
Inclined large-angle pendulum may produce endless linear motion of a 

cart when friction is negligible 

DENNIS P. ALLEN, Jr. 

17046 Lloyds Bayou Drive Apt 322 

Spring Lake, MI 49456 

USA 

CHRISTOPHER G. PROVATIDIS 

School of Mechanical Engineering 

National Technical University of Athens 

9 Iroon Polytechniou, 157 80 Zografou 

GREECE 

Abstract: - We present the mechanics for the oscillation of an inclined large-angle pendulum-drive attached to a 

cart which is allowed to perform translation in one direction only. Neglecting the overall friction, the 

application of Newton’s second law shows that the oscillation of the pendulum is continuously converted into 
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on the usual data of any pendulum plus the mass of the cart on which it is attached. After the determination of a 

novel effective pendulum length, a closed-form accurate analytical expression is presented for the amplitude of 

the pendulum, whereas semi-analytical formulas are provided for the period as well as the time-variation of the 

large azimuthal-like angle. Moreover, a simple expression was found for the position of the cart in terms of the 

azimuthal angle of the pendulum and the elapsed time. The extraction of the analytical formulas was facilitated 

by a computer model programmed in MATLAB®. 
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1. Introduction
The term ‘inertial propulsion’ was introduced 

probably by the late Professor Eric Laithwaite 

(1921–1997), who is well known from his 

Christmas lectures on gyroscopes at Imperial 

College London in the United Kingdom, [1]. 

Although most of his ideas on inertial propulsion 

and gyroscopic thrust have been in advance rejected, 

the interest is still alive and some of the relevant 

mechanics are still covered by mystery. For 

example, Wayte, [2], conducted an experimental 

study in favor of Laithwaite while recently 

Provatidis, [3], revealed some of the associated 

mechanics and how a physicist may be cheated, [4].  

Except for the aforementioned gyroscopes, 

contra-rotating eccentrics (the latter called Dean 

drive, [5]) as well as equivalent electromagnetic 

means have been also studied jointly by academics 

and the industry for possible suitability in 

alternative propulsion, [6]. Nevertheless, since the 

inertial forces are internal to the mechanical system, 

the resulting net thrust over a time period is null 

thus instead of propulsion at the best case we obtain 

a ‘catapult’ or a marching device like the bumper of 

a mobile phone. To become more specific, it is 

indisputable that under certain conditions an inertial 

drive may cause an initial velocity to an object so as 

the center of mass of the mechanical system moves 

as usual. 

In this paper we study an alternative source of 

inertial propulsion, i.e. an inertial drive which is 

based on the oscillating motion of a pendulum and 

particularly in conjunction with large angles. The 

beneficiary characteristic is the very low friction 

which occurs in a pendulum and makes it superior 

(it takes much time to cease) compared to the 

motion of fully rotating eccentrics. Within this 

context, this study is probably the first publication 

of this kind on the use of the pendulum as an inertial 

drive. 
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From the pedagogical point of view, it is shown 

that the initial kinetic and potential energy of a 

pendulum can be easily converted into linear 

(translational) motion when it is attached to a 

movable cart. For the very theoretical assumption of 

negligible friction, the initial velocity of the center 

of mass causes the motion of the cart forever. Of 

course, the physical reality is different, thus after a 

few oscillations the appearance of friction on a real 

prototype, [7], makes the translational motion of the 

cart to cease. Therefore, this open system gives us 

the opportunity to discuss the subject of the 

conservation of energy and linear momentum, as 

well as the non-conservation of angular momentum, 

all of which are of major importance in the 

education of physics and mechanics. 

 

2. Basic theory 
Let us consider an inertial Cartesian coordinate 

system 𝑂𝑋𝑔𝑌𝑔𝑍𝑔 fixed to the Earth, in which the 

horizontal ground (on which the cart moves) is 

parallel to the 𝑋𝑔𝑌𝑔-plane while 𝑍𝑔 is the vertical 

axis. For the sake of simplicity, at the initial time 

(𝑡 = 0) we consider a chassis (cart) as a 

concentrated mass exactly at the aforementioned 

point, 𝑂, so as the body-fixed coordinate system 

𝑂′𝑥𝑦𝑧 initially coincides with the fixed system 

𝑂𝑋𝑔𝑌𝑔𝑍𝑔.  

The mechanical system consists of the 

abovementioned chassis (cart with its wheels) on the 

horizontal ground (𝑥𝑦-plane) on which an inclined 

pivot is attached at the moving point 𝑂′ (origin of 

body fixed axis on the cart, with global coordinates 

𝑋𝑂′,𝑔 = 𝑋(𝑡), 𝑌𝑂′,𝑔=0 and 𝑍𝑂′,𝑔 = 0) while a large-

angle pendulum rotates about the aforementioned 

body fixed axis 𝑂′𝑧′ that is inclined by angle 𝛼 with 

respect to the body fixed vertical axis 𝑂′𝑧, as shown 

in Fig. 1a. In other words, the axis 𝑂′𝑧′ is produced 

by rotating the initial global system 𝑂𝑋𝑔𝑌𝑔𝑍𝑔 about 

the axis 𝑂𝑌𝑔 by angle 𝛼, and then the resulting 

system is free to translate in the 𝑋𝑔-direction so as 

the pivot  𝑂′ of the cart can shift from its initial 

position 𝑂 to the final 𝑂′.  

 

Fig. 1: (a) Coordinate system and (b) Set up of the 

inclined pendulum. 

