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1 Introduction 
A function that continues to receive considerable 
attention in neural networks and deep learning, 
as it serves as an activation function, is the 
sigmoid logistic function, (cf. [1-6] and the 
references therein). Its characteristic S-shaped 
curve, [3], maps the number line onto a finite-
length subinterval, such as (0,1), and its most 
common form is given by: 

𝑆(𝑥) =
𝑒𝑥

1+𝑒𝑥 = 1 − 𝑆(−𝑥)                                 (1) 

     Recently, this smoothly-increasing function 
has made it to the porous media literature, where 

it has been used in modelling variations in 
permeability across a porous layer, [5].  

     The S-shaped graph of the sigmoid function 
makes it appealing in the study of transition 
layer, and Roach and Hamdan, [5], provided a 
modification of 𝑆(𝑥) and used it in the modelling 
of Poiseuille flow through a Brinkman porous 
layer of variable permeability, wherein they 
created a continuously varying permeability 
between relatively constant permeability 
regions. An advantage of the Roach and Hamdan 
approach is that it treats the flow domain as one 
region with variable permeability, while 
replicating flow in layered media. 
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     Depending on the choice of permeability 
variations in the transition layer, Brinkman’s 
equation can sometimes be reduced to Airy’s 
inhomogeneous ordinary differential equation 
(ODE), [7]. Airy’s ODE, [8-10], has received 
considerable attention in the literature, and 
general approaches to solutions of Airy’s 
inhomogeenoeus ODE have been introduced, 
(cf. [11-19] and the references therein). In 
addition to its importance in mathematical 
physics, solutions to the inhomogeneous Airy’s 
ODE when its forcing function is a general 
function of the independent variable, give rise to 
new functions that are important in the 
advancement of our mathematical library of 
functions.  
     Of particular interest to the current work is the 
solution to Airy’s inhomogeneous ODE when its 
forcing function is the sigmoid logistic function, 
𝑆(𝑥), defined in (1), above. The objective is to 
find the general solution to the resulting 
inhomogeneous ODE, then use the general 
solution to obtain solutions to initial and 
boundary value problems. It will be shown that 
this choice of forcing function leads to the 
establishment of connections between the 
sigmoid function, Airy’s functions, the Nield-
Kuznetsov functions, Scorer functions, and 
polylogarithmic functions. 
 

2 Properties of the Sigmoid Logistic  

    Function 
Some properties of the sigmoid function, 𝑆(𝑥), 
are listed in what follows, (some of these 
properties can be found in von Seggern, [3], and 
Weisstein, [6]). In what follows, “prime” 
notation denotes ordinary differentiation with 
respect to the argument. 

Property 1: Domain of 𝑆(𝑥) is the set of real 
numbers, −∞ < 𝑥 < +∞ and its range is the 
interval (0,1). Graph of S(x) is shown in Fig. 1 

for −5 ≤ 𝑥 ≤ 5. This graph was obtained using 
Wolfram Alpha. 

Property 2:  𝑆(𝑥) has horizontal asymptotes at 
𝑥 = ∓∞ with  

lim
𝑥→+∞

𝑆(𝑥) = 1 and lim
𝑥→−∞

𝑆(𝑥) = 0                     (2) 

Property 3: The first two derivatives of 𝑆(𝑥) are 
given by 

 

S(x) 

x 

Fig. 1  Graph of S(x) for −5 ≤ 𝑥 ≤ 5 

 

𝑆′(𝑥) =
𝑒𝑥

(1+𝑒𝑥)2                                                     (3) 

𝑆′′(𝑥) =
𝑒𝑥(1−𝑒𝑥)

(1+𝑒𝑥)3                                                             (4) 

Property 4: Values at zero of 𝑆(𝑥) and its first 
two derivatives are 𝑆(0) =

1

2
;   𝑆′(0) =

1

4
; 𝑆′′(0) = 0. 

Property 5: Properties 3 and 4 imply that 𝑆(𝑥) is 
increasing on its domain and has a point of 
inflection at 𝑥 = 0.  

Property 6: 𝑆(𝑥) represents solution to 
Bernoulli’s ODE of the form 

𝑦′ − 𝑦 = 𝑔(𝑦)                                                        (5) 

where 𝑔(𝑦) = −𝑦2, with initial value 𝑦(0) =
1

2
. 

Property 7: Indefinite integral of 𝑆(𝑥) is given 
by 

∫ 𝑆(𝑥)𝑑𝑥 = log(1 + 𝑒𝑥) + 𝐶                           (6) 

where C is a constant and log stands for the 
natural logarithm. 
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Property 8: Definite integral of 𝑆(𝑥) over the 
interval [0,1] is given by 

∫ 𝑆(𝑥)𝑑𝑥
1

0
= log(1 + 𝑒) − log2                           (7) 

Property 9: Higher derivatives of 𝑆(𝑥) can be 
written as polynomials in 𝑆(𝑥). This might be of 
convenience in obtaining higher deivatives of 
𝑆(𝑥). 

𝑆′(𝑥) = 𝑆(𝑥) − 𝑆2(𝑥)                                       (8) 

𝑆′′(𝑥) = 𝑆(𝑥) − 3𝑆2(𝑥) + 2𝑆3(𝑥)                   (9) 

Equation (28) suggests that 𝑆(𝑥) is related to the 
solution of an ODE of the form: 

𝑦′′ = 𝑦 − 3𝑦2 + 2𝑦3                                          (10) 

Property 10: Higher derivatives of 𝑆(𝑥) can be 
written in terms of the first derivative, 𝑆′(𝑥). 
This might also be of convenience in obtaining 
higher derivatives of 𝑆(𝑥). With the first 
derivative given by (8), the second derivative can 
be written as: 

𝑆′′(𝑥) = 𝑆′(𝑥)[1 − 2𝑆(𝑥)]                            (11) 

Equation (11) suggests that 𝑆(𝑥) is related to the 
solution of an ODE of the form: 

𝑦′′ − (1 − 2𝑦)𝑦′ = 0                                      (12) 

Property 11: 𝑆(𝑥) possesses the following 
Maclaurin series representation, [6]: 

𝑆(𝑥) = ