
A Mathematical Model to Treat for a Cancer Using Chemotherapy and 

Immunotherapy under Mass Action Kinetics for Immunotherapy 
 

 A.M.D. CLOTILDA, G.V.R.K. VITHANAGE, D.D. LAKSHIKA 
Department of Mathematical Sciences 

Wayamba University of Sri Lanka 
 Kuliyapitiya,  
SRI LANKA 

 
Abstract: - Cancer is a burning problem in the modern health field. In this research mainly we focused on how 
we can treat for a cancer by using chemotherapy and immune therapy as individual monotherapies and as a 
combined therapy. In previously, researchers have constructed mathematical models to analyse the combined 
therapy treatment with saturation effects for immune therapy treatment but here we introduce mass action kinetics 
for immune therapy and this model reflects as a continues attacking process to tumour cells by immune cells with 
the help of chemotherapy drug. We introduce some threshold levels which we can remove cancer completely and 
control the cancer in a constant level.   
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1 Introduction 
Cancer causes lots of deaths around the 

world. Currently, cancer is the second cause of death 
worldwide and is expected to hit 27.1 million people 
by 2030 [1],[2]. 

 
Food patterns, lack of exercise, using 

tobacco, radiation mainly caused cancer. Cancer is a 
disease that the cells of the body grow abnormally. 
This unusual growth in the body can happen 
anywhere in the body and can affect people from any 
age group. When we consider about cancer treatment 
methods there are lots of strategies that has developed 
in this era. Chemotherapy, hormone therapy, 
hyperthermia, immunotherapy, radiation therapy, 
surgery and targeted therapy are some of prominent 
treatment methods in the modern world [3]. Among 
these treatments, chemotherapy, and immunotherapy 
both are prominent treatment methods in the modern 
world. When we consider chemotherapy, there are 
many different types of chemotherapy drugs that can 
work differently to kill cancer cells. Some may 
interfere with the growth and division of these cells. 
Others can help cause cancer cells to self-destruct.  
Chemotherapy is used for plenty of purposes, it can 
disturb the growth of cancer cells, sometimes it can 
stop spreading of cancer cells in the body. 
Chemotherapy can give to the body as injections, 
injecting to the muscle, spinal code, skin and 
sometimes it can give as tablets. This therapy has 
some side effects. Among them these are the main 
side effects bone marrow suppression, neuropathies, 
gastrointestinal disorders, integrating patients’ 

perceptions regarding side effects into decision 
making process during cancer treatment is always 
important [4]. The immune system is the body’s basic 
defence against infection and cancer. It is made up of 
a complex network of cells, molecules, organs and 
lymph tissues attempting together to defend the body 
against microorganisms such as bacteria, viruses and 
fungi, as well as against cancer cells. The immune 
system plays a crucial role in preventing cancer.  It 
acts in a cascade manner to counter the pathogenic 
response both by the innate and adaptive immune 
systems [5]. Immune cells can find cancer cells and 
kill them and completely eliminate cancer cells but 
sometimes it can control the growth of cancer. 
Immune checkpoint inhibitors, adoptive cell transfer, 
monoclonal antibodies, T-cell therapy, vaccines are 
some treatment methods [6]. Immunotherapy has 
some side effects, they are paining, swelling, 
soreness, redness and rash. In this research, first we 
consider chemotherapy and Immunotherapy 
individually and then we consider both of them as a 
combined therapy [5],[6].   
 

 

2 Model 
Here we construct the mathematical model to 

represent the interactions between cancer cell 
population, immune cell population and 
chemotherapy agents in blood. 
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Fig. 1: The interrelationship among x, y and z. In this 
diagram arrow represents the activation and blunt 
arrow represents inhibition. 

      𝑥′ = 𝑟𝑥(1 − 𝑏𝑥) − 𝑎𝑥𝑧 − 𝑘𝑇𝑥𝑦                    (1) 
       𝑦′ = −𝑦𝛾 + ℎ 

   𝑧′ = 𝑠 − 𝑑𝑧 +
𝑚𝑥𝑧

𝑔 + 𝑥
− 𝑘𝐸𝑦𝑧 

  𝑥(0) ≥ 0, 𝑦(0) = 0, 𝑧(0) ≥ 0 

Consider the parameters of the model. 

r = rate of tumour growth. 
b = Inverse carrying capacity of tumour cells. 
a = parameter of cancer cleans up. 
kT = killing rate of tumour cells by chemotherapy. 

    𝛾 =rate of decrement in concentration of      
chemotherapy. 

ℎ  = supply rate of chemotherapy drug. 
𝑠  = supply rate of immune cells. 
𝑑  = death rate of immune cells. 
𝑚 = proliferation rate of immune cells. 
𝑘𝐸=killing rate of immune cells by 

chemotherapy. 
𝑔=half saturation constant of immune       

proliferation. 
 

 These are the state variables. 
x = Cancer cell population. 
y =Amount of chemotherapeutic agent in the    

blood stream. 
z = Immune cell population. 

 
 m can be negative or positive. Here all the other 

parameters are positive. 

 The first equation states the rate of change in 
the cancer cell population, basically logistic growth 
model has used to represent the growth of cancer cell 
population [11]. Here we consider how 
immunotherapy and chemotherapy attack to cancer 
cells, 𝑎𝑥𝑧  represent the attack of immune cells to 
cancer cells and on the other hand 𝑘𝑇𝑥𝑦 represent the 

attack of chemotherapy drug to tumor cells [12], [13], 
[14],[15]. As this phenomenon is a biochemical 
reaction, we assume that this reaction happens 
according to the mass action law [14]. Previous 
researchers have used the attack of immune cells with 
saturation effects but in our research work we 
construct our model as these immune cells attack 
cancer cells without any saturation effect and this 
reaction happens according to the Mass action law 
[14]. If the immunotherapeutic drug can attack cancer 
cells without decaying its strength, the given model 
can represent this scenario clearly [9]. 

 The second equation states the rate of change 
in the amount of chemotherapeutic agent in the 
bloodstream with time. Here it supplies drug in a 
constant rate, it is represented by ℎ [13]. 
Chemotherapy drug concentration is decreasing with 
time, specialty in [9] introduced model, the drug 
concentration is decreasing with a constant rate.   