 

Obviously, with respect to the global (Earth 

fixed) system 𝑂𝑋𝑔𝑌𝑔𝑍𝑔, the upward unit vector 𝑛⃗  

along the axis of rotation 𝑂′𝑧′ will be given by: 

( , , ) (sin ,0,cos )x y zn n n     (1) 

In accordance to the experiment, [7], the overall 

mechanical system is governed by two degrees of 

freedom (DOF), the former being the displacement, 

𝑋(𝑡), of the chassis (cart) and the latter is the angle, 

𝜃(𝑡), which is somehow related to the azimuthal 

angle but not exactly. Clearly, instead of the usual 

Euler angles, due to the constant inclination 𝛼 (>

0, 𝑠𝑙𝑎𝑛𝑡 𝑎𝑛𝑔𝑙𝑒), in this manuscript we have reduced 

them in only one (see, Fig. 1), practically in the 

interval –𝜋/2 < 𝜃 < 𝜋/2, as explained below. 

Clearly, the position 𝜃 = −𝜋/2 corresponds to the 

extension of the axis 𝑂′𝑦 in the negative direction, 

while the position 𝜃 = 𝜋/2 corresponds exactly to 

it.  

First of all, we divert the pendulum at an angle 𝜃 

in absolute value larger than −90 degrees (at 

maximum in the negative extension of 𝑥-axis), and 

then we leave it rotate in the anti-clockwise direction 

due to its weight. Therefore, when the axis of the 

pendulum reaches the position 𝜃 = −𝜋/2 at time 𝑡 =

0, the accelerated downward motion gives an initial 

angular velocity 𝜃̇0 ≠ 0. At this position we may also 

assume that the cart is at rest, i.e., 𝑋0 = 0 and 𝑋̇0 =

0, at 𝑡 = 0. 
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Therefore, with respect to the fixed to the Earth 

global system 𝑂𝑋𝑌𝑍, the position of the oscillating 

mass, which is attached to the point 𝑃(𝑥, 𝑦, 𝑧) at the 

end of the bob, is given by:  

( ) cos cos ,

sin ,

cos sin ,

b

b

b

x X t L

y L

z L

 



 

 



 

     (2) 

where 𝐿 is the length (𝑂𝑃) while the subscript ‘𝑏’ 

stands for the word ‘bob’. 

Let 𝑚 and 𝑀 be the masses of the cart and the 

bob, respectively. Between several alternative ways 

to derive the equations of motion, we consider the 

center of mass (subscript ‘𝑐’) of the mechanical 

system “cart + bob”, of which the coordinates are: 

,

, with 0

, with 0

b
c

b
c

b
c

mX Mx
x

m M

mY My
y Y

m M

mZ Mz
z Z

m M







 




 



,        (3) 

with (𝑋, 𝑌, 𝑍) = (𝑋, 0,0) denoting the coordinates 

of the cart in the global inertial system fixed to the 

Earth, while (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) are the coordinates of the 

bob given by Eq. (2).  

According to Newton’s Second law, the sum of 

all external forces in the 𝑥-(horizontal) direction 

equals  the total mass times the acceleration of the 

center of mass. Since the friction is zero 

(temporarily), there is no external force in this 

direction (otherwise is – 𝜇𝐹𝑠𝑢𝑝𝑝𝑜𝑟𝑡,𝑧), thus we have 

(𝑚 + 𝑀)𝑥̈𝑐 = 0. By virtue of Eq. (2) and (3), after 

rearrangement of the terms this equation eventually 

becomes: 

( ) ( cos )(cos ) 0m M X ML    gg
. (4) 

Equation (4) is a relationship between the second 

temporal derivatives of the two DOF, 𝑋(𝑡) and 

𝜃(𝑡), thus one of them may be eliminated. Although 

the purpose of this paper is to derive the cart 

displacement 𝑋(𝑡), it seems that the primary 

variable is the azimuthal-like angle 𝜃(𝑡). Therefore, 

after two successive integrations of Eq. (4) in time 𝑡, 

we eventually derive the general solution: 

0 0

0 0 0

(cos cos )

( sin ) ,

X X A

X A t

 

 

  

  
  (5a) 

in which, for convenience, we have introduced the 

following constant 𝐴: 

cosML
A

m M





.   (6) 

Taking the first derivative of 𝑋(𝑡) with respect to 

time 𝑡, Eq. (5a) becomes: 

0 0 0( sin sin ).X X A        (5b) 

One may observe that Eq. (5a) includes the initial 

conditions (𝑋0, 𝑋̇0) for the cart, as well as the initial 

conditions (𝜃0, 𝜃̇0) for the angle 𝜃(𝑡) of the 

pendulum, and obviously satisfies the ODE (4). But 

the most interesting issue in Eq. (5a) is that 𝑋(𝑡) 

consists of a bounded term of amplitude ±2𝐴 plus a 

linear term of the form 𝑎𝑡 with the constant 𝑎 being 

equal to 0 0 0( sin )a X A   . This fact clearly 

shows that the cart will perform an oscillatory 

motion of amplitude 2𝐴 but it continuously moves 

in the positive 𝑋-direction.  

Obviously, the above remark regarding the 

continuous motion 𝑋(𝑡) of the cart is not peculiar 

and this happens simply because the center of mass 

has an initial velocity, which due to the absence of 

friction is preserved forever. From the practical 

point of view, as also can be noticed in a video of a 

prototype device, [7], the pendulum is diverted 

(lifted) at an angle 𝜃𝑙𝑖𝑓𝑡, at which (according to Eq. 

(2)) the potential energy of the bob mass will be 

equal to: 

cos sinlift

pot bE Mgz MgL        (7a) 

Setting in Eq. (7a) the technically maximum 

possible value (most upper position of the 

pendulum) 𝜃𝑙𝑖𝑓𝑡 = −𝜋 at which the cosine becomes 

equal to (−1), the aforementioned initial potential 

energy (produced from the maximum possible 
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rotation of the pendulum on the slant plane) 

becomes: 

 
max

sinlift

potE MgL    (7b) 

Therefore, keeping the cart firmly fixed, as the 

pendulum rotates in the anti-clockwise direction by 

lowering the height 𝑧𝑏 and thus increasing its 

angular velocity 𝜃̇(𝑡), the energy conservation for 

the pendulum gives: 

2 2

0

( sin )cos

1
( sin )cos ( )( )

2

liftMgL

MgL ML

 

  

 

 
 (8a) 

Setting 𝜃𝑙𝑖𝑓𝑡 = −𝜋 and 𝜃0 = −𝜋 2⁄ , Eq. (8a) gives 

the maximum possible initial angular velocity at 

𝜃0 = −𝜋 2⁄ , given by: 

0 max

2 sin
( )

g

L


    (8b) 

Now, exactly when the pendulum passes through the 

position 𝜃0 = −𝜋 2⁄  at any given initial angular 

velocity 𝜃̇0, not necessarily equal to that maximum 

of Eq. (8b), the cart is suddenly left free to move 

according to the dominating physical laws. 

Henceforth, the problem is to determine the function 

𝜃(𝑡) and then, applying Eq. (5a), to determine the 

position 𝑋(𝑡) of the cart. In other words, despite the 

motion of the cart, the problem decoupled as we 

have to solve only the large angle oscillation of the 

pendulum. Nevertheless, it does not fit the well-

known forms in physics (mechanics).  

 

3. Solution of the mechanical model 
For the sake of conservatism, we derive the equation 

of motion considering the equation of energy 

conservation. The mechanical system includes two 

kinetic energies for the cart (of mass 𝑚) and the bob 

(of mass 𝑀), respectively, and also the potential 

energy of the bob mass.  

In more detail, the kinetic energy of the cart is 

simply given by: 

21
,

2

cart

kinE mX    (9) 

Also, according to Eq. (2) the velocity components 

of the bob will be: 

sin cos ,

cos ,

sin sin ,

b

b

b

x X L

y L

z L

  

 

  

 





  (10) 

thus the kinetic energy of the bob mass, with respect 

to an inertial system fixed to the Earth is given by: 

2 2 21
( )

2

bob

kin b b bE M x y z      (11a) 

Substitution of Eq. (10) into Eq. (11a), after 

manipulation we eventually receive: 

2 2 21
( 2 sin cos )

2

bob

kinE M X L LX         (11b) 

In addition, the potential energy of the bob mass is 

given by: 

(0 cos sin )

bob

pot bobE Mgz

Mg L  



 
      (12) 

Summing Eqs. (9), (11b) and (12), after 

rearrangement of the terms the total mechanical 

energy of the system takes the form: 

2 2 21 1
( ) ( )

2 2

( cos ) sin

( sin )cos .

totalE m M X ML

ML X

MgL



  

 

  





 (13)  

Substituting Eq. (5a) into (13), after elaboration the 

latter takes the form: 

2

0B C E      (14) 

with the variables 𝐵 and 𝐶 being functions of only 

the degree of freedom 𝜃 (and the initial conditions 

as well), as follows: 

2 2 21 1
( ) sin

2 2
B m M A ML     (15) 

and  
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2

0 0 0

1
( )( sin )

2

( sin )cos

C m M X A

MgL

 

 

  



 (16) 

Also, 𝐸0 in Eq. (14) is the initial value of the total 

energy, which according to (13) equals to: 

2 2 2

0 0 0

0 0 0

0

1 1
( ) ( )

2 2

( cos ) sin

( sin )cos

E m M X ML

ML X

MgL



  

 

  





 (17) 

Below we present two alternative equations of 

motion, of first and second order respectively, 

which have to be numerically solved. 

 

3.1 First-order differential equation 

The energy conservation Eq. (14) is directly solved 

in 𝜃̇ thus we receive: 

0( )E C

B



  ,  (18)  

Equation (18) is a first-order ordinary differential 

equation of 𝜃(𝑡) in 𝑡 , thus can be easily solved in a 

numerical way, for example implementing the 

Runge-Kutta algorithm. The only difficulty with Eq. 

(18) is the sign ± which is related to whether the 

bob keeps going in a certain direction. In more 

detail, considering the definition of the azimuthal 

angle according to Fig. 1a, when the bob rotates in 

the anti-clockwise direction (thus increasing the 

function 𝜃(𝑡)) the proper sign is (+) whereas when 

rotates in the clockwise direction (thus decreasing 

the function 𝜃(𝑡)) the suitable sign is (−). 

To control the sign in the above mentioned 

procedure, it is useful to determine the two positions 

at which the condition 𝜃̇ = 0 is met, called “turn 

points” (extreme oscillation points), and correspond 

to the maximum possible angle 𝜃𝑚𝑎𝑥 (amplitude 

𝜃𝑎 = 2𝜃𝑚𝑎𝑥). Therefore, setting in Eq. (18) the 

condition 𝜃̇ = 0, it simplifies to 𝐶 = 𝐸0, and then 

we obtain: 

21
0 0 0 02

max

( )( sin )
cos

( sin )

m M X A E

MgL

 




  
     (19a)  

Then, the maximum value (half-amplitude) is: 

2 2
1 0

max

cos
cos 1

2 sin ( )

L M

g m M

 





  

      
    (20a) 

Therefore, in the first half-period (angle interval 

[−𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥]) the sign is (+), in the second half-

period the sign is (–), in the third half-period the 

sign is (+), and so on. 

