

response of a thin plate with concentrated masses in 

a linear regime.  Then the results were compared to 

computations by using the finite element method. D. 

Wang and M.I. Friswell, [20], analyzed the 

minimum support stiffness to raise the plate’s 

natural frequency and to get the optimal attachment 

point, therefore, the minimum related stiffness. In 

[21] H. Zhaoyang et al presented a new method of 

linear buckling of a thin rectangular plate side 

cracked by dividing it into sub-plates. In [22] Z. 

Xinran et al developed a new method that can be 

applicable to non‐ Lévy‐ type thick plates, the 

symplectic superposition method is applied to the 

free vibration of a thick rectangular plate. Hu, 

Zhaoyang et al, [23], worked with the symplectic 

space and Hamiltonian-system framework. B. Wang 

et al, [24], presented, for the first time, the solution 
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of the rectangular thin plate by using the symplectic 

superposition method-based analytic buckling. In 

[25] A. Dongqi et al developed a new double finite 

integral transform method for non-Lévy-type 

cylindrical shell panels. In [26] M. Hamdani et al 

treated, in brief, the effect of added centric mass on 

the free non-linear vibration of a simply supported 

plate, also the bending stress distributions. 

In the present work, a linear analysis modal is first 

made of simply supported rectangular plates 

carrying an added mass and the results are compared 

to the literature.  Then, a numerical model is 

developed for non-linear free vibrations leading to 

the non-linear mode shapes and associated backbone 

curves of simply supported plates with no added 

mass and with an added mass placed at the plate 

center and at another location. The results were 

compared when it is possible with the literature. 

Finally, the non-linear forced vibration of plates 

subjected to a harmonic point force has been 

investigated and the results obtained were presented 

corresponding to plates with no added mass and 

plates with an added centric or an eccentric mass for 

a wide range frequency. 

 

 

2 Theoretical Formulation 
Consider the transverse vibrations of an isotropic 

rectangular plate carrying a point mass 𝑚 at the 

point of coordinates (𝑥, 𝑦) as shown in Fig. 1.  The 

plate bending strain energy 𝑉𝑏 has the following 

expression, [27]: 

𝑉𝑏 =
1

2
∫ 𝐷 [(

𝜕2𝑊

𝜕𝑥2 +
𝜕2𝑊

𝜕𝑦2 )
2

+ 2(1 − 𝜈) ((
𝜕2𝑊

𝜕𝑥𝜕𝑦
)

2

−

𝜕2𝑊

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2 )] 𝑑𝑆                                                         (1) 

By neglecting in-plane displacements, the 

membrane strain energy 𝑉𝑎 induced by large 

vibration amplitudes can be written as follows: 

𝑉𝑎 =
3𝐷

2𝐻2 ∫ [(
𝜕𝑊

𝜕𝑥
)

2
+ (

𝜕𝑊

𝜕𝑦
)

2
]

2

𝑑𝑆          (2) 

 

 
Fig. 1: A simply supported plate with an added mass 

at (𝑥0, 𝑦0) 

 

𝐷 is the bending stiffness  𝐷 =
𝐸𝐻3

12(1−𝜈2)
 , 𝑑𝑠 =

𝑑𝑥𝑑𝑦 is the elementary surface area, and 𝐻 is the 

plate thickness. the total kinetic energy of the plate 

and the added point masses can be written as: 

𝑇 =
1

2
𝜌𝐻 ∫ (

𝜕𝑊

𝜕𝑡
)

2
𝑑𝑥𝑑𝑦 +

1

2
𝑚 (

𝜕𝑊(𝑥0,𝑦0)

𝜕𝑡
)

2
  (3) 

The plate transverse displacement 𝑊 depends on 

time and space. If these are assumed to be separable 

and the motion is assumed to be harmonic, one can 

write: 

𝑊(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑦) sin(𝜔𝑡)           (4) 