 The third equation states the rate of change 
of the immune cell population with time, here 
immune cells are injected to body from outside. On 
the other hand, when time is increasing these immune 
cells die, it can be represented by using the natural 
death rate of immune cells. Activation of immune 
cells works according to Michaelis-Menten 
mechanism [12].  Immune cells can be killed by the 
chemotherapy drug, that incident is represented in the 
model by using the killing rate of immune cells by 
chemotherapy [13]. In the model of [8] they have 
considered activation and inactivation of immune 
cells separately but in this model according to the 
sign of 𝑚, it can be decided the activation of immune 
cells or resistance for immune cells [9,12]. In our 
research we consider immune cells proliferate 
without any resistance, so 𝑚 > 0. In [8] the model 
has used with Viral Therapy and Immune Therapy 
but here we modified that model replacing Viral 
Therapy form Chemotherapy by taking concepts 
form the model [9]. 

Theorem 1. Solution of (1) exist, remain 

nonnegative, and are bounded on [0, ∞).  
 
Proof : Let F(x,y,v,z) be the right hand side of (1). 
Since F is locally Lipschitz in ℝ+

3 , there exist a 
unique solution on [0,𝑡0) for the initial value problem 
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(1), where  𝑡0 > 0 may depend on the initial condition. 
As 𝑥′|𝑥=0 = 0, 𝑦′|𝑦=0 = 0, and 𝑧′|𝑧=0 ≥ 0, solution 
of (1) remain nonnegative on [0,𝑡0) by [7]. 
                         We let 𝑤 = 𝑥 + 𝑦 + 𝑧. Then, 
𝑤′ ≤    𝑟𝑥 + 𝑠 +

𝑚𝑥𝑧

𝑔+𝑥
+ 𝑦𝛾     ≤ 𝑟𝑥 + 𝑠 + 𝑚𝑧 + 𝑦𝛾, 

where  𝑝0 = max{𝑟,𝑚, 𝛾} . 𝑤′ ≤ 𝑠 + 𝑝0𝑤. Consider 
𝑋′ = 𝑠 + 𝑝0𝑋 with X(0) = 𝑤(0). Since the solution 
of 𝑋(𝑡) are defined on [0,∞) and 𝑤(𝑡) ≤ 𝑋(𝑡) on 
[0, 𝑡0), 𝑤(𝑡) can be extended to 𝑡 = 𝑡0. Therefore 
solutions of (1) are bounded, noticing  𝑥′|𝑥≥1 𝑏⁄ < 0 
implies lim

𝑡→∞
sup (𝑥(𝑡)) ≤ 1 𝑏⁄ .  

 Consider the second equation in (1). 𝑦′ =
𝑦𝛾 + ℎ. 𝑦′|𝑦≥ℎ 𝛾⁄ < 0 implies lim

𝑡→∞
sup (𝑦(𝑡)) ≤

ℎ 𝛾⁄ . When m>0, let 𝑘0 = min{𝑟, 𝛾, 𝑑}, suppose 𝑤 =
𝑥 + 𝑦 + 𝑚0𝑧.  𝑊

′ ≤ 𝑟𝑥(1 − 𝑏𝑥) + ℎ − 𝑦𝛾 +

𝑠𝑚0 − 𝑑𝑧𝑚0 +
𝑚𝑚0𝑥𝑧

𝑔+𝑥
− 𝑎𝑥𝑧 ≤ 2𝑟𝑥 + ℎ − 𝑦𝛾 +

𝑠𝑚0 − 𝑑𝑧𝑚0 +
𝑚𝑚0𝑥𝑧

𝑔+𝑥
− 𝑎𝑥𝑧, then choose 𝑚0 such 

that 𝑚𝑚0

𝑔+𝑥
− 𝑎 < 0 for all 𝑥 ≥ 0, then 𝑊′ ≤ (

2𝑟

𝑏
+

ℎ + 𝑠𝑚0) − 𝑦𝛾 − 𝑟𝑥 − 𝑑𝑚0𝑧, then 𝑊′ ≤ 𝐶1 −

𝑘0𝑊,from this we can obtain lim
𝑡→∞

sup(𝑊(𝑡)) ≤
𝐶1

𝑘0
. 

 When 𝑚 ≤ 0, Let 𝑊 = 𝑥 + 𝑦 + 𝑧,𝑊′ ≤ 
𝑟𝑥(1 − 𝑏𝑥) + ℎ − 𝑦𝛾 + 𝑠 − 𝑑𝑧 +

𝑚𝑥𝑧

𝑔+𝑥
− 𝑎𝑥𝑧 ≤

2𝑟𝑥 + ℎ − 𝑦𝛾 + 𝑠 − 𝑑𝑧 +
𝑚𝑥𝑧

𝑔+𝑥
− 𝑎𝑥𝑧 < (2𝑟

𝑏
+ ℎ +

𝑠) −𝑦𝛾 − 𝑟𝑥 − 𝑑𝑧, then 𝑊′ ≤ 𝐶2 − 𝑘0𝑊, from this 
we can obtain lim

𝑡→∞
sup(𝑊(𝑡)) ≤

𝐶2

𝑘0
. Hence, we can 

conclude that solutions of (1) are bounded. 
                                                                                                                                
2 Chemotherapy 
 In this section we are going to consider only 
about chemotherapy treatment. We reduced our 
model to the following sub-system. 

 
 𝑥′ = 𝑟𝑥(1 − 𝑏𝑥) − 𝑘𝑇𝑥𝑦  

                        𝑦′ = −𝑦𝛾 + ℎ                                 (2)                                                                                                                                               

        0 ≤ 𝑥(0) ≤
1

𝑏
, 𝑦(0) = 0                                   

 
Using Dulac Criteria with 𝐵(𝑥, 𝑦) =

1

𝑥𝑦
. We 

consider on the region 
 
      𝑅𝑥1 = {(𝑥, 𝑦) ∈ ℝ+

2 : 𝑥 > 0, 𝑦 > 0}                (3) 

𝜕|
𝑟(1−𝑏𝑥)

𝑦
|

𝜕𝑥
 + 

𝜕|
−𝑦𝛾+ℎ

𝑥𝑦
|

𝜕𝑦
 = −𝑟𝑏

𝑦
 - ℎ

𝑥𝑦2 < 0 for 𝑥, 𝑦 > 0 

Proposition 2.1. Consequently (2) has no periodic 

solutions on 𝑅𝑥1. 