 

3.2 Second-order differential equation 

Taking the first derivative in time of both parts in 

Eq. (14), we derive 𝐵̇𝜃̇2 + 2𝐵𝜃̇𝜃̈ + 𝐶̇ = 0, whence 

we can solve in 𝜃̈: 

2 2

B C

B B





      (21) 

After substitution of Eq. (15) and Eq. (16) in 

Eq.(21), and then replacing the constant 𝐴 according 

to Eq. (6), we eventually obtain the desired 2nd-order 

ODE: 

2 2

2 2

sin ( )sin cos cos

( cos sin )

g M m LM

L M M m

    


 

   


 
  (22) 

The advantage of Eq. (22) compared to Eq. (18) is 

that it requires no book-keeping on the sign in front 

of the square root, while the disadvantage is that its 

numerical solution does not ensure energy 

conservation. Of course, since Eq. (22) was derived 

from the energy conservation after differentiation, 

the initial energy is lost and is merely substituted by 

the initial conditions (𝜃0, 𝜃̇0) that ensure 𝐸0, 

according to Eq. (17). In any case, the degree in 

which the numerical solution ensures the energy 

conservation is a safe criterion to measure and judge 

its quality. 

 

4. Estimation of the time period 
 

4.1 A primitive model 

One may observe that the equation of motion, Eq. 

(22), differs from the following standard nonlinear 

equation that characterizes large-angle pendulum 

oscillations: 
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sin ( ) 0
g

t
L

   ,  (23) 

As a very primitive approximation, we may set the 

term sin2𝜃 in the denominator of Eq. (22) equal to 

unity thus the cos𝜃 in the numerator will be equal to 

zero. Then, transferring all terms in the left-hand side 

we get the approximation: 

2

( )sin
sin 0

( cos )

M m
g

L M M m


 



 
  

   
      (24)  

Comparing the very approximate Eq. (24) with the 

golden standard Eq. (23), one may observe that the 

model of this paper is related to an effective length 

given by: 

2( cos )

( )sin
effL

M M m
L

M m






  


  (25)  

Having obtained the above efficient (equivalent) 

length 𝐿𝑒𝑓𝑓, according to the state-of-the-art the 

small angle oscillation formula 𝑇 = 2𝜋√𝐿𝑒𝑓𝑓/𝑔 is 

replaced by one of the following alternative 

formulas, (see, [8], [9]): 

2

max
1

1

2
max

2

3

8
max

3

max

2 1
16

2 cos
2

sin
2

eff

eff

eff

T L g

T L g

T L g
















 
  

 

  
   

  

 
  

 

  (26) 

4.2 A more accurate approximate model 

Starting from the definition of the instantaneous 

angular velocity, 𝜔 = 𝑑𝜃/𝑑𝑡, we can derive 𝑑𝑡 =

𝑑𝜃/𝜔, after integrating in the angle interval 

[−𝜃𝑚𝑎𝑥, 𝜃𝑚𝑎𝑥] we can derive the half-period 𝑇/2, 

thus for the entire period 𝑇 we get  

max

max

2
( )

d
T







 


     (27) 

Working for the first half-period in which the sign of 

Eq. (18) is positive, thus considering that 𝜔 =

√(𝐸0 − 𝐶)/𝐵 = 𝜔(𝜃), the angular velocity can be 

written in terms of four constants as follows: 

2

cos
( )

sin

a b

c d


 







,    (28) 

with 

 

2 2

0

2

( cos )

2 ( )sin

( )

cos

a L m M M

b g m M

c L m M

d LM

 





  

 

 

 

  (29) 

The infinite integral of Eq. (27) in conjunction with 

Eq. (28) cannot be analytically found, however 

instead one can easily apply either the Simpson’s 

trapezoidal rule or Gauss numerical integration. 

Alternatively, we can resort to the substitution of 

the involved trigonometric functions by: 

2 4 6

3 5 7

cos 1
2 24 720

sin ,
6 120 5040

  


  
 

    

    

 (30) 

but then only a lengthy expression in the form of the 

Taylor series may be derived using symbol 

manipulation software such as MATHEMATICA®.  

Whatever method is applied to determine the 

period 𝑇, having determined the half-amplitude 

𝜃𝑚𝑎𝑥 using Eq. (20a), and knowing that at the initial 

time 𝑡 = 0 corresponds to a position that is a little 

after the initial turn point, a closed-form analytical 

solution could be: 

max( ) cos( )t t      ,  (31) 

with 2 T   denoting the average angular 

frequency. 

Applying Eq. (31) for 𝑡 = 0, we receive 

0 max
cos    , thus we can derive the unknown 

phase difference 𝛼̅ from the formula: 

1 0

max

cos






 

   
 

      (32) 

Combining (31) and (32) we obtain the following 

approximation: 
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1 0
max

max

( ) cos cost t


  



  

      
   

   (33) 

5. Numerical application
Based on the experimental prototype, [7], the 

parameters of the device under consideration are: 

𝑀 = 0.445 kg (bob mass) 

𝑚 = 2.500 kg (chassis, i.e. cart without bob) 

𝛼 =0.203 radians (11.65 degrees) 

𝐿 = 0.225 m (shaft length) 

𝑔= 9.81 m/s2, gravitational acceleration 

The initial conditions for the two variables at 𝑡 = 0 

are: 

𝑋0 = 0 (initial position of the cart)

𝑋̇0 = 0 (initial velocity of the cart)

𝜃0 = −𝜋

2
 (90 degrees), initial azimuthal angle

𝜃̇0 = 0.1 (rad/s), initial azimuthal angular

velocity. 

