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Abstract— Splines are an important mathematical tool in Applied and Theoretical Mechanics. Several 

Problems in Mechanics are modeled with Differential Equations the solution of which demands Finite Elements 
and Splines.  In this paper, we consider the construction of computational schemes for the numerical solution of 
integral equations of the second kind with a weak singularity. To construct the numerical schemes, local 
polynomial quadratic spline approximations and second-order nonpolynomial spline approximations are used. The 
results of the numerical experiments are given. This methodology has many applications in problems in Applied 
and Theoretical Mechanics 
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     1. Introduction 
A lot of mathematical formulations of physical phenomena 
contain integral and/or integro-differential equations. These 
equations occur in many applications such as in the 
transport of air and ground water pollutants, oil reservoir 
flow, in the modeling of semiconductors etc. Currently 
many papers have been devoted to the numerical solution of 
integral equations with a weak singularity. Let's mention 
some papers published recently. 
     In paper [1] an iterative scheme to approach the solution 
of nonlinear integro-differential Fredholm equation with a 
weakly singular kernel using the product integration method 
is developed. 
     Cubic trigonometric B-spline functions are used in the 
paper [2] to solve the convection-diffusion type partial 
integro-differential equation (PIDE) with a weakly singular 
kernel. Cubic trigonometric B-spline (CTBS) functions are 
used for interpolation in both methods. The first method is 
the CTBS based collocation method which reduces the 
PIDE to an algebraic tridiagonal system of linear equations. 
The other method is the CTBS based differential quadrature 
method which converts the PIDE to a system of ODEs by 
computing spatial derivatives as weighted sum of function 
values. 
     A new orthogonal basis for the space of cubic splines has 
been used in paper [3] for obtaining the numerical solutions 
of a partial integro-differential equation with a weakly 
singular kernel. 
       In paper [4] a meshless method in local setting and 
Laplace transform are coupled to approximate partial 
integro-differential equations (PIDEs). 
       In paper [5] a numerical scheme is developed to solve 
the Volterra partial integro-differential equation of the 
second order having a weakly singular kernel. The scheme 
uses cubic trigonometric B-spline functions to determine the 
weighting coefficients in the differential quadrature 
approximation of the second order spatial derivative.  

       In the paper [6] the trigonometric cubic B-spline 
collocation method is extended to the solution of a second 
order partial integro-differential equation with a weakly 
singular kernel.  
    Splines are often used to solve various problems: 
interpolation; solving the Cauchy problem; Image 
compression; and enlargement (see, for example, [8]-[11]). 
In paper [11], splines were used to solve Volterra integral 
equations of the second kind with a smooth kernel. This 
methodology has many applications in problems in Applied 
and Theoretical Mechanics 
    In section 2 of this paper, for the approximate calculation 
of integrals with a weak singularity, we use polynomial and 
nonpolynomial splines of the second order of 
approximation. In section 3 the numerical examples are 
given.  
 
2. The construction of the method 
     In this paper, we consider the numerical solution of the 
Fredholm integral equation of the second kind with a weak 
singularity 

𝑢(𝑥) − ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

𝑏

𝑎

, 𝑥 ∈ [𝑎, 𝑏] . 

We assume that the kernel 𝐾(𝑥, 𝑠) has the form: 
 

𝐾(𝑥, 𝑠) = 𝑝(𝑥, 𝑠)𝑔(𝑥, 𝑠) =
𝑔(𝑥, 𝑠)

|𝑥 − 𝑠|𝛼
 , 𝛼 ∈ (0,1), 

 

where 𝑝(𝑥, 𝑠)  is a weight function, 𝑝(𝑥, 𝑠) =
1

|𝑥−𝑠|𝛼 ,   𝛼 ∈

(0,1). We assume that the function 𝑔(𝑥, 𝑠)  is bounded 
function on [𝑎, 𝑏].  In this paper, to construct calculation 
formulas, we use quadratic basis splines and a Gaussian-
type quadrature formula.  
     Let an ordered grid of nodes  {𝑥𝑘}, be constructed on the 
interval [𝑎, 𝑏] : 𝑎 = 𝑥0 < ⋯ < 𝑥𝑛 = 𝑏.  We represent the 
integral ∫ 𝐾(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠

𝑏

𝑎
 as the sum of integrals over the 

grid segments: 
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∫ 𝑝(𝑥, 𝑠)𝑔(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠 = ∑ ∫ 𝑝(𝑥, 𝑠)𝑔(𝑥, 𝑠)𝑢(𝑠)𝑑𝑠
𝑥𝑘+1

𝑥𝑘

𝑛−1

𝑘=0

𝑏

𝑎

 . 