 Biologically this gives an important idea. 
There are no periodic orbits means cancer can’t occur 
again and again under this chemotherapy. 

Finding equilibrium points for the system (2). 

  𝑟𝑥(1 − 𝑏𝑥) − 𝑘𝑇𝑥𝑦 = 0 

𝑦𝛾 = ℎ 

 Then we can obtain cancer free equilibrium 
as (0, ℎ

𝛾
) and further we can find a positive 

equilibrium point as (1

𝑏
(1 −

𝑘𝑇ℎ

𝑟𝛾
) ,

ℎ

𝛾
), here 𝑘𝑇ℎ < 

𝑟𝛾. Then we are going to discuss about the existence 
and the stability of these two equilibrium points. 

Consider the x isocline, 𝑓(𝑥) =
𝑟(1−𝑏𝑥)

𝑘𝑇
 and consider 

the 𝑧 isocline 𝑔(𝑥) =
ℎ

𝛾
,  where 𝑓(𝑥) is strictly 

decreasing with 𝑓(0) =
𝑟

𝑘𝑇
 and 𝑓 (

1

𝑏
) = 0. 𝑔(𝑥) is a 

constant function. The range of 𝑥 is 0≤ 𝑥 ≤
1

𝑏
. If  ℎ

𝛾
>

 
𝑟

𝑘𝑇
 then there are no intersections between isoclines. 

So, it follows that (2) has no positive equilibrium 
points on the other hand when the opposite of above 
inequality happens, when ℎ

𝛾
≤ 

𝑟

𝑘𝑇
 there is only one 

intersection in these two isoclines, it gives that there 
is a unique positive equilibrium point for the system 
(2). Then let’s consider local stability of the cancer 
free equilibrium point by using the Jacobian. 

𝐽 (0,
ℎ

𝛾
) = (

𝑟 −
𝑘𝑇ℎ

𝛾
0

0 −𝛾

) 

 Then we can conclude that, (0,
ℎ

𝛾
) is locally 

asymptotically stable if 𝑟𝛾 < 𝑘𝑇ℎ (both eigenvalues 
are negative) and otherwise it becomes a saddle point 
if 𝑟𝛾 > 𝑘𝑇ℎ (one eigenvalue is negative and the other 
one is positive). Then let’s consider the positive 
equilibrium point. 

𝐽 (
1

𝑏
(1 −

𝑘𝑇ℎ

𝑟𝛾
) ,

ℎ

𝛾
) = (

𝑟 − 2𝑏𝑟𝑥 − 𝑘𝑇𝑦 −𝑘𝑇𝑥
0 −𝛾

) 

 By using x isocline and 𝑟 − 2𝑏𝑟𝑥 − 𝑘𝑇𝑦 we 
can reduce the above jacobian to following form. 
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𝐽 (
1

𝑏
(1 −

𝑘𝑇ℎ

𝑟𝛾
) ,

ℎ

𝛾
) = (

−𝑏𝑟𝑥 −𝑘𝑇𝑥
0 −𝛾

) 

 We are considering on x ≥ 0, y ≥ 0. In this 
Jacobian matrix trace is negative and determinant is 
positive. Then we can obtain that positive 
equilibrium point is locally asymptotically stable. 

 By using Poincare Bendixen Theorem [7]  
and the above results we can obtain the following 
theorem. 

       𝑅𝑥1 = {(𝑥, 𝑦) ∈ ℝ+
2 : 𝑥 > 0}                           (4) 

Theorem 2. The following statements hold for (2). 

a) If ℎ𝑘𝑇 > 𝑟𝛾 then (0,
ℎ

𝛾
) is globally 

asymptotically stable in ℝ+
2 . 

 

b) If ℎ𝑘𝑇 < 𝑟𝛾, then there is a unique positive 

equilibrium point (𝑥∗, 𝑦∗) which is globally 

asymptotically stable in 𝑅𝑥1. 

 When the tumour is not aggressive, so that 
the immune system is not dysfunctional, the tumour 
can be eradicated completely if the tumour killing 
rate is large. On the other hand, if the tumour killing 
rate is not large, then the tumour cells will be 
stabilized at a positive level that is smaller than 
carrying capacity. Further it has an interesting 
biological phenomenon, when the basic reproduction 
number of the supply rate of chemotherapy is greater 
than the basic reproduction number of the supply rate 
of tumour cells cancer can eliminate. So, we need a 
strong chemotherapy treatment to cure the cancer 
completely. On the other hand, if the basic 
reproduction number of tumour supply rate is greater 
than the basic reproduction number of the supply rate 
of chemotherapy, tumour level has to stabilize in a 
fixed level. Finally, we can conclude that this gives a 
threshold level that under what condition we can 
eliminate the tumour completely with the support of 
only chemotherapy. Then let’s move towards the 
combined therapy and how it works. 

 

 

 

Table 1. Parameters values and sources 

Parameter Value Unit Reference 
𝑟 0.2773-

0.3466 
day-1 estimated 

𝑏 1.02× 10−9 cell-1 [2] 

𝑎 10−5

− 10−3 
cell-1day-

1 
[2] 

𝑘𝑇 0.01-0.7 cell-1day-

1 
[3] 

𝛾 0.01-0.9 day-1 [3][4] 

ℎ 0.003-0.6 mg day-1 [3] 

𝑠 5000 cell day-1 [2] 

𝑑 2 day-1 [2] 

𝑚 -1-1.5×
10−9 

cell-1day-

1 
[2] 

𝑘𝐸 0.06 cell-1day-

1 
[3] 

𝑔 40-105 cell [2] 

 

 

(a)                                       (b) 
Fig. 2: Here Green Curve Represents the Amount of 
Chemotherapy Drug and Blue Curve Represents the 
Cancer Cell Population 𝑟 = 0.3, 𝑏 = 1.02× 10−9, ℎ  = 
0.05, 𝛾 = 0.01, Initial Tumor Cell Population= 6.7 × 
106 cells, Initial Chemotherapy Drug Amount= 
19.95units, (a) 𝐾𝑇 = 0.55 (b) 𝐾𝑇 = 0.005. 

