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Abstract: - In this article we describe parametric curve-fitting methods for modeling historical natural 
catastrophe losses. We summarize relevant theoretical results above Excess over Threshold Method (EOT) and 
provide its application to the data about total catastrophe losses in the world in period 1970-2014, published in 
No2/2015 Swiss Re study Sigma.  
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1 Introduction 
Catastrophic events affect various regions of the 
world with increasing frequency and intensity 
(Fig. 1). Many regions are threatened by 
catastrophic risks large range, where extensive 
disruptions are frequently, sometimes more than 
once a year. Large catastrophic events can be caused 
by natural phenomena or are caused by man. It 
should be noted that many of the events and natural 
character are to a large extent influenced by human 
activity. This mainly concerns climate change, but 
also, for example, the influence of the mining 
industry. Serious events in recent years are often the 
result of terrorist acts. 
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Fig.1 Number of catastrophic events 1970-2014 
 

According to the latest sigma study, global 
insured losses from natural catastrophes and man-
made disasters were USD 35 billion in 2014, down 

from USD 44 bi llion in 2013 a nd well below the 
USD 64 billion-average of the previous 10 years. 
There were 189 natural catastrophe events in 2014, 
the highest ever on sigma records, causing global 
economic losses of USD 110 b illion. (Swiss Re 
sigma No 2/2015, p. 4) 

Catastrophe modelling is a risk management 
tool that uses computer technology to help insurers, 
reinsurers and risk managers better assess the 
potential losses caused by natural and man-made 
catastrophes. The models use historical disaster 
information to simulate the characteristics of 
potential catastrophes and to determine the potential 
losses cost. 

We are interested in probability modelling 
catastrophe losses, specifically the tails of loss 
severity distributions. Thus is of particular relevance 
in reinsurance if we are required to choose or price a 
high-excess layer. In this situation it is essential to 
find a good statistical model for the largest observed 
historical losses. 
 
 
2 Problem Formulation 
Suppose losses are the independent, identically 
distributed (iid) random variables 1 2, , ...X X , with 
common distribution function 

( ) ( )xXPxFX ≤= , where 0>x   (1) 
The generalized Pareto Distribution (GPD) is 

the limit distribution of scaled excess of high 
thresholds. 
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2.1 GPD Theorem 
Suppose ...,, 21 XX are iid with distribution F. 
Than  
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is the limit distribution of the maxima Mn = X1,n = 
max(X1, …, Xn). Then for a large enough threshold u, 
the conditional distribution function of Y = (X – u / 
X > u) is approximately 
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defined on ( ){ }0 > ~x/1   and  0 > x :x σξ+ , where 
( )µξσσ −+= u~ . 

The family of distributions defined by equation 
(4) is called the generalized Pareto family (GPD). 
For a fixed high threshold u, the two parameters are 
the shape parameter ξ and the scale parameterσ . 
For simpler notation, we may just use σ for the scale 
parameter if there is no confusion. 
 
2.2 Excess over Threshold Method   
The modelling using the excess over threshold 
method follows the assumptions and conclusions in 
GPD Theorem. Suppose nxxx ...,,, 21  are raw 
observations independently from a common 
distribution F(x). Given a high threshold u, assume 

( ) ( ) ( )kxxx ...,,, 21  are an observation that exceeds u. 

Here we define the ascendances as ( ) uxx ii −=  for 
ki ,...,2,1= . 

By GPD Theorem ix  may be regarded as 
realization of independently random variable which 
follows a generalized Pareto family with unknown 
parameters ξ  and σ . In case 0≠ξ , the likelihood 
function can be obtained directly from (4):  
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3 Problem Solution 
The analysis focus on 2 64 amounts of damage (in 
USD millions) of total natural catastrophes in time 
period from January 2010 to December 2014, 
published in Swiss Re sigma 2011-2015. 

 

 
Fig.2 Chronologically arranged the total losses 
         of natural catastrophes 2010-2014 

 
The time series plot (Fig.2) allows us to identify 

the most extreme losses and their approximate times 
of occurrences.  

We have fitted a generalized Pareto distribution 
using the maximum likelihood method for 
parameters estimation to the data above threshold of 
3000 (Fig.3), above threshold of 5000 (Fig.5) and 
above threshold 8000 (Fig. 7). 

These plots are useful for examining the 
distribution based on sample data. We have overlaid 
a theoretical distribution function on the same plot 
with empirical distribution of the sample to compare 
them. 

The black stair lines on Fig.3, Fig.5 and Fig.7 
show the empirical distribution functions of 
empirical sample data and the blue curves present 
the theoretical distribution function of the estimated 
generalized Pareto distributions for different 
thresholds. The red lines are the lower and upper 
bounds of the 95% confidence interval estimates of 
the distribution function. It can be seen that the 
estimated parametric distribution function falls 
inside the bands. 

In Fig.3, Fig.5 and Fig. 8 we see the good fit of 
all three generalized Pareto distributions of total 
losses on natural catastrophes.  

The QQ-plots (Fig.4, Fig.6, and Fig.8) against 
the generalized Pareto distributions is another way 
to examine visually the hypothesis that the losses 
which exceed a very high threshold come from 
estimated   distributions. 

Table 1 presents the parameters of the fitted 
generalized Pareto distributions on the data above 
three different thresholds. By p-values in this table 
we can state the best fit in the case of threshold 
u = 5 000. 
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Empirical distribution function for u = 3000
Mean = 10092,380952, Std. dev. = 13225,860073, N = 42

 Empirical distribution function
 Generalized Pareto
 95% lower confidence interval
 95% upper confidence interval
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Fig.3 GPD fitted to 42 exceedances 
        of the threshold 3000  
 
 

Q-Q plot against the GPD of the threshold 3000
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Fig.4 QQ-plot against the GPD fitted 
           to 42 exceedances of the threshold 3000 
 
 

Empirical dis tribution function for u = 5000
Mean = 15585,454545, Std. dev. = 16573,054070, N = 22

 Empirical dis tribution function
 Generalized Pareto
 95% lower confidence interval
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Fig.5 GPD fitted to 22 exceedances 
         of the threshold 5000 

 
 
 
 

Q-Q plot against the GPD of the threshold 5000
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Fig.6 QQ-plot against the GPD fitted 
         to 22 exceedances of the threshold 5000  

 
 

Empirical distribution function for u = 8000
Mean = 24800,000000, Std. dev. = 19721,105446, N = 11

 Empirical distribution function
 Generalized Pareto
 95% lower confidence interval
 95% upper confidence interval
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Fig.7 GPD fitted to 11 exceedances 
         of the threshold 8000  
 
 

Q-Q plot against the GPD of the threshold 8000
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Fig.8 QQ-plot against the GPD fitted 
          to 11 exceedances of the threshold 8000  
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Table 1 Comparisons of estimated GPD for different 
             thresholds 
 

 u = 3 000 u = 5 000 u = 8 000 

parametr ξ 2842.322 4195.862 13706.81 

parametr σ -0.67771 -0.75417 -0.19003 

p-value 0.850026 0.959389 0.760575 
 
 
4 Conclusion 
We have shown that fitting the generalized Pareto 
distribution to natural catastrophic losses which 
exceed high thresholds is a useful method for 
estimating the tails of loss severity distributions. In 
our experience with several insurance datasets we 
have found consistently that the generalized Pareto 
distribution is a good approximation in the tail.  

This is not altogether surprising. As we have 
explained, the method has solid foundations in the 
mathematical theory of the behaviour of extremes; it 
is not simply a question of ad hoc curve fitting. 
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