The spatial function 𝑤(𝑥, 𝑦) is presented as a finite 

series of 𝑁 basic functions  𝑤𝑖𝑗(𝑥, 𝑦): 

𝑤(𝑥, 𝑦) = 𝑎𝑘𝑤𝑘(𝑥, 𝑦) = 𝑎𝑖𝑗𝑤𝑖𝑗(x, y)      (5) 

With k = N(i − 1) + j. The summation convention 

is used in which 𝑖 and 𝑗 are summed over 1,2, . . . , N 

with N representing the number of functions. The 

functions 𝑤𝑖𝑗(x, y) are obtained as a product of 

simply supported-simply supported beam functions 

𝑓𝑘(𝑥) in the 𝑥 and 𝑦 directions: 

𝑤𝑖𝑗(𝑥, 𝑦) = 𝑓𝑖(𝑥)𝑓𝑗(𝑦)                   (6) 

The bending strain, the membrane strain and the 

kinetic energy expressions become after 

discretization: 

𝑉𝑏 =
1

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗 sin2(𝜔𝑡)                   (7) 

𝑉𝑎 =
1

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙 sin4(𝜔𝑡)              (8)  

𝑇 =
1

2
𝜔2𝑎𝑖𝑎𝑗𝑚𝑖𝑗 cos2(𝜔𝑡)                 (9) 

𝑘𝑖𝑗, 𝑏𝑖𝑗𝑘𝑙 and 𝑚𝑖𝑗 are the rigidity, the geometrical 

non-linear rigidity and the mass tensors 

respectively. Their expressions are: 

𝑘𝑖𝑗 = ∫ 𝐷 [(
𝜕2𝑤𝑖

𝜕𝑥2 +
𝜕2𝑤𝑖

𝜕𝑦2 ) (
𝜕2𝑤𝑗

𝜕𝑥2 +
𝜕2𝑤𝑗

𝜕𝑦2 ) + 2(1 −

𝜈) (
𝜕2𝑊𝑖

𝜕𝑥𝜕𝑦

𝜕2𝑊𝑗

𝜕𝑥𝜕𝑦
−

𝜕2𝑊𝑖

𝜕𝑥2

𝜕2𝑊𝑗

𝜕𝑦2 )] 𝑑𝑥𝑑𝑦                      (10) 

𝑏𝑖𝑗𝑘𝑙 =
3𝐷

𝐻2 ∫ (
𝜕𝑤𝑖

𝜕𝑥

𝜕𝑤𝑗

𝜕𝑥
+

𝜕𝑤𝑖

𝜕𝑦

𝜕𝑤𝑗

𝜕𝑦
) (

𝜕𝑤𝑘

𝜕𝑥

𝜕𝑤𝑙

𝜕𝑥
+

𝜕𝑤𝑘

𝜕𝑦

𝜕𝑤𝑙

𝜕𝑦
) 𝑑𝑥𝑑𝑦                                                     (11) 

𝑚𝑖𝑗 = 𝜌𝐻 ∫ 𝑤𝑖𝑤𝑗 𝑑𝑥𝑑𝑦 + 𝑚𝑤𝑖(𝑥0, 𝑦0)𝑤𝑗(𝑥0, 𝑦0) 

(12) 

In a non-dimensional form, we put: 

𝑤𝑖(𝑥, 𝑦) = 𝐻𝑤∗
𝑖 (

𝑥

𝑎
,

𝑦

𝑏
) = 𝐻𝑤∗

𝑖(𝑥∗, 𝑦∗)    (13) 

𝑎 and 𝑏 are the plate length and width along the 𝑥 

and  𝑦 directions respectively. Non-dimensional 

tensors can be defined as follows: 