  When we decrease the initial supply 
amount of chemotherapy, we can observe that it takes 
a long-time treatment period to eliminate the tumour 
completely. It reveals that, with a strong initial 
amount of chemotherapy, we can remove can within 
a short time period. 
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                                         (a) 
Fig. 3: Here blue, red, cyan, yellow, magenta curves 
respectively represent the behaviour of tumour cell 
population according to each initial amount of 
chemotherapy drug respectively 19.95, 10, 5, 2, 1, 𝑟 
= 0.3, 𝑏 = 1.02× 10−9, ℎ  = 0.05, 𝛾 = 0.01, initial 
tumor cell population= 6.7 × 106cells, 𝐾𝑇 = 0.55. 

3 Immune Therapy 

Now the model reduces to the following form. 

     𝑥′ = 𝑟𝑥(1 − 𝑏𝑥) − 𝑎𝑥𝑧 
 

𝑧′ = 𝑠 − 𝑑𝑧 +
𝑚𝑥𝑧

𝑔+𝑥
                                          (5) 

                                                                                                                                     
      0 ≤ 𝑥(0) ≤

1

𝑏
, 𝑧(0) ≥ 0 

 First, we are going to Dulac Criteria to 
analyse about periodic solutions. Using Dulac 
Criteria, we can obtain that, there are no periodic 
orbits in this system. 

 Using Dulac Criteria with 𝐵(𝑥, 𝑧) =
1

𝑥𝑧
. 

𝜕 [
𝑟𝑥−𝑏𝑟𝑥2−𝑎𝑥𝑧

𝑥𝑧
]

𝜕𝑥
+ 

𝜕 [
𝑠−𝑑𝑧+[

𝑚𝑥𝑧

𝑔+𝑥
]

𝑥𝑧
]

𝜕𝑦
=  

−𝑟𝑏

𝑧
−

𝑠

𝑥𝑧2

< 0 𝑓𝑜𝑟 𝑥, 𝑦 > 0 

Proposition 3.1. Consequently (5) has no periodic 

solutions. 

 This implies that under immune therapy 
cancer can’t occur again and again because there are 
no periodic orbits. We proceed to discuss the 
existence of positive equilibria. The nontrivial x-

isocline and the z-isocline of (5) are given 
respectively by      

      𝑧 =
𝑟(1−𝑏𝑥)

𝑎
=: 𝑓(𝑥)                                         (6) 

𝑧 =
𝑠(𝑔 + 𝑥)

𝑑𝑔 + (𝑑 − 𝑚)𝑥
=:𝑔(𝑥) 

Where f is strictly decreasing with f(0) = r/a and 
f(1/b) = 0. The slope of the graph of g is 𝑔′(𝑥) =

𝑚𝑠𝑔

(𝑑𝑔+(𝑑−𝑚)𝑥)2
. clearly, we can see the slope depends 

on the sign of m. 

 𝑔(0) =
𝑠

𝑑
        𝑔(∞) =

𝑠

(𝑑−𝑚)
 

3.1 m ≥ 𝟎 

 For m ≥ 0, it needed to be 𝑑𝑔 + (𝑑 −

𝑚)𝑥 ≥ 0 to become g(x)>0, when 𝑚 ≤ 𝑑, g(x) 
becomes positive but when m > d we need x < 𝑑𝑔

𝑚−𝑑
, 

if m > d then g(x) is positive only on [0, 𝑑𝑔

𝑚−𝑑
). On the 

other hand, if 0≤ 𝑚 ≤ 𝑑, 𝑔(𝑥) is defined and 
positive on [0, ∞). When m > 0, g(x) is increasing 
and when x arrives to infinity, curve approach to a 
constant level 𝑠

(𝑑−𝑚)
. If 𝑟

𝑎
>

𝑠

𝑑
, then it occurs a 

positive equilibrium point. Consider the determinant 
of the jacobian at that point (𝑥1, 𝑧1). 

𝐽(𝑥1, 𝑧1) = (

−𝑏𝑟𝑥1 −𝑎𝑥1

𝑚𝑧1𝑔

(𝑔 + 𝑥1)2
−𝑑 +

𝑚𝑥1

𝑔 + 𝑥1

) 

 According to the 𝑧1 in (5),−𝑑 +
𝑚𝑥1

𝑔+𝑥1 < 0, 

then we can see 𝑇𝑟(𝐽) < 0 and 𝐷𝑒𝑡(𝐽) > 0, so we can 
conclude that this equilibrium point is locally 
asymptotically stable. Then consider about the cancer 
free equilibrium point (0, s/d). 

 𝐽(0, 𝑧1) = (
𝑟 − 𝑎𝑠/𝑑 0

𝑚𝑠

𝑑𝑔
−𝑑) 

 According to the eigenvalues we can see this 
equilibrium point is unstable if  𝑟

𝑎
>

𝑠

𝑑
 and on the 

other hand If  𝑟

𝑎
<

𝑠

𝑑
  cancer free equilibrium point 

become locally asymptotically stable, in this 
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situation, there doesn’t exist a positive equilibrium 
point. When 𝑚 = 0 the case become trivial. By using 
Poincar´e-Bendixson Theroem[7] and above details 
we can obtain bellow theorem. 

 𝑅𝑥2 = {(𝑥, 2) ∈ ℝ+
2 : 𝑥 > 0}. 

Theorem 3. The following statements hold for (5). 
a)  If  

𝑎𝑠

𝑑
> 𝑟 then (0, s/d) is globally asymptotically 

stable in 𝑅𝑥2. 

 

b)  If  
𝑎𝑠

𝑑
< 𝑟 then there is a unique positive 

equilibrium point (x1,y1) which is globally 

asymptotically stable  in 𝑅𝑥2. 
 