 
Applying local interpolation splines of the second order of 
approximation (see [8]), we obtain 𝑢̃ ≈ 𝑢, where 
 

𝑢̃(𝑠) = ∑ 𝑢(

𝑘+1

𝑖=𝑘

𝑥𝑖)𝜔𝑖(𝑠), 𝑠 ∈ [𝑥𝑘 , 𝑥𝑘+1], 

 
𝜔𝑘(𝑠) =

𝑠 − 𝑥𝑘+1

𝑥𝑘 − 𝑥𝑘+1

 , 

𝜔𝑘+1(𝑠) =
𝑠 − 𝑥𝑘

𝑥𝑘+1 − 𝑥𝑘

 . 

 
Recall that we have proved the approximation error theorem 
(see paper [7]). 
Denote the norm: 

∥ 𝑢 ∥[𝑎,𝑏]= max
𝑥∈[𝑎,𝑏]

|𝑢 (𝑥)|. 

       Theorem. If 𝑥𝑘, 𝑥𝑘+1 are the nodes, ℎ = 𝑥𝑘+1 − 𝑥𝑘 , 𝑠 ∈
[𝑥𝑘 , 𝑥𝑘+1], and 𝑢 ∈ 𝐶2[𝑥𝑘 , 𝑥𝑘+1] then the next estimation is 
valid 

|𝑢(𝑠) − 𝑢̃(𝑠)| ≤
1

8
ℎ2 ∥ 𝑢′′ ∥[𝑥𝑘,𝑥𝑘+1]. 

 
Denote 𝑣𝑖(𝑠) =  𝑔(𝑥, 𝑠)𝜔𝑖(𝑠). Let us construct a quadrature 
formula of the Gaussian type with two nodes: 

∫ 𝑝(𝑠)𝑣𝑖(𝑠)𝑑𝑠
𝑥𝑘+1

𝑥𝑘

≈ 𝐴1,𝑘𝑣𝑖(𝑦1) + 𝐴2,𝑘𝑣𝑖(𝑦2). 

It is necessary to calculate the nodes  𝑦𝑖  and the coefficients 
𝐴𝑖,𝑘 , 𝑖 = 1,2. The nodes and coefficients of the quadrature 
formula of the Gaussian type with the weight 𝑝(𝑠) can be 
found in the traditional way. Let the function 𝜔(𝑥) be such 
that 𝜔(𝑥) = (𝑥 − 𝑦1)(𝑥 − 𝑦2) , where  𝑦𝑖 , 𝑖 = 1,2,  are the 
nodes of the quadrature formula of the Gaussian type.  
       For the convenience of these calculations, we will write 
the polynomial 𝜔(𝑠) in the form: 
 

𝜔(𝑠) = (𝑠 − 𝑦1)(𝑠 − 𝑦2) = 𝑠2 + 𝑞𝑠 + 𝑟. 

 

First, we calculate the moments 𝑐𝑖: 
 

𝑐𝑖 = ∫ 𝑝(𝑠)𝑠𝑖𝑑𝑠

𝑥𝑘+1

𝑥𝑘

, 𝑖 = 0, 1, 2, 3. 

 

Next , we solve the system of the equations and find the 
unknowns 𝑞, 𝑟: 
 

𝑐2 + 𝑞𝑐1 + 𝑟𝑐0 = 0, 

𝑐3 + 𝑞𝑐2 + 𝑟𝑐1 = 0. 

 

Now, we can solve the quadratic equation 𝑠2 + 𝑞𝑠 + 𝑟 = 0 
and find its roots 𝑦𝑖 . These roots are the nodes of the 
quadrature formula. Now we determine the coefficients  𝐴𝑖,𝑘 
of the quadrature formula by solving the system of 
equations: 
 

𝐴1,𝑘 + 𝐴2,𝑘 = 𝑐0, 

𝐴1,𝑘𝑦1 + 𝐴2,𝑘𝑦2 = 𝑐1. 

 

Recall the theorem on the remainder term of a quadrature 
formula of the Gaussian type. In the case of two nodes, the 
remainder term 𝑅, 
 

𝑅 = ∫ 𝑝(𝑠)𝑣(𝑠)𝑑𝑠
𝑏

𝑎

− 𝐴1,2𝑣(𝑦1) − 𝐴2,2𝑣(𝑦2) 

 
takes the form: 

𝑅 =
𝑣(4)(𝜉)

4!
∫ 𝑝(𝑥)𝜔2(𝑥)𝑑𝑥

𝑏

𝑎

, 

𝜔 = (𝑠 − 𝑦1)(𝑠 − 𝑦2), 𝜉 ∈ [𝑎, 𝑏], 𝑣 ∈ 𝐶4[𝑎, 𝑏]. 
 