𝑏∗
𝑖𝑗𝑘𝑙 = 3 ∫ (𝛼2 𝜕𝑤∗

𝑖

𝜕𝑥∗

𝜕𝑤∗
𝑗

𝜕𝑥∗ +

𝜕𝑤∗
𝑖

𝜕𝑦∗

𝜕𝑤∗
𝑗

𝜕𝑦∗ ) (𝛼2 𝜕𝑤∗
𝑘

𝜕𝑥∗

𝜕𝑤∗
𝑙

𝜕𝑥∗ +
𝜕𝑤∗

𝑘

𝜕𝑦∗

𝜕𝑤∗
𝑙

𝜕𝑦∗ ) 𝑑𝑥∗𝑑𝑦∗   (14) 

𝑘∗
𝑖𝑗 = ∫ (𝛼2 𝜕2𝑤∗

𝑖

𝜕𝑥∗2 +
𝜕2𝑤∗

𝑖

𝜕𝑦∗2 ) (𝛼2 𝜕2𝑤∗
𝑗

𝜕𝑥∗2 +
𝜕2𝑤∗

𝑗

𝜕𝑦∗2 ) +

2(1 − 𝜈)𝛼2 (
𝜕2𝑤∗

𝑖

𝜕𝑥𝜕𝑦

𝜕2𝑤∗
𝑗

𝜕𝑥𝜕𝑦
−

𝜕2𝑤∗
𝑖

𝜕𝑥2

𝜕2𝑤∗
𝑗

𝜕𝑦2 ) 𝑑𝑥∗𝑑𝑦∗ (15) 
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𝑚∗
𝑖𝑗 = ∫ 𝑤∗

𝑖𝑤∗
𝑗 𝑑𝑥∗𝑑𝑦∗ +

𝜂𝑤∗
𝑖(𝑥∗

0, 𝑦∗
0)𝑤∗

𝑗
(𝑥∗

0, 𝑦∗
0)                             (16)

𝜂 presents the ratio of the mass added to the plate 

total mass 𝜂 =
𝑚

𝜌𝐻𝑎𝑏
 and 𝛼 is the plate aspect ratio 

𝛼 =
𝑏

𝑎
. The non-dimensional and dimensional 

tensors are related by: 

𝑏𝑖𝑗𝑘𝑙 =
𝐷𝑎𝐻2

𝑏3 𝑏∗
𝑖𝑗𝑘𝑙  (a) 

𝑘𝑖𝑗 =
𝐷𝑎𝐻2

𝑏3 𝑘∗
𝑖𝑗      (b) 

𝑚𝑖𝑗 = 𝜌𝐻3𝑎𝑏𝑚∗
𝑖𝑗   (c) 

The plate motion is governed by Hamilton’s 

principle symbolically written as: 

𝛿 ∫ (𝑉 − 𝑇)𝑑𝑡 = 0
2𝜋 𝜔⁄

0
(17) 

Where 𝛿 indicates the variation of the integral. 𝑉 

and 𝑇 are the plate’s total strain and kinetic 

energies. This leads to the following set of 𝑛 non-

linear algebraic equations: 

3𝑎𝑖𝑎𝑗𝑎𝑘𝑏∗
𝑖𝑗𝑘𝑟 + 2𝑎𝑖𝑘∗

𝑖𝑟 − 2𝜔∗2𝑎𝑖𝑚∗
𝑖𝑟 = 0

𝑟 = 1, . . , 𝑛                          (18) 

which can be written in a matrix form as: 

3[𝐵∗(𝐴)]{𝐴} + 2[𝐾∗]{𝐴} − 2𝜔∗2[𝑀∗]{𝐴} = {0}
(19) 

premultiplying the last equation by {𝐴}𝑇, the

expression of 𝜔∗2
 is obtained:

𝜔∗2 =
{𝐴}𝑇[𝐾∗]{𝐴}+3

2
{𝐴}𝑇[𝐵∗(𝐴)]{𝐴}

{𝐴}𝑇[𝑀∗]{𝐴}
          (20) 

in a tensorial form: 

𝜔∗2 =
𝑎𝑖𝑎𝑗𝑘∗

𝑖𝑗+
3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏∗

𝑖𝑗𝑘𝑙

𝑎𝑖𝑎𝑗𝑚∗
𝑖𝑗

(21) 

to the dimensional way: 