 Here also happen a similar situation like 
chemotherapy in section 3. We can observe when the 
cancer clean-up rate is greater than the rate of tumour 
growth, tumour can eliminate completely. On the 
other hand, when the tumour growth rate is greater 
than the rate of cancer cleanup we have to stabilize 
the tumour size in some fixed level. Here it provides 
a threshold level to eradicate the cancer completely, 
further we can say, it needs a strong immune therapy 
treatment to remove the cancer when immune cells 
proliferate without the resistance of cancer cells. 
 
4.2 Numerical Simulations 

 

 

(a)                                           (b) 
Fig. 4: Here green curve represents the amount of 
immunotherapy and blue curve represents the cancer 
cell population r = 0.3, b = 1.02 ×10-9, s = 5000, d = 
2, m = 1×10-9, g = 2000 initial tumour cell population 
= 6.7×104 cells, initial immune cell amount = 300, 
(a)𝛼 = 1×10-4,    (b) 𝛼 = 1×10-3. 

 When we consider about the Theorem 3, 
according to the details of figure 3(a) we can 
calculate that 𝑎𝑠

𝑑
 = 2.5 and r = 0.3 then 𝑎𝑠

𝑑
 < r. It is 

clear that cancer level arrivers to a fixed level. On the 
other hand, according to figure 3(b), 𝑎𝑠

𝑑
 > r = 0.25 and 

r =0.3 there 𝑎𝑠

𝑑
 < r and cancer free equilibrium point 

becomes globally asymptotically stable and we can 
remove the cancer completely. It clearly represents 
that when the rate of cancer cleanup by immune cells 
is in a strong level, we can eradicate the cancer by 
immunotherapy completely. Here we can calculate 
that if we need to remove the cancer what is the 
needed cancer cleanup rate. Another important result 
is if we can identify cancer in early, we can remove 
it completely otherwise we have to fix the cancer in 
a stable level. 

 

Fig. 5: Here blue, red, cyan, curves respectively 
represent the behaviour of tumour cell population 
according to each initial amount of tumour cell 
population = 6.3×104 cells, = 6.3×105 cells, = 
6.3×106 cells. 

 It is clear that when the tumour cell 
population is high, it approaches to a constant level 
more rapidly. 

4.3 m < 0 

 When m < 0, g(x) is defined on (0, ∞] and 
g(x) is gradually decreasing and approaches to a 
constant level 𝑠

𝑑−𝑚
.  𝑓 is strictly decreasing with 

𝑓(0) = 𝑟/𝑎 and 𝑓 (
1

𝑏
) = 0. Here 𝑥 is in the range of 

0 < 𝑥 < 1/𝑏 and 𝑧 is in the range of 0 < z < s/d. We 
are going to consider about the existence of the 
positive equilibrium points and their stability and 
then supposed to describe about the biological 
phenomena in each case. Setting  𝑓(𝑥) = g(𝑥) and 

(a) (b) 
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simplifying, the 𝑥 component of a positive 
equilibrium is a positive root of  

𝐻1(𝑥) =: 𝑟𝑏(𝑚 − 𝑑)𝑥2 + (𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 −

𝑠𝑎)𝑥 +  𝑔(𝑟𝑑 − 𝑠𝑎)                                              (7) 

𝐻1(1/𝑏) = − 𝑎

𝑔
− 𝑔𝑠𝑎 < 0. The vertex of H1(x) is 

at (𝑟𝑑−𝑟𝑚−𝑟𝑏𝑑𝑔−𝑠𝑎

2𝑟𝑏(𝑑−𝑚)
, ⧍1). 

⧍1 = 
(𝑟𝑑−𝑟𝑚−𝑟𝑏𝑑𝑔−𝑠𝑎)2

4𝑟𝑏(𝑑−𝑚)
+ 𝑔(𝑟𝑑 − 𝑠𝑎)                (8)                                     

 If 𝑟𝑑 >  𝑠𝑎,then has a unique positive 
equilibrium point (𝑥2 , 𝑧2) where 𝑥2 <  1/b and 𝑧2 < 
s/d. Notice T r( 𝐽(𝑥2 , 𝑧2))  < 0 and consider about 
𝐷𝑒𝑡( 𝐽 (𝑥2 , 𝑧2)). 

𝐷𝑒𝑡( 𝐽(𝑥2 ,𝑧2)) = 𝑥2

(𝑔+𝑥2)2
[𝑟𝑏(𝑑 − 𝑚)𝑥2 

2  + 

2𝑏𝑟𝑔(𝑑 − 𝑚)𝑥2 +𝑔𝑟(𝑚 + 𝑏𝑑𝑔)]                       (9) 

𝐷𝑒𝑡 ( 𝐽(𝑥2 ,𝑧2)) = 𝑥2  𝑟𝑏(𝑑−𝑚)

(𝑔+𝑥2)2
[𝑥2 

2 + 𝑔[2𝑥2 +

 
𝑟𝑚+𝑟𝑏𝑑𝑔

𝑟𝑏(𝑑−𝑚)
 ]] 

 If 𝑔[2𝑥2 + 
𝑟𝑚+𝑟𝑏𝑑𝑔

𝑟𝑏(𝑑−𝑚)
 ] > 0 then ( 𝐽(𝑥2 , 𝑧2)). 

> 0, from here we can obtain a sufficient condition 
that 𝑟𝑑 >  𝑠𝑎, then (𝑥2 , 𝑧2) becomes locally 
asymptotically stable. As there are no any other 
stable equilibrium points in  𝑅𝑥2, (𝑥2 , 𝑧2) becomes 
globally asymptotically stable in that region. 