When calculating sequentially, we get a chain of equalities: 

 

∫ 𝑝(𝑥, 𝑠) ∑ 𝑣𝑖(𝑠)

𝑘+1

𝑖=𝑘

𝑑𝑠
𝑥𝑘+1

𝑥𝑘

= 

 

∑ 𝑢(

𝑘+1

𝑖=𝑘

𝑥𝑖) ∫ 𝑝(𝑥, 𝑠) 𝑔(𝑥, 𝑠)𝜔𝑖(𝑠)𝑑𝑠
𝑥𝑘+1

𝑥𝑘

≈ 

 

𝑢(𝑥𝑘)(𝐴1,𝑘𝑔(𝑥, 𝑦1)𝜔𝑘(𝑦1) + 𝐴2,𝑘𝑔(𝑥, 𝑦2)𝜔𝑘(𝑦2)+ 

 

𝑢(𝑥𝑘+1)(𝐴1,𝑘𝑔(𝑥, 𝑦1)𝜔𝑘+1(𝑦1) + 𝐴2,𝑘𝑔(𝑥, 𝑦2)𝜔𝑘+1(𝑦2) . 

 

Now we are constructing a system of linear algebraic 
equations by setting 𝑥 = 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛.  Solving the 
system of equations, we obtain the solution values 𝑢(𝑥𝑘) at 
the grid nodes 𝑥𝑘 , 𝑘 = 0,1, … , 𝑛.  If necessary, we can 
connect the found values using the piecewise linear basis 
splines. 

Remark. If functions 𝜑1(𝑠) and 𝜑2(𝑠) form a Chebyshev 
system, then the basis functions 𝜔𝑗(𝑠) and 𝜔𝑗+1(𝑠)  can be 
determined by solving the system of equations  

𝜑1(𝑥𝑗) 𝜔𝑗(𝑠)+ 𝜑1 (𝑥𝑗+1) 𝜔𝑗+1(𝑠)  = 𝜑1(𝑠),  

𝜑2(𝑥𝑗) 𝜔𝑗(𝑠) + 𝜑2(𝑥𝑗+1) 𝜔𝑗+1(𝑠) = 𝜑2(𝑠),  

𝑠 ∈  [𝑥𝑗 , 𝑥𝑗+1] . 

 Let us assume that the determinant of the system is not 
equal to zero. Let us study the case when  𝜑1(𝑠) = 1 and 
𝜑2(𝑠) = 𝜑(𝑠), where 𝜑(𝑠) is a continues function. Let us 
construct a nonpolynomial approximation of the function 
𝑢 (𝑠) on each grid interval [𝑥𝑗 , 𝑥𝑗+1] in the form:  

𝑢̃(𝑠) = ∑ 𝑢(

𝑘+1

𝑖=𝑘

𝑥𝑖)𝜔𝑖(𝑠), 𝑠 ∈ [𝑥𝑘 , 𝑥𝑘+1], 

where 

𝜔𝑘(𝑠) =
𝜑(𝑠) − 𝜑(𝑥𝑘+1)

𝜑(𝑥𝑘) − 𝜑(𝑥𝑘+1)
 , 

 

𝜔𝑘+1(𝑠) =
𝜑(𝑠) − 𝜑(𝑥𝑘)

𝜑(𝑥𝑘+1) − 𝜑(𝑥𝑘)
 . 
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Depending on the choice of the function 𝜑(𝑠), different 
error estimates are obtained. Approximation errors of the 
solution obtained with the non-polynomial splines are 
discussed in papers [10]-[11]. 

 

     3. The Results of the Numerical 

Experiments 
  Example 1. Let us start with solving the integral equation 
with a weak singularity 
 

𝑢(𝑥) − ∫ 𝑝(𝑥, 𝑠)𝑒𝑥𝑝(𝑥 + 𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

1

0

,

𝑥 ∈ [0,1] . 
 
Here 𝑝(𝑥, 𝑠) =

1

√|𝑥−𝑠|
, the function 𝑓(𝑥) is constructed using 

the functions  𝑝(𝑥, 𝑠), 𝑒𝑥𝑝(𝑥 + 𝑠)  and the exact solution 
𝑢(𝑥) = 𝑒𝑥𝑝(−𝑥). 
 
We construct the set of equidistant nodes with the step ℎ =
1/𝑛. We develop a program in Maple with Digits=10. First 
consider the use of the approximation with the polynomial 
splines. 
Fig. 1 shows the plot of the exact and approximate solutions 
of the integral equation when 𝑛 = 3.  
 