𝜔2 =
𝐷

𝜌ℎ𝑏4 𝜔∗2
    (22) 

Substituting equation (21) into the non-linear 

algebraic systems (18) gives: 

3𝑎𝑖𝑎𝑗𝑎𝑘𝑏∗
𝑖𝑗𝑘𝑟 + 2𝑎𝑖𝑘∗

𝑖𝑟

− 2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗

∗ +
3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙

∗

𝑎𝑖𝑎𝑗𝑚𝑖𝑗
∗

𝑎𝑖𝑚∗
𝑖𝑟 = 0

       𝑟 = 2, . . , 𝑛     (23) 

Fig. 2: Presentation of values of Table 2, Table 3, 
Table 4 in case of 𝛼 = 1, results of R. H. Gutiérrez 

and P. A. A. Laura [10] are presented by symbols: 

(⋄) in case of without mass, (∆) for  𝜂 = 0.25 and  

(∗) for 𝜂 = 0.5.  The results of the present work are 

presented by a line

The non-linear algebraic system (23) has been 

solved numerically using a Harwell Library routine 

called NS01A, [28], based on an iterative procedure, 

involving a combination of the steepest descent and 

Newton’s method. 

Considering the forced response, with a 

concentrated harmonic excitation force, the forcing 

term has to be added to the right-hand side of 

equation (18), which leads to: 

3

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟

∗ + 𝑎𝑖𝑘𝑖𝑟
∗ − 𝜔∗2𝑎𝑖𝑚𝑖𝑟

∗ = 𝑓𝑟
∗  𝑟 = 1, . . , 𝑛

(24) 

𝑓
𝑟

∗

 (𝑟 = 1 … 𝑛), are the dimensionless generalized 

forces, whose expressions, for a concentrated force 

𝐹 applied at the point of coordinates (𝑥1
∗, 𝑦1

∗):

𝑓𝑟
∗ =

𝑏3F

𝑎𝐷𝐻
𝑤𝑟

∗(𝑥1
∗, 𝑦1

∗) (25) 

The 𝑛 non-linear algebraic equations with 𝑛 

unknowns (24) have been solved by the NS01A 

routine, [28]. The method relies on fixing the non-

dimensional excitation frequency 𝜔∗2
 and then

giving an initial estimate for the 𝑛 contributions 

(𝑎1, 𝑎2, . . , 𝑎𝑛).  The solution obtained is taken as a

new initial estimate for the following step 

corresponding to an excitation frequency 𝜔∗ + Δ𝜔∗.

This process is repeated until the desired frequency 

segment is covered.  It is worth observing here that 

the routing may diverge when passing through the 

bifurcation point because the given estimate is too 

far from the nearest solution, [18]. 
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3 Numerical Results and Discussion 
The plate vibration is determined by the edge 

conditions and the mass distribution all along the 

plate.  In this study, the plate is simply supported 

and a single mass is placed either at its center or out 

of the center. The effects of the added mass on the 

plate’s linear and non-linear free and forced 

vibrations are examined. 

The first part of this section is devoted to linear 

analysis. The linear frequencies and mode shapes of 

the plates examined, necessary to tackle the non-

linear problem, are obtained by solving the 

eigenvalue equation (26) in which the effect of the 

geometrical non-linearity is neglected and the mass 

and the rigidity tensors are calculated before the 

equation is solved using Matlab Software. 

𝑎𝑖𝑘∗
𝑖𝑟 − 𝜔∗2𝑎𝑖𝑚∗

𝑖𝑟 = 0    𝑟 = 1, . . , 𝑛     (26)

Various values of the fundamental frequencies 

obtained here are compared with results found in the 

literature in Table 1. The plates concerned carrying 

a centric mass have aspect ratios 𝛼 =
1,0.25,0.5,0.75,1 and mass ratios 𝜂 = 0,0.25,0.5,1. 