5.1 Time response 

It is noted that, according to Eq. (8b), the maximum 

possible initial angular velocity is (𝜃̇0)𝑚𝑎𝑥 =

4.1929 𝑟𝑎𝑑/𝑠𝑒𝑐. Therefore, the selected value 𝜃̇0 =

0.1 is a rather small one.  

For the particular conditions, (𝜃0 = 𝜋/2, 𝜃̇0 = 0,

as well as 𝑋0 = 0 and 𝑋̇0 = 0), Eq. (19a) provides:

max
cos 0.999999881725856    (19b) 

thus: 

max
1.571282689119088radians,

90.027866508490348degrees

 
  (20b) 

One may observe that Eq. (20b) provides two 

angles, one close to the initial position (– 𝜋/2) and 

another close to the final position (+𝜋/2) of the 

half oscillation. From the computational point of 

view, these two values are valuable to control the 

sign in Eq. (18) when the first-order formulation is 

used, so that when they are met the sign 

immediately changes into its opposite value than the 

previous one. In contrast, the second-order 

formulation given by Eq. (22) recognizes the 

reversal of motion (turn points) automatically, 

because the unknown variable 𝜃̇ is a part of the 

solution.  

For 0 < 𝑡 < 6.5 𝑠𝑒𝑐, the obtained results are 

shown from Fig. 2, Fig. 2, Fig. 3, Fig. 4, Fig. 5, and 

Fig. 6. One may observe that the overall behavior of 

the results is very similar to other inertial drives, i.e., 

it constitutes an oscillating motion around a linearly 

increased (with respect to time) displacement 

(according to Eq. (5a), (5b)). In other words, the 

cart, of mass 𝑚 = 2.5 𝑘𝑔, is progressively displaced 

to the 𝑥-direction.  

The absolute velocity of the cart is according to 

the derivative of 𝑋(𝑡) described by Eq. (5b). 

Therefore, for the particular initial conditions, (𝑋0 = 
0, 𝑋̇0 = 0, and 𝜃0 = −𝜋/2), it is given as 𝑋̇ =
𝐴(𝜃ṡin𝜃 − 𝜃0̇sin𝜃0), thus the absolute velocity of 
the cart oscillates in accordance to a repeated 

pattern, as shown in Fig. 3: .  

Fig. 2: Cart displacement. 

Fig. 3: Cart velocity. 
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Next, the calculated “azimuthal” (longitudinal) 

angle 𝜃(𝑡) is harmonic as shown in Fig. 4, and 

again, the two formulations (first- and second-order 

ODEs) visually coincide with one another. 

Also, the ‘azimuthal’ angular velocity 𝜔 = 𝜃̇(𝑡) 

is harmonic, as shown in Fig. 5. Interestingly, in 

contrast to the well known contra-rotating drives 

which are based on an almost constant rotation 𝜔0, 

[10], in the case of this paper the function of the 

instantaneous cyclic frequency 𝜔(𝑡) is harmonic.  

Moreover, the altitude 𝑧𝑏(𝑡) of the bob mass is 

shown in Fig. 6, and depicts that the bob mass is 

always below the horizontal plane.  

 

 

Fig. 4: “Azimuthal” angle 𝜃(𝑡). 

 

 

 

Fig. 5: “Azimuthal” angular velocity 𝜔 = 𝜃̇(𝑡). 

 

 

Fig. 6: Altitude of bob mass (𝑧-coordinate). 

 

5.2 Energy Breakdown 

In the first formulation (first-order ODE) the energy 

conservation is ensured per se since the governing 

equation, Eq. (18), is coming from it. 

In the second formulation (second-order ODE, 

i.e., Eq. (22)) the conservation of total energy works 

as a criterion to judge the quality of the numerical 

solution.  

Actually, while in both formulations the total 

energy is practically preserved at the level of 

1.1264 × 10−4 Joule, Fig. 7 shows that in the 

second formulation it slightly decreases.  

Regarding the energy breakdown in kinetic and 

potential energy, Fig. 8 shows that the kinetic 

energy of the cart is very small compared to the 

kinetic energy and potential energy of the bob. Note 

that, although due to the scale the total energy seems 

close to zero, actually it is equal to 1.1264 × 10−4 

Joule, as also mentioned above.  

 

 

Fig. 7: Energy conservation. 
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Fig. 8: Energy breakdown. 

Now, we present results regarding the analytical 

estimation of the time period 𝑇 of the oscillation 

using Eq. (26), as well as the possible 

approximation of the azimuthal angle function 𝜃(𝑡). 

Considering the time period 𝑇𝑅𝐾 = 2.3769 𝑠𝑒𝑐

coming from the peak-to-peak graph in the Runge-

Kutta solution (in our case we have: 𝜃0 =

−𝜋/2, 𝜃̇0 = 0.1 𝑟𝑎𝑑/𝑠𝑒𝑐), the comparison of the

latter with the approximate values (Eq. (26)) is

adequately satisfactory, as shown in Table 1.

Table 1. Ratio of the estimated period over the accurate 

𝑇𝑅𝐾  (Runge-Kutta) value

Normalized period 

Eq. (26) 

Value 

𝑇1/𝑇𝑅𝐾 0.9517 

𝑇2/𝑇𝑅𝐾 0.9806 

𝑇3/𝑇𝑅𝐾 0.9767 

Fig. 9: Approximation of the angle 𝜃(𝑡). 

