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Abstract: - The order of a polynomial for approximating a given data is important in a polynomial regression 
analysis. By normalizing the data and employing the order of magnitudes from the perturbation theory, new 
theorems are posed and proven. The theorems outline the basic features of the regression coefficients for the 
normalized data. Using the theorems and the described algorithm, the optimal degree of a polynomial can be 
determined. This task is a multiple criteria decision task and numerical examples are given to outline the basics 
of the algorithm.  
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1 Introduction 
Regression analysis is one of the most fundamental 
methods used to approximate a given data set. The 
most common one is the linear regression which is 
well established. If the data is not suitable for a 
linear relationship, the nonlinear regression analysis 
is inevitable. Usually a degree n (n≥2) polynomial 
or a basic simple function with a few parameters is 
used to approximate the data. The regression 
analysis, if done properly, enables to make 
interpolations and extrapolations of the given data.  

As a nonlinear regression function, only 
polynomial type regressions are considered here. 
One of the important issues in polynomial 
regression is to determine the degree of the 
polynomial. According to the Anderson’s procedure 
[1], one starts with a polynomial of certain n value 
and the coefficients are calculated for that degree. If 
the highest degree coefficient is zero, one resorts to 
a polynomial of degree n-1. The algorithm is 
terminated for the specific value of degree m for 
which the highest degree coefficient is nonzero. 
Here, in the present analysis, the zero highest degree 
coefficient requirement is somewhat relaxed and if 
the highest degree coefficient is very small 
compared to 1 for the normalized data, one may try 
a lower degree polynomial.  

Motulsky and Ransnas [2] presented a good 
review of the nonlinear regression with 
mathematical formulations kept to a minimum. 
Optimal designs for the Anderson’s procedure are 
given by Dette [3] and Dette and Studden [4]. The 
validity of a k’th order polynomial regression model 

was tested by utilizing nonparametric regression 
techniques [5].  

In this study, new theorems are given which can 
be used as simple tests for the appropriateness of the 
polynomial regressions. A crucial point is to 
normalize the data with the maximum values in each 
set. After normalization, the regression coefficients 
possess some important properties which are 
exploited through theorems. By employing the 
theorems, the optimal degree of a polynomial as 
well as the appropriateness of the data for a 
polynomial regression can be determined. The usage 
of the algorithm is outlined through specific 
examples.  
 
 
2 Regression Analysis 
For a given set of data (xi, yi) i=1,2,…N, if the data 
is approximated by an n’th degree polynomial  
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the optimum coefficients are calculated as [6] 
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The standard regression error is 
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where N-(n+1) is called the degree of freedom.  
 

PROOF 
DOI: 10.37394/232020.2022.2.4 Mehmet Pakdemi̇rli̇

E-ISSN: 2732-9941 17 Volume 2, 2022



 
3 Theorems 
For the theorems to be applicable, the data is 
normalized first by dividing by the maximum values 
in each set 

max max
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i i
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For positive quantities, the data is confined in a 
square region in the first quadrant.  
 
Theorem 1 

For the polynomial regression of degree n for 
the normalized data 
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if all 0ia ≥ , then )1(0),(~ <<≥ εε i
k

i kOa i . 
 
Proof 
If all coefficients are positive, the theorem states 
that there cannot be a large coefficient. Since the 
data is confined in a square, for 

( )1, (1)nx y O= ≤ . Hence from (6) 

1 1 0... (1)n na a a a O−+ + + + ≤    (7) 
or replacing the magnitudes  
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If at least one of the ki is less than zero, there is an 
unbalanced large term which spoils the inequality. 
Hence, if all coefficients are positive, the 
coefficients can be at most O(1) � 
 
Theorem 2 

For the polynomial regression of degree n for 
the normalized data given in Eq. (6), if there exists 
large coefficients i.e. )1(0),(~ <<< εε i

k
i kOa i , 

then the coefficients cannot have the same signs and 
other large term(s) 0),(~ <m

k
m kOa mε should 

appear with opposite signs.  
 
Proof 
As stated in the previous theorem, coefficients 
satisfy Eqs. (7) and (8) for the normalized data. If 
there exists a large term with ki less than zero, this 
term must be balanced by other large term(s) 

0),(~ <m
k

m kOa mε with opposite signs so that 
the sum adds to at most an O(1) term � 
       
     Theorem 2 is a complimentary theorem of 
Theorem 1. The next theorem states the additive 
property of the coefficients.  
  
 

Theorem 3 
For the polynomial regression of degree n for 

the normalized data given in Eq. (6), the sum of the 
regression coefficients are bounded such that  
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with the equality sign holding for the specific set of 
data where xN=xmax, yN=ymax.  
 
Proof 
For 1=x , due to normalization, )1(Oy ≤ . Using 
the normalized regression equation and substituting 

1=x  
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If ymax corresponds to xmax, then 1)1( ≅y due to the 
approximation of the regression and hence the 
equality sign holds for (10) � 

In the previous three theorems, the properties of 
the regression coefficients for the normalized data 
are outlined. They can be used to check the 
calculations. The last theorem sets up a criterion for 
the standard regression error.  
 
Theorem 4 
For a good polynomial regression of the normalized 
data, the standard regression error is bounded by  

)1()(/ <<≤ εεOS xy                (11) 
 
Proof 
If there is a perfect representation, the curve passes 
close enough to each data point and since the data is 
within a square box of length 1, the distance 
between each real and approximated data can only 
be a small fraction of 1, hence 
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n

i             (12) 
Substituting the above into (4) yields 
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For a good representation, the number of data points 
N should be much larger than the degrees of 

freedom n+1 and hence 
)1( +− nN

N
∼O(1). 