 If 𝑠𝑎 > 𝑟𝑑 , where the tumor free equilibrium 
point (0, 𝑠 / 𝑑) is locally asymptotically stable. If 
𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 − 𝑠𝑎 ≤ 0, It is clear that 𝐻(𝑥) has 
no positive real roots since 𝐻(𝑥)  ≤ 0 for all 𝑥 ≥ 0 
and thus (0,

𝑠

𝑑
) is globally asymptotically stable by 

the Poincar´e-Bendixson Theorem. Let 𝑟𝑑 − 𝑟𝑚 −

𝑟𝑏𝑑𝑔 − 𝑠𝑎 > 0  and ∆1 < 0 then there is no positive 
equilibrium point in the system (5) because there are 
no any intersections with the quadratic curve with the 
𝑥 axis. If  ∆1 = 0 quadratic curve touches the 𝑥 axis 
at one point and it means (5) has one positive 
equilibrium point and as ∆1 = 0 implies the 
equilibrium point become non hyperbolic. If 𝑠𝑎 >

𝑟𝑑 , 𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 − 𝑠𝑎 > 0 and ∆1 > 0, there 
exist two positive equilibrium points (𝑥̅𝑖 , 𝑧𝑖̅), 𝑖 =

1,2 where  𝑥̅1 < 𝑥̅2. We can simplify 

𝐷𝑒𝑡(𝐽(𝑥̅𝑖 , 𝑧𝑖̅)) =
𝑥̅𝑖𝑟𝑏(𝑑−𝑚)

(𝑔+𝑥̅𝑖)
2  [𝑥̅𝑖

2 + [2𝑥̅𝑖 +
𝑟𝑚+𝑟𝑏𝑑𝑔

𝑟𝑏(𝑑−𝑚)
]] 

Theorem 4. If m<0, then the following statements 

hold for (5). 

a)  If sa < rd there is a unique positive equilibrium 

point (𝑥2, 𝑧2) which is globally asymptotically stable 

in 𝑅𝑥2. 
 

b)  If sa>rd and 𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 − 𝑠𝑎 ≤ 0 then 

there is no positive equilibrium points and (0,
𝑠

𝑑
) is 

globally asymptotically stable in ℝ+
2 . 

 

 

c)  If sa>rd and 𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 − 𝑠𝑎 >
0 𝑎𝑛𝑑 ⧍1 < 0 then there is no positive equilibrium 

points for (5) and (0,
𝑠

𝑑
) is globally asymptotically 

stable in ℝ+
2 , 𝑠𝑦𝑠𝑡𝑒𝑚 (5) has a unique equilibrium 

point which is non –hyperbolic if  ⧍1 = 0 

 

d)  If sa>rd, 𝑟𝑑 − 𝑟𝑚 − 𝑟𝑏𝑑𝑔 − 𝑠𝑎 >
0 𝑎𝑛𝑑 ⧍1 > 0, there exist two positive equilibrium 

points (𝑥̅𝑖, 𝑧𝑖̅). 

5  Combined Therapy 

 In this section we are going to consider the 
effects of combined therapy. When we are giving 
Immune therapy and Chemotherapy together, we 
need to observe how this dynamical system behaves. 
Here we are considering the full system on                                                         

Γ = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0}          (10) 

 𝑥′ = 𝑟𝑥(1 − 𝑏𝑥) − 𝑎𝑥𝑧 − 𝑘𝑇𝑥𝑦                

                𝑦′ = −𝑦𝛾 +  ℎ                                                      (11) 

                  𝑧′ = 𝑠 − 𝑑𝑧 +
𝑚𝑥𝑧

𝑔+𝑥
− 𝑘𝐸𝑦𝑧 

 First let’s considered the isoclines of the 
system. 

0 = 𝑟𝑥(1 − 𝑏𝑥) − 𝑎𝑥𝑧 − 𝑘𝑇𝑥𝑦 

0 = −𝑦𝛾 + ℎ                                                       (13) 

0 = 𝑠 − 𝑑𝑧 +
𝑚𝑥𝑧

𝑔 + 𝑥
− 𝑘𝐸𝑦𝑧    
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 From (6) second equation, we can obtain the 
value of y component at equilibrium state and we can 
observe it’s a constant value such as 𝑦 =

ℎ

𝛾
 . After 

substituting for y in first and second equations in (6) 
we can obtain a two-dimensional equation system. 

 We can obtain x-isocline and the z-isocline 
as, 

𝑥 =
1

𝑎
(𝑟 −

𝑘𝑇ℎ

𝛾
) −

𝑟𝑏𝑥

𝑎
∶= 𝑃(𝑥) 

𝑧 =
𝑠𝑔 + 𝑠𝑥

(𝑑𝑔 +
𝑘𝐸ℎ𝑔

𝛾
) + (𝑑 − 𝑚 +

𝑘𝐸ℎ

𝛾
)𝑥

 

 Suppose 𝑟 >
ℎ𝑘𝑇

𝛾
 

 Where P is strictly decreasing with 𝑃(0) =

𝑟

𝑎
−

𝑘𝑇ℎ

𝑎𝛾
 and 𝑃 (

1

𝑏
(1 −

𝑘𝑇ℎ

𝑟𝛾
)). The slope of the graph 

of 𝑄(𝑥) is 𝑄′(𝑥) =  
𝑚𝑠𝑔

[(𝑑𝑔+
𝑘𝐸ℎ𝑔

𝛾
)+(𝑑−𝑚−

𝑘𝐸ℎ

𝛾
)𝑥]

2. 

Clearly, we can see that the sign of the slope depends 
on the sign of m. 

𝑄(0) =
𝑠

𝑑 +
𝑘𝐸ℎ

𝛾

 

𝑄(∞) =
𝑠

𝑑 − 𝑚 +
𝑘𝐸ℎ

𝛾

 

5.1 𝒎 ≥ 𝟎 

          When 𝑚 ≥ 0, it needed to be (𝑑𝑔 +

𝑘𝐸ℎ𝑔

𝛾
) + ( 𝑑 − 𝑚 +

𝑘𝐸ℎ

𝛾
)𝑥 ≥ 0 to become 𝑄(𝑥) >

0, but when 𝑚 > 𝑑 +
𝑘𝐸ℎ

𝛾
 we need 𝑥 <

(𝑑𝑔+
𝑘𝐸ℎ𝑔

𝛾
)

( 𝑑−𝑚+
𝑘𝐸ℎ

𝛾
)
. If 

𝑚 >  𝑑 +
𝑘𝐸ℎ

𝛾
 then 𝑄(𝑥) is positive only on 

[0,
(𝑑𝑔+

𝑘𝐸ℎ𝑔

𝛾
)

( 𝑑−𝑚+
𝑘𝐸ℎ

𝛾
)
). On the other hand, if 0 ≤ 𝑚 ≤ 𝑑 +

𝑘𝐸ℎ

𝛾
, 𝑄(𝑥) is defined and positive on [0,∞). When 

m > 0, 𝑄(𝑥) is increasing when x arrives to infinity, 
curve approaches to a constant level 𝑠

𝑑−𝑚+
𝑘𝐸ℎ

𝛾

. 