It is noted that when using the first two terms of 

Eq. (30) and then calculate the integral of Eq. (27) 

through a series expansion (powers of 

𝑥, 𝑥3, 𝑥5, 𝑥7, 𝑥9, 𝑥11) using MATHEMATICA®, the

calculated value is not of adequate accuracy 

(𝑇/𝑇𝑅𝐾 = 0.9265), that is worse than all those

shown in Table 1. 

Then, in Fig. 9 we present the estimation of the 

azimuthal angle 𝜃(𝑡), in two ways. The former is 

based on the actual period 𝑇𝑅𝐾 = 2.3769𝑠𝑒𝑐 [in the

legend of the graph is labeled as ‘Eq. (33)’], while 

the latter is based on the best estimation in Table 1 

[in the legend of the graph is labeled as ‘Eqs. 

(26)+(33)’]. One may observe that the former 

visually coincides with the Runge-Kutta solution 

whether in the progress of time the latter (with 

𝑇/𝑇𝑅𝐾 = 0.9806) appears a small shift to the left.

In any case, having a closed-form analytical 

solution for 𝜃(𝑡) given by Eq. (33), we can 

immediately apply Eq. (5a) and thus determine the 

cart position 𝑋(𝑡). The  conservation of Linear 
Momentumn is presented in Fig. 10. 

Fig. 10: Conservation of Linear Momentum. 
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6. Conservation of linear and angular

momentum

6.1 Linear momentum 

Regarding the conservation of the linear momentum 

in the system, Fig. 1 shows that it is preserved at the 

level of 𝑃𝑡𝑜𝑡𝑎𝑙 = 9.8069 𝑘𝑔 𝑚/𝑠.

From the theoretical point of view, the total 

momentum equals that of the center of mass which 

possesses a constant velocity (the initial one) 

because no external force is exerted in the 𝑥-

direction. Therefore, by virtue of the first equality in 

Eqs. (3) we have: 

 
cmbtotal xP mX Mx m M   . (34) 

And since the initial velocity of the cart is 𝑋̇0 = 0

whereas that of the bob is (𝑥̇𝑏)0 = 𝑋̇0 −

𝐿𝜃̇0sin𝜃0cos𝛼, the initial linear momentum 𝑃0 of

the system will be: 

 0 0 0 0 0

0 0 0

sin cos

( ) ( cos ) sin .

P mX M X L

m M X ML

  

  

  

  
(35) 

Therefore, for the particular initial conditions 

adopted in Section V (i.e., 𝜃0 = −𝜋/2 and 𝜃̇0 =

0.1 𝑟𝑎𝑑/𝑠𝑒𝑐), we receive: 

0

-3

(0.445 0.225 cos0.203) 0.1 ( 1)

9.8069 10 kg m/s.

P       

 

Then we shall show the ‘mechanism’ according to 

which the momentum of the bob mass is transferred 

to the cart. Actually, when the pendulum reaches the 

most forward position 𝜃 = 0 (almost at the end of 

the first quarter of the oscillation period), the first 

component of the velocity (i.e., 𝑥̇𝑏 = 𝑋̇ −

𝐿𝜃̇sin𝜃cos𝛼) of the bob mass becomes (𝑥̇𝑏)𝜃=0 =

𝑋̇, that means it shares the same velocity with the

cart, thus the total momentum is (𝑚 + 𝑀)(𝑋̇)
𝜃=0

,

whence (𝑋̇)
𝜃=0

= 𝑃0 (𝑚 + 𝑀) = 0.0033 𝑚/𝑠⁄  and

this point corresponds to the intersection of the two 

branches in the center of the eight-shaped curve 

shown in Fig. 11. 

Fig. 11: Cart velocity versus azimuthal angle 𝜃. 

As the bob mass keeps moving toward the 

position about 𝜃 = 𝜋/2, it loses momentum (it 

becomes negative) which is gained by the cart thus 

increasing the travel length 𝑋. The whole procedure 

is shown in Fig. 12, with respect to both time and 

angle parameters. 

6.2 Angular momentum 

Regarding the angular momentum, first of all it is 

interesting to note that the rigid rod 𝑂′𝑃 is always 

perpendicular to the unit vector 𝑛⃗  that is normal to 

the slant plane, and the same happens with the 

relative velocities of the bob and cart mass with 

respect to the center of mass of the system. In other 

words, these two masses rotate about an axis of 

constant direction (i.e., parallel to the 𝑛⃗ -vector) 

given by Eq. (1), which (axis) always passes 

through the moving center of mass. 

The position of the center of mass is given by 

the distances 𝐿1 and 𝐿2 from the cart and the bob

mass, respectively, given by: 

1

M
L L

m M



, and  2

m
L L

m M



(36) 

Therefore the total second moment of inertia is 

2 2 2

1 2 .
( )

mM
I mL ML L

m M
  


(37) 
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Fig. 12: Exchange of linear momentum between 

pendulum and cart. 

 

With respect to the inclined 𝑛⃗ -axis of rotation 

(passing through the center of mass), the equation of 

motion (Newton’s second law for rotation) is 

written as follows (see, [11], [12]): 

2

2

d d

d d
extI

t t


 

G
τ   (38) 

with 𝜃 = 𝜃𝑛⃗  and ext extnτ .  

The key factor is the careful consideration of the 

external forces based on Newton’s second law for 

translation, which for the two point masses are 

according to Table 2. 