 

 
Fig.1. The plot of the exact and approximate solutions of the integral 

equation when 𝑛 = 3 
 
 
Fig. 2 shows the plot of the error of the solution of the 
integral equation when 𝑛 = 3.  
 

 
Fig.2. The plot of the errors of the solutions of the integral equation when 

𝑛 = 3 
 
 
Figs. 3-5 show the plots of the errors of the solutions of the 
integral equation. Fig. 3 shows the plots of the errors of the 
solutions of the integral equation when 𝑛 = 16 . Fig. 4 
shows the plots of the errors of the solutions of the integral 
equation when 𝑛 = 32. Fig. 5 shows the plots of the errors 
of the solutions of the integral equation when 𝑛 = 256. 
 
 

 
Fig.3. The plot of the errors of the solutions of the integral equation when 

𝑛 = 16 
 

 
 
Fig.4. The plot of the errors of the solutions of the integral equation when 

𝑛 = 32 
 

 
Fig.5. The plots of the errors of the solutions of the integral equation when 

𝑛 = 256 
 
It can be seen that with an increase in the number of nodes, 
the solution error decreases. Now consider the use of 
approximation with the nonpolynomial (exponential) 
splines. We take 𝜑(𝑠) = exp(−𝑠). Fig. 6 shows the plot of 
the exact and approximate solutions of the integral equation 
when 𝑛 = 3.  Fig. 7 shows the plot of the error of the 
solution of the integral equation when 𝑛 = 3.  
 
 

 
Fig.6. The plot of the exact and approximate solutions of the integral 

equation when 𝑛 = 3 (exponential splines) 
 
 

 
Fig.7. The plot of the errors of the solutions of the integral equation when 

𝑛 = 32 (exponential splines) 
 
The results of numerical experiments show that well-chosen 
basis functions can significantly reduce the error of the 
solution. 
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       Example 2. Let us continue with solving the next 
integral equation with a weak singularity  
 

𝑢(𝑥) − ∫ 𝑝(𝑥, 𝑠)sin(𝑥𝑠)𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

1

0

, 𝑥 ∈ [0,1] . 

Here 𝑝(𝑥, 𝑠) =
1

√|𝑥−𝑠|
, the function 𝑓(𝑥) is constructed using 

the functions 𝑝(𝑥, 𝑠), sin(𝑥𝑠) and the exact solution 𝑢(𝑥) =
exp(−𝑥). 
 
The plot of the error of the solution obtained with the 
exponential splines when 𝑛 = 10 is given in Fig.8. 
 
 

 
Fig.8. The plot of the errors of the solutions of the integral equation when 

𝑛 = 10 (Example 2, exponential splines) 
 
The plot of the error of the solution obtained with the 
polynomial splines when 𝑛 = 10 is given in Fig.9. 
 
 

 
Fig.9. The plot of the errors of the solutions of the integral equation when 

𝑛 = 10 (Example 2, polynomial splines) 
 
       Example 3. Let us continue with solving the next 
integral equation with a weak singularity  

𝑢(𝑥) − ∫ 𝑝(𝑥, 𝑠)sin (√1 − 𝑠2𝑥2) 𝑢(𝑠)𝑑𝑠 = 𝑓(𝑥)

1

0

,

𝑥 ∈ [0,1] . 
Here 𝑝(𝑥, 𝑠) =

1

√|𝑥−𝑠|
, the function 𝑓(𝑥) is constructed using 

the functions  𝑝(𝑥, 𝑠), sin √1 − 𝑠2𝑥2  and the exact solution 
𝑢(𝑥) = exp(−𝑥). 
 
The plot of the error of the solution obtained with the 
exponential splines when 𝑛 = 10 is given in Fig.10. 
 

 
Fig.10. The plot of the errors of the solutions of the integral equation when 

𝑛 = 10 (Example 3, exponential splines) 
 
The plot of the error of the solution obtained with the 
polynomial splines when 𝑛 = 10 is given in Fig.11. 

 

Fig.11. The plot of the errors of the solutions of the integral equation when 
𝑛 = 10 (Example 3, polynomial splines) 

 
4. Conclusion 

Splines are an important mathematical tool in Applied 
and Theoretical Mechanics. Several Problems in Mechanics 
are modeled with Differential Equations the solution of 
which demands Finite Elements and Splines. In this paper, 
we considered the construction of computational schemes for 
the numerical solution of integral equations of the second 
kind with a weak singularity. To construct the numerical 
schemes, local polynomial quadratic spline approximations 
and second-order nonpolynomial spline approximations are 
used. The results of the numerical experiments are given.  
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