Comparison is made with the results of R. H. 

Gutiérrez and P. A. A. Laura, [10], T. Mizusawa, 

[14], J.W. Nicholson and L.A. Bergman, [15], and 

W. Soedel, [29].  A very good agreement is found in

most cases.

The added mass at the plate center deforms the 

plate’s fundamental mode shape, mainly at the 

region near the plate center, and this effect increases 

and becomes clearer with increasing the mass ratio 

𝜂 or decreasing the plate aspect ratio 𝛼. In the case 

of an eccentric added mass, it can be noticed that the 

maximum mode is displaced towards the added 

mass location and this phenomenon can be observed 

for small plate aspect ratios or big added mass 

ratios. 

Considering non-linear free vibrations, we 

replace the right-hand side of the equation (23) by 

𝑔𝑟, then the residual is calculated using the

following formulation: 

𝑅𝑒𝑠 = √∑ 𝑔𝑟
2

𝑛

𝑟=1

  (27) 

The routine needs a first estimation close enough to 

the real solution. The first estimation has been taken 

from the linear solution and the residual was fixed at 

𝑅𝑒𝑠 = 10−27 which is a strong convergence test.

Fig. 3: the backbone curve of a plate 𝛼 = 0.6 

carrying a centric mass 

Fig. 4: the backbone curve of a plate 𝛼 = 0.6 
carrying an added mass at (0.25,0.5) 

The only data found in the literature, 

corresponding to the non-linear free vibration of 

simply supported plates with a centric added mass, 

are those of Gutiérrez and P. A. A. Laura, [10]. 

Their results are compared with the present ones in 

Table 2, Table 3, Table 4 giving the dependence of 

the non-linear to linear frequency ratio on the non-

dimensional vibration maximum amplitude 𝑊𝑚𝑎𝑥, 
for different plate aspect ratios 𝛼 = 1,0.75,0.5,0.25 

with no added mass and with an added mass 𝜂 = 
0.25 and 𝜂 = 0.5 in Table 2, Table 3, Table 4 

respectively.   
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Table 1. Comparison of the fundamental non-dimensional frequency of the first mode, (1) R. H. Gutiérrez and 

P. A. A. Laura, [10], (2) T. Mizusawa, [14], (3) J.W. Nicholson and L.A. Bergman, [15], (4) W. Soedel, [29]. 

Table 2. Comparison of the non-dimensional frequency ratio (𝜔𝑛𝑙
∗/𝜔𝑙

∗) of a rectangular plate without added

mass for different aspect ratios during multiple non-dimensional maximum amplitudes. (1): results of R. H. 

Gutiérrez and P. A. A. Laura, [10], (2) present work 

𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 𝛼 = 0.25 

𝑊𝑚𝑎𝑥
∗ (1) (2) (1) (2) (1) (2) (1) (2)

0 1 1 1 1 1 1 1 1 

0.2 1.019 1.019 1.020 1.019 1.024 1.024 1.030 1.030 

0.4 1.076 1.072 1.080 1.076 1.093 1.092 1.113 1.119 

0.6 1.163 1.155 1.171 1.163 1.198 1.196 1.237 1.264 

0.8 1.275 1.255 1.287 1.274 1.330 1.329 1.391 1.439 

1 1.404 1.372 1.422 1.395 1.482 1.479 1.567 1.623 

Table 3. Comparison of the non-dimensional frequency ratio (𝜔𝑛𝑙
∗/𝜔𝑙

∗) of a rectangular plate with added mass

𝜂 = 0.25 at the center for different aspect ratios during multiple non-dimensional maximum amplitudes. (1): 

results of R. H. Gutiérrez and P. A. A. Laura, [10], (2) present work 

𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 𝛼 = 0.25 

𝑊𝑚𝑎𝑥
∗ (1) (2) (1) (2) (1) (2) (1) (2)