To determine the algebraic value of the external 

torque, 𝜏𝑒𝑥𝑡, we need to find the sum of torques due 

to external forces with respect to the center of mass, 

and then to perpendicularly project it on the 𝑛⃗ -axis. 

Therefore, we find:  

1 1 2 2( )ext r F r F n     .  (39) 

Obviously, the fact that the system is constrained 

(supported on the ground) is the cause that the total 

angular momentum 𝑮⃗⃗  is not preserved, but instead 

Eq. (38) shows that its time derivative (d𝑮⃗⃗ /𝑑𝑡 =

𝐼𝜃̈) equals to the sum of the nonzero external 

torques. In other words, the fact that the total 

angular momentum is not preserved is fully 

consistent with Newton’s second law for rotation. 

 

 

 

Table 2. External forces (𝐹) and position vectors (𝑟) 

Cart mass (𝑚):  

Mass No.1 

Bob mass (𝑀):  

Mass No.2 

𝐹1𝑥 = 0 𝐹2𝑥 = 0 

𝐹1𝑦 = 𝑀𝑦̈𝑏 𝐹2𝑦 = 0 

𝐹1𝑧 = 𝑀(𝑧̈𝑏 + 𝑔) 𝐹2𝑧 = −𝑀𝑔 

𝑟 1 = [(𝑋 − 𝑥𝑐), (0 − 𝑦𝑐), (0
− 𝑧𝑐)] 

𝑟 2
= [(𝑥𝑏 − 𝑥𝑐), (𝑦𝑏

− 𝑦𝑐), (𝑧𝑏 − 𝑧𝑐)] 

 

Actually, using a computer program the 

interested reader may see that the two parts of Eq. 

(38) are the same, as clearly is shown in Fig. 13. 

The last important issue is to start from Eq. (38) 

and eventually to derive Eq. (22), without passing 

through the condition of energy conservation (on 

which Eq. (22) was based). This is accomplished as 

follows. The left part of Eq. (38) remains as is, i.e., 

𝐼𝜃̈ (although one could forget the first paragraph of 

this subsection regarding the second moment of 

inertia and, alternatively, could blindly derive it 

simply by differentiating the general expression 𝑮⃗⃗ =

𝑟 1 × 𝑚𝑉⃗ 𝑐𝑎𝑟𝑡 + 𝑟 2 × 𝑀𝑉⃗ 𝑏𝑜𝑏). Moreover, the first 

term in the right part of Eq. (39), i.e., 𝑟 1 × 𝐹 1 +

𝑟 2 × 𝐹 2, is replaced according to Table 2. Then, the 

involved variables (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) are replaced by Eq. 

(2), while the required second derivatives (𝑦̈𝑏 , 𝑧̈𝑏) by 

differentiating Eq. (10) thus receiving: 

2

( cos sin ),

sin ( sin ).cos

b

b

y L

z L

   

    

 

 
  (40) 

Also, the coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) of the center of 

mass are given by Eq. (3).  

Substituting Eq. (2), (3) and   (40) into 

the right-hand side of Eq. (39) using also Eq. (1), we 

derive a certain expression which includes 𝑦̈𝑏 and 

𝑧̈𝑏 thus depends on the parameter 𝜃̈ (see, Eq.  

 (40)). Therefore, 𝜃̈ appears in both parts of 

Eq. (38) and after extensive manipulation and 

rearrangement, when solving in 𝜃̈, Eq. (22) is 

eventually obtained again.  
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Fig. 13: Coincidence between the left and right parts of 

Eq. (38). 

 

7. Discussion 

In this study, the friction has been entirely neglected 

on purpose, just to test the conservation of energy 

and momentum as well as the overall feasibility of 

the prototype mechanism and the model. Actually, 

while the conservation of energy and linear 

momentum are fulfilled, the angular momentum is 

not preserved but its change in time equals to the 

external torque.  

In other words, the system ‘cart + pendulum’ is 

an open system with the characteristic that it 

undertakes no external forces in the 𝑥-direction of 

motion (thus linear momentum is preserved) and has 

no energy loses (thus energy is preserved). 

Regarding the abovementioned angular momentum, 

the three-dimensional motion of the bob mass 

causes inertial forces in all the three directions 

(𝑥, 𝑦, 𝑧) but only those in the (𝑦, 𝑧) directions are 

transferred to the wheels as support forces (see, 

Table 2) thus causing external torque in addition to 

the dead weights. We recall that the absence of 

support force in the 𝑥-direction is due to the lack of 

friction.  

A weakness is that the model of this study has 

not considered the possibility of the cart either to 

move toward the 𝑦-direction or to overturn, because 

both facts would be inconsistent with the 

experiment, [7], in which the friction with the 

ground plays a significant role. From a different 

point of view, we could additionally assume that the 

wheels are forced to roll on rails toward the 𝑥-

direction and this resolves the supposed weakness of 

our model.  

Regarding the angular momentum, for instructive 

purposes it is worthy to point out that while a 

similar finding (i.e., the change of angular 

momentum equals  the external torque) is valid for a 

fixed pivot spinning top where the torque is taken 

with respect to the fixed point, in the present paper 

we had to implement Newton’s second law (for 

rotation) with respect to the center of mass of the 

mechanical system. 