Substituting the order of magnitude into (13) yields 
)(/ εOS xy ≤ �  

Theorem 4 can be used as a rough criterion to 
determine the suitability of the polynomial 
regression.  
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4 Applications 
For a given experimental data, usually the 
distribution of data does not precisely give a clue 
about the degree of the polynomial to be used. 
Sometimes, a polynomial regression is not suitable 
at all. With worked examples and the theorems 
given, guidelines for selection of the degree of a 
polynomial regression are established in this 
section.  

Table 1 is produced from an approximately 
cubic polynomial data. The major indicators are the 
determinant, the coefficients, the sum of the 
coefficients, the regression error and the difference 
of the regression errors between the n-1’th degree 
and n’th degree. At n=4, the determinant becomes 
very singular, the highest degree coefficient appears 
to be small (a4=0.1626), the sum of the coefficients 
start deviating from 1 (Theorem 3), the standard 
regression error is higher than the previous case and 
the difference turns out to be negative all indicating 
that n=3 is the best choice.  

In Table 2, a functional type of data is 
considered. The data is an approximation of a 
logarithmic relationship. Given the previous 
criterion, the ideal representation of the data is a 
cubic polynomial because the determinant is too 
much singular for n=4, the sum of the coefficients 
start deviating from 1 and the difference of the 
standard errors become negative. Note that since the 
original data is not of a polynomial form, the highest 
order coefficient at n=4 is not small, but at this 
stage, one has larger opposite sign coefficients 
(Theorem 2) which is an indicator that one should 
stop and take the n value of the previous stage.  
 
 
5 Concluding Remarks 
The basics of the algorithm can be summarized as 
follows.  

1) Try first a linear relationship and increase 
the degree by one at each stage.  

2) Form a similar table as given in Tables 1 
and 2.  

3) Check the singularity of the determinant, 
the highest degree coefficient, the 
magnitudes of the coefficients, the sum of 
the coefficients, the standard regression 
error and the differences of errors at each 
step.  

4) Stop at degree n when the highest degree 
coefficient is small, and/or the difference of 
the errors is negative and use n-1 as the 
ideal degree.   

5) Although not compulsory, may stop at n 
when the determinant is too singular, 
there are opposite sign large 
coefficients, the sum of the coefficients 
start deviating from the ideal value, the 
standard error is small and may use n-1 
as an ideal representation. 

 
 
Acknowledgment: - The support of the Turkish 
Academy of Sciences (TÜBA) for the expenses of 
the conference is highly appreciated.  
 
References: 
[1] T. W. Anderson, The choice of the degree of a 

polynomial regression as a multiple decision 
problem, The Annals of Mathematical 
Statistics, Vol.33, 1962, pp. 255-265. 

[2] H. J. Motulsky and L. A. Ransnas, Fitting 
Curves to Data Using Nonlinear regression: A 
Practical and Nonmathematical Review, 
FASEB Journal, Vol.1, 1987, pp. 365-374. 

[3] H. Dette, Optimal designs for identifying the 
degree of a polynomial regression, The Annals 
of Statistics, Vol.23, 1995, 1248-1266.   

[4] H. Dette and W. J. Studden, Optimal designs 
for polynomial regression when the degree is 
not known, Statistica Sinica, Vol.5, 1995, 459-
473. 

[5] B. R. Jayasuriya, Testing for polynomial 
regression using nonparametric regression 
techniques, Journal of the American Statistical 
Association, Vol.91, 1996, 1626-1631. 

[6] S. C. Chapra and R. P. Canale, Numerical 
Methods for Engineers, Mc Graw Hill, 2014.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

PROOF 
DOI: 10.37394/232020.2022.2.4 Mehmet Pakdemi̇rli̇

E-ISSN: 2732-9941 19 Volume 2, 2022



 

 

Table 1- Polynomial Regression for the Normalized Data Close to a Cubic Function 
Data 
1 

x=[0 1 2 3 4 5 6 7 8] 
y=[1 1.1 4.9 20 51 98 175 300 455] 

Data close to y = x3- x2+1 

n det(X(n)) ao…….an Σai (Sy/x)n   ∆(Sy/x)n =(Sy/x)n-1-(Sy/x)n  
1 8.4375 -0.1887 

 0.9175 
0.7288 0.1682  

2 0.6345 0.0425 
-0.6673 
 1.5848 

0.9599 0.0390 0.1292 

3 0.0035 0.0005 
0.0562 
-0.3339 
 1.2791 

1.0019 0.0070 0.0310 

4 1.2100e-06 0.0014 
0.0166 
-0.1317 
0.9539 
0.1626 

1.0029 0.0077 -0.0007 

 

Table 2- Polynomial Regression for the Normalized Data Close to a Logarithmic Function 
Data 2 x=[0 1 2 3 4 5 6 7]  

y=[0  0.7  1.2  1.3  1.6  1.8  1.9  2.2] 
Data close to y=ln(1+x) 

n det(X(n)) ao…….an Σai (Sy/x)n   ∆(Sy/x)n =(Sy/x)n-1-(Sy/x)n  
1 6.8571 0.1629 

0.8902 
1.0530 0.0967  

2 0.4798 0.0587 
1.6193 
-0.7292 

0.9489 0.0615 0.0352 

3 0.0024 0.0069 
2.5694 
-3.2686 
 1.6930 

1.0007 0.0333 0.0282 

4 7.6071e-07 0.0002 
2.8906 
-4.9333 
4.3800 
-1.3435 

0.9940 0.0359 -0.0026 
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