0 1 1 1 1 1 1 1 1 

0.2 1.020 1.015 1.021 1.016 1.024 1.019 1.030 1.020 

0.4 1.077 1.059 1.080 1.062 1.093 1.072 1.112 1.081 

0.6 1.164 1.125 1.171 1.162 1.197 1.153 1.236 1.168 

0.8 1.275 1.207 1.288 1.220 1.330 1.251 1.391 1.284 

1 1.406 1.305 1.422 1.324 1.482 1.360 1.567 1.409 

Table 4. Comparison of the non-dimensional frequency ratio (𝜔𝑛𝑙
∗/𝜔𝑙

∗) of a rectangular plate with added mass

𝜂 = 0.5 at the center for different aspect ratios during multiple non-dimensional maximum amplitudes. (1): 

results of R. H. Gutiérrez and P. A. A. Laura, [10], (2) present work 

𝛼 = 1 𝛼 = 0.75 𝛼 = 0.5 𝛼 = 0.25 

𝑊𝑚𝑎𝑥
∗ (1) (2) (1) (2) (1) (2) (1) (2)

0 1 1 1 1 1 1 1 1 

0.2 1.020 1.015 1.020 1.015 1.024 1.017 1.030 1.019 

0.4 1.076 1.056 1.080 1.058 1.093 1.068 1.112 1.075 

0.6 1.164 1.119 1.171 1.124 1.198 1.142 1.236 1.159 

0.8 1.276 1.196 1.288 1.205 1.330 1.231 1.392 1.264 

1 1.406 1.285 1.422 1.296 1.482 1.335 1.567 1.389 

𝜂 𝛼 Present work (1) (2) (3) (4)

0 1 19.74 19.74 19.74 

0.75 15.42 15.42 

0.5 12.34 12.33 

0.25 10.49 10.48 

0.25 1 13.74 13.95 13.74 13.37 13.96 

0.75 10.71 10.90 

0.5 8.44 8.72 

0.25 6.56 7.41 

0.75 1 11.09 11.39 11.09 11.40 

0.75 8.63 8.90 

0.5 6.74 7.12 

0.25 5.05 6.05 

1 1 8.49 8.49 8.83 
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Fig. 5: Comparison of the first mode shape in large 

amplitude of a simply supported rectangular plate 

𝛼 = 0.6 carrying an eccentric mass 𝜂 = 0.1 at 

(0.25,0.5), (1) lowest amplitude, (2) highest 

amplitude 

Fig. 6: The frequency response of a plate 𝛼 = 0.6 

subjected to a harmonic concentrated force 𝐹 = 1𝑁  

applied at the plate center. The continuous line 

presents the frequency response of a simply 

supported plate with no added mass. The discrete 

line presents the frequency response of a simply 

supported plate carrying an added centric mass with 

added mass ratio 𝜂 = 0.1 

According to the results of R. H. Gutiérrez and P. A. 

A. Laura, [10], the added centric mass does not

affect on the non-linearity in simply supported

plates, in contrast with the present work which

showed that the added centric mass, as may be

expected, decreases the non-linearity, as can be seen

in Fig. 2 presenting the backbone curves of a square

plate without added mass and with an added centric

mass  𝜂 = 0.25,0.5. Also, Fig.3 and Fig.4 give the

backbone curve for a simply supported rectangular

plate 𝛼 = 0.6 with an added centric and eccentric

mass placed at (0.25,0.5) respectively.

Fig. 7: The frequency response of a plate 𝛼 = 0.6 

subjected to a harmonic concentrated force 𝐹 = 1𝑁  

applied at the plate center. The continuous line 

presents the frequency response of a simply 

supported plate with no added mass. The discrete 

line presents the frequency response of a simply 

supported plate carrying an added eccentric mass at 

(0.25,0.5) with added mass ratio 𝜂 = 0.1 

It is clear that in Fig. 4 for a mass ratio 𝜂 = 0.1, the 

non-linearity is slightly affected while for mass 

ratios 𝜂 = 0.2,0.3, the effect on non-linearity is 

more significant. In general, a mass added to a 

simply supported rectangular plate at large 

amplitudes tends to reduce the hardening type of 

non-linearity by increasing the added mass ratio. 