 When 𝑄(0) > 𝑃(0) there are no 
intersections of two isoclines in the first quadrant. 
Then system contains a cancer free equilibrium point. 
After calculating we can obtain it as   𝐸∗ = 𝐸∗ =

𝐸∗ = (0,
ℎ

𝛾
,

𝛾ℎ

𝑑+𝑘𝐸ℎ
) . Let′s consider the Jacobian at 

that point. 

𝐽(0, 𝑦∗, 𝑧∗) =

[
 
 
 

𝑟 − 𝑎𝑧∗ − 𝑘𝑇𝑦∗ 0
0 −𝛾

0
0

𝑚𝑧∗𝑔

(𝑔 + 𝑥∗)2
          −𝑘𝐸𝑧∗ −𝑑 − 𝑘𝐸𝑦∗

]
 
 
 
 

 This is an upper triangular matrix, if all the 
diagonal elements become negative then this system 
becomes locally asymptotically stable at 𝐸∗. We can 
obtain a condition that if 𝑟 − 𝑎𝑧∗ − 𝑘𝑇𝑦∗ < 0 then 
(11) becomes locally asymptotically stable at  𝐸∗. 
This (11) is asymptotically autonomous with (5), in 
that (5) subsystem cancer free equilibrium point is 
globally asymptotically stable on 𝑅𝑥2 hence we can 
say 𝐸∗ is globally asymptotically stable on Γ. 

Theorem 5. The following statement hold for (11). If 
𝑟 <

𝑎𝑠𝛾

𝑑𝛾+𝑘𝐸ℎ
+

𝑘𝑇ℎ

𝛾
, then 𝐸∗ is globally asymptotically 

stable on Γ. 

 From the above theorem we can obtain, when 
the tumour killing rate of chemotherapy and immune 
therapy (combined therapy) is greater than the 
tumour growth rate cancer can eliminate completely. 
Here it provides a threshold level to eliminate cancer 
completely. Then let’s consider 𝑄(0) < 𝑃(0). Here 
these two isoclines have only one intersection in Γ . 
In this situation there exist a unique positive 
equilibrium point in the system and here > 𝑎𝑠𝛾

𝑑𝛾+𝑘𝐸ℎ
+

𝑘𝑇ℎ

𝛾
 . This (11) is asymptotically autonomous with 

(5), according to the stability of (5) subsystem we can 
obtain that this positive equilibrium point is globally 
asymptotically stable on Γ. 

Theorem 6. The following statement hold for (11). If  
𝑟 >

𝑎𝑠𝛾

𝑑𝛾+𝑘𝐸ℎ
+

𝑘𝑇ℎ

𝛾
, then there exists a unique positive 

equilibrium point and it is globally asymptotically 

stable on 𝛤. 
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 From this theorem we can obtain that if the 
tumour growth rate is greater than the tumour killing 
rate of combined therapy, we have to fix the cancer 
in some stable level but we can’t eradicate the cancer 
completely. 

5.2  Numerical Simulations 

 
                                     
(a)
 
  

 

                 (b)                                 (c) 

Fig. 6: (a) γ = 0.4 (b) γ = 0.6 (c) γ = 0.9. Here green, 
blue and red curves represent the logarithm of cancer 
cell population, concentration of chemotherapy and 
number of immune cells against number of days. 
Here r = 0.3465, a = 10−5, 𝐾𝑇 = 0.53, h = 0.3, m = 1.3 
× 10−9 and other values are same as in the Table 1. 

  It is clear that when we increase the rate of 
decrement of chemotherapy drug the tumour cell 
population will increase. It is Important to keep 𝛾 in 
a small level. Then it will be more efficient in the 
combined therapy. 

 

 

 

 

 

   

 6 Local Sensitivity Analysis 

Table 2. Comparison of cancer cell population 

change: baseline values 

Parameter Old-Value New-Value 
r 0.3465 0.38115 
b 1.02 × 10−9 1.12 × 10−9 
a 0.0001 0.00011 
k τ 0.53 0.583 
γ 0.8 0.88 
h 0.3 0.33 
s 5000 5500 
d 2 2.2 
m 1.3 × 10−9 1.43 × 10−9 
kg 0.06 0.066 
g 10000 11000 

Table 3. Comparison of cancer cell population 

change: For 50 days with X-old value 0.0315 and 

for 20 days with X-old value 0.0004 for each 

parameter  

t = 50 t = 20 

X-new Diff. Per 
(%) X-new Diff. Per 

(%) 
0.1773 0.1458 462.86 0.0007 0.1458 75.00 

0.0314 -0.0001 -0.32 0.0004 -0.0001 0.00 

0.0314 -0.0001 -0.32 0.0004 -0.0001 0.00 

0.0032 -0.0283 -89.84 0.0001 -0.0283 -75.00 

0.247 0.2155 684.13 0.0017 0.2155 325.00 

0.0119 -0.0196 -62.22 0.0003 -0.0196 -25.00 

0.0315 0 0.00 0.0004 0 0.00 

0.0315 0 0.00 0.0004 0 0.00 

0.0315 0 0.00 0.0004 0 0.00 

0.0315 0 0.00 0.0004 0 0.00 

0.0315 0 0.00 0.0004 0 0.00 

 The primary objective of these calculations 
is to discern the impact of key parameters on the 
eradication of cancer cells [17], particularly focusing 
on their influence during both short (t=20) and 
extended (t=50) time intervals. The aim is to 
investigate how variations in these parameters 
contribute to a 10% increase in the efficacy of 
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eliminating cancer cells over both brief and 
prolonged durations. 