It was clearly shown that an inclined large-angle 

pendulum attached on a cart in the form of a 

‘winding’ clock (where the winding is replaced by 

the initial potential energy), may feed it with linear 

momentum thus it can travel at an infinite distance, 

provided the friction between the wheels of the cart 

and the ground as well as the friction at the pivot 𝑂′ 

is negligible, otherwise cart’s motion progressively 

ceases. The advantage of the pendulum over other 

inertia drives is that it actually requires much time 

to decay due to friction at the pivoting point 𝑂′. In 

addition, we only need to offer an initial potential 

energy to the bob mass by elevating the pendulum 

setting it at best parallel to the desired direction of 

motion, and then leaving it free to oscillate.  

In simple words, the key factor for the 

continuous motion of the cart is the conservation of 

the linear momentum in the 𝑥-direction. Actually, 

the corresponding velocity of the bob mass [see, Eq. 

(10)] is given by 𝑥̇𝑏 = 𝑋̇ − 𝐿𝜃̇sin𝜃cos𝛼, which 

means that with respect to an inertial observer at the 

pivot point 𝑂′, the product (−𝜃̇sin𝜃) plays an 

important role. The quantity 𝑃𝑥 = 𝑚𝑋̇ + 𝑀𝑥̇𝑏 =

(𝑚 + 𝑀)𝑋̇ − 𝐿𝑀cos𝛼(𝜃̇sin𝜃) remains  constant, 

which means that at the minimum value of the 

product (−𝜃̇sin𝜃) we have the maximum value of 

𝑋̇ and vice versa. Moreover, regarding the absolute 

position of the cart given by 𝑋(𝑡) = 𝐴(−cos𝜃 +

𝜃̇0𝑡), for the particular initial conditions of our test 

case, it is a simple superposition of a constant 

velocity (𝐴𝜃̇0) and a parasitic cosine term. The 

whole procedure was explained by details in Section 

6. 

Interestingly, while the amplitude in the 

oscillation of the linear momentum is relatively high 

(see, Fig. 12), the magnitude of the constant total 

linear momentum is rather small.  
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In Section 5, results were presented for a 

relatively low initial angular velocity 𝜃̇0 =

0.1 𝑟𝑎𝑑/𝑠𝑒𝑐, thus consequently the calculated 

displacement of the cart was rather small. If the 

aforementioned 𝜃̇0 increases up to its maximum 

allowable value given by Eq. (8b), that is close to 

the value 𝜃̇0 = 4 𝑟𝑎𝑑/𝑠𝑒𝑐, in the same time 

interval, 0 ≤ 𝑡 ≤ 6.5 𝑠𝑒𝑐, the displacement 

increases a lot, as shown in Fig. 14. One may 

observe that, the higher the initial angular velocity 

the longer the travelled length in the same time 

interval. 

It is obvious that in any large-angle oscillation, 

the angular velocity vanishes at the extreme points. 

For example, if a small initial velocity such as 𝜃̇0 =

0.1𝑟𝑎𝑑/𝑠 had been given at an initial angle of 𝜃0 =

−450 degrees, the zero value of the angular velocity 

would happen earlier at −45.03940 degrees, while 

the other extreme point would happen later at 

+45.03940 degrees. Similarly, now that in the 

present study we have chosen the initial value be 

𝜃̇0 = 0.1𝑟𝑎𝑑/𝑠 at 𝜃0 = −900 degrees, it has been 

shown that the half-amplitude 𝜃max of the 

‘azimuthal’ angle is slightly larger than 𝜃max = 900 

(i.e., 90.02790 degrees in absolute value). 

According to Eq. (20a), the inverse cosine of 𝜃max 

is proportional to the term 𝜃̇0
2 thus the higher the 

initial angular velocity the higher the half-amplitude 

(𝜃max) is. 

Interestingly, although the system has two 

degrees of freedom, the azimuthal angle 𝜃 is the 

primary variable and even it satisfies either a first-

order (due to energy itself) or a second-order (due to 

the differentiation of the total energy in time) 

differential equation. For didactic purposes, the 

same second-order equation was derived following a 

much more difficult way, by considering the change 

of the angular momentum. A fourth straightforward 

formulation is to implement Lagrange’s equations, 

which include the difference between the kinetic 

and potential energies (see Appendix B). 

 

Fig. 14: Cart’s displacement for various initial angular 

velocities 𝜃̇0 = 0.1, 1, and 4 rad/sec. 

 

APPENDIX A: Derivatives in time t 

(cos ) sin    
g

            (A-1) 

(sin ) cos   
g

            (A-2) 

 2
(cos ) sin cos      

gg
         (A-3) 

 2
(sin ) cos sin      

gg
           (A-4) 

 

APPENDIX B: Lagrange’s equations 

Lagrange equations are given by 

1 2
0, ,

i i

d L L
q X q

dt q q


 
   

 

 
 
 

  (B-1) 

and  
kin potL E E            (B-2) 

Setting the kinetic energy 𝐸𝑘𝑖𝑛 as the sum of Eq. (9) 

and Eq. (11b), while the potential energy 𝐸𝑝𝑜𝑡 is 

according to Eq. (12), the Lagrangian in (B-2) 

becomes: 

2

2 2 2

1

2

1
( 2 sin cos )

2

cos sin

L mX

M X L LX

MgL

   

 



  



 

 

 

 

(B-3) 

The first Lagrange equation (with 𝑞1 = 𝑋) leads to: 

( ) ( cos )(cos ) 0m M X ML    
gg

,  (B-4) 
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which coincides with Eq. (4). The second equation 

(with 𝑞1 = 𝜃) leads to:

2
( cos ) sin

sin sin 0

ML ML X

MgL

  

 



 
    (B-5) 

Eliminating the quantity 𝑋̈ between Eq. (B-4) and 

Eq. (B-5), we eventually obtain Eq. (22).  
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