Fig. 5 presents the normalized mode shape of a 

rectangular plate 𝛼 = 0.6 carrying an added mass at 

(0.25,0.5) along the line 𝑦∗ = 0.5 at large

amplitudes, the mode shape is changed with a rise in 

the mode shape curvature 𝑦∗ in the area between the

mass location and the simple supports, due to the 

nature of the edge conditions. 

The response of a simply supported plate to a 

harmonic excitation is discussed in what follows. 

Equation (24) is a set of 𝑛 non-linear equations with 

𝑛 unknowns which are the contributions 

(𝑎1, 𝑎2, . . , 𝑎𝑛). The mechanical characteristics are

taken in all examples as follows: 𝑎 = 0.25𝑚, 𝑏 =
0.15𝑚, ℎ = 0.0005𝑚, 𝜌 = 7850𝑘𝑔/𝑚3, 𝐸 =
198.109 𝑃𝑎 and 𝜈 = 0.3. By giving an initial

estimation of the 𝑛 contributions (𝑎1, 𝑎2, . . , 𝑎𝑛) for

𝜔∗2
, then implemented into the non-linear algebraic

equation (24), the subroutine NS01A, [28], is used 

to solve the equation numerically. The new 

contributions are used as an estimate for 𝜔∗ + Δ𝜔∗.

This process is repeated until the desired segment is 

achieved. Fig. 6 presents the frequency response of 

a simply supported plate with an aspect ratio 𝛼 =
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0.6 with no mass and with an excited by a centric 

force, also decreases the hardening type of 

nonlinearity. Similarly, Fig. 7 presents the 
frequency response of a plateα = 0.6 subjected to a 
harmonic concentrated force F = 1 applied at the 
plate center. The continuous line presents the 
frequency response of a simply supported plate with 
no added mass. The discrete line presents the 
frequency response of a simply supported plate 
carrying an added eccentric mass at (0.25,0.5) with 
added mass ratio n = 0.1.

Fig. 8: The frequency response of a plate 𝛼 = 0.6 

subjected to a harmonic concentrated force 𝐹 = 
0.3𝑁  applied at (0.25,0.5). The continuous line 

presents the frequency response of a simply 

supported plate with no added mass. The discrete 

line presents the frequency response of a simply 

supported plate carrying an added eccentric mass at 

(0.25,0.5) with added mass ratio 𝜂 = 0.1 

Fig. 8 shows the frequency response of a simply 

supported rectangular plate with aspect ratio 𝛼 = 
0.6 carrying a point mass at (0.25,0.5) with 𝜂 = 0.1 

separately subjected to a point harmonic excitation 

𝐹 = 0.3𝑁 at (0.25,0.5).  It shows that the added 

mass decreases also the hardening type of non-

linearity in the neighborhood of the first, second and 

third modes. The new method used here showed up 

again a great accuracy in studying a different 

condition limit with an external load. 

4 Conclusion 
Linear and non-linear free and forced vibrations of a 

simply supported plate carrying a point mass have 

been analyzed and compared with the results 

available in the literature.  Consequently, a good 

agreement has been remarked on for the linear 

frequencies. Firstly, the added centric mass 

concentrates the deformation at the plate center but 

in the case of an eccentric mass, it has been 

remarked that the maximum mode was displaced 

from the plate center towards the mass location. 

Secondly, in non-linear vibrations, an increase in the 

curvatures of a simply supported plate carrying an 

added centric mass appears in the smallest area 

between the mass location and the simply supported 

edges.  Finally, the backbone curves show that the 

presence of the added mass decreases the hardening 

type of non-linearity and activates the response of 

certain modes to concentrated harmonic excitations. 
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