 

Fig. 7: Percentage difference in cancer cell 
population change at t=20 days visualization 

 The depicted figure shows information 
gathered over a short time period. In this data, the 
factor that has the biggest effect is 𝛾. What stands out 
is that when 𝛾 values go up, the number of cancer 
cells in the body also increases. This finding, based 
on combined therapy results, highlights that higher 
rate of decrement of concentration of chemotherapy 
values lead to more cancer cells in the body. 

 The parameter next most influencing 
parameter is r, where an increase in its value 
corresponds to a heightened proliferation of cancer 
cells within the body. It's clear that when tumours 
grow faster, getting rid of cancer becomes more 
challenging. Increasing the Rate of tumour growth 
makes it harder to eliminate cancer.  

 The parameters 𝑘𝑡 and h play a positive role 
in the elimination of cancer cells. Increasing 𝑘𝑡 by 
10% leads to a remarkable 75% improvement in the 
effectiveness of killing cancer cells, while h 
contributes a 25% positive impact. Unlike 𝛾, r, h, and 
𝑘𝑡 the other parameters show no notable impact on 
the cancer cell population within the 10% of change 
of itself.  

 

Fig. 8: Percentage difference in cancer cell 
population change at t=50 days visualization 

 The presented figure encapsulates an 
extended duration, revealing key influences. In this 
dataset, γ emerges as the most impactful factor, while 
r follows closely in significance, particularly in the 
short term. This underscores that a higher rate of 
chemotherapy concentration reduction and 
accelerated tumour growth present challenges in 
eliminating cancer cells. Beyond the long-term 
influence of 𝑘𝑡 and h, parameters a and b also 
contribute positively to cancer cell elimination. 
However, their impact is notably smaller compared 
to 𝑘𝑡 and h, amounting 0.32%. It's noteworthy that, 
similar to the short-term scenario, other parameters 
exhibit no notable impact on the 10% change in the 
population of cancer cells.  

 When we compare short-term and long-term 
treatments, a noticeable trend emerges. The negative 
impact from γ and r tends to increase over time, 
signifying that higher values of the rate of 
chemotherapy reduction γ and tumour growth r 
become more challenging for cancer elimination as 
time progresses. On the flip side, the positive impact 
from 𝑘𝑡 and h shows an upward trajectory. This 
suggests that, with the passage of time, increasing the 
values of 𝑘𝑡 and h becomes more effective in 
enhancing the process of eliminating cancer cells. In 
essence, the dynamics indicate a shift where 
challenges posed by higher γ and r values intensify 
over time, while the effectiveness of higher 𝑘𝑡 and h 
values becomes more pronounced in the long-term 
treatment approach. 
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7 Conclusion 

 In conclusion, the comprehensive analysis of 
cancer treatment dynamics presented in this report 
unveils critical insights that bear significant 
implications for advancing therapeutic strategies. In 
this study, we delve into the intricacies of three 
distinct cancer treatment methodologies: 
chemotherapy, immunotherapy, and the combined 
approach integrating both modalities. Our 
exploration is grounded in a robust mathematical 
framework, meticulously crafted by amalgamating 
insights from existing research papers and leveraging 
mathematical concepts such as the Logistic Growth 
Model [8],[9],[16], Mass Action Law, and Michaelis-
Menten mechanism. 

 Our mathematical model reveals two 
equilibrium points. One indicating a cancer-free state 
and another depicting a situation where cancer 
persists at a constant level without further growth. 

  Focusing on chemotherapy as a subsystem, 

(0,
h

γ
 ) cancer free equilibrium point exists when 

kTh > rγ  and proved that positive equilibrium point 
exists when kTh < rγ . 

 Similarly, our examination extends to the 
immunotherapy subsystem, where in equilibrium 
points are identified for scenarios representing (0,

𝑠

𝑑
) 

equilibrium point as absence of cancer when 
𝑎𝑠

𝑑
> 𝑟. 

And proved that positive equilibrium point exists 
when 𝑎𝑠

𝑑
< 𝑟. These findings contribute to obtain 

threshold levels for parameters as 𝑘𝑇 = 0.54 and 𝑎 =

1.2 × 10−3.  Leveraging the powerful capabilities of 
MATLAB software, we translated our mathematical 
findings into insightful visualizations for the two 
scenarios involving chemotherapy and 
immunotherapy subsystems[8],[9]. 

 The two equilibrium points was found in the 
combined approach as existence of cancer free 
equilibrium point when 𝑟 <

𝑎𝑠𝛾

𝑑𝛾+𝑘𝐸ℎ
 + 𝑘𝑇ℎ

𝛾
  and cancer 

persists at a constant level equilibrium point when 
𝑟 >

𝑎𝑠𝛾

𝑑𝛾+𝑘𝐸ℎ
 + 𝑘𝑇ℎ

𝛾
. We generated plots by varying the 

γ parameter, exploring its impact on the system for 

the values of γ set at 0.3, 0.8, and 0.9. And final 
insight was decreasing chemotherapy concentration, 
as represented by higher γ values, poses a challenge 
for effectively reducing the cancer cell population. 

 Finally, a sensitivity analysis was conducted 
to gauge the influence of parameters [17] on the 
eradication of cancer cells, with a specific emphasis 
on short (t=20) and extended (t=50) time intervals. 
The analysis revealed that γ (Rate of decrement of 
concentration of chemotherapy) and r (Rate of 
tumour growth) exhibited a negative impact on 
cancer elimination, while 𝑘𝑇(Killing rate of tumor 
cells by chemotherapy) and h (Supply rate of 
chemotherapy drug) exerted a substantial positive 
influence. Additionally, parameters a (Parameter of 
cancer cleanup) and b (Inverse carrying capacity of 
tumor cells) were found to contribute a very small 
positive impact to the process of cancer elimination. 
These findings underscore the nuanced interplay of 
different parameters in shaping the effectiveness of 
cancer treatment strategies across varying time 
frames. 

 The obtained results indicate the fulfilment 
of our research objectives, underscoring the 
effectiveness of the undertaken study in addressing 
key goals. This achievement not only validates the 
research methodology but also contributes valuable 
insights to the field, paving the way for innovative 
approaches redefine the landscape of hope and 
healing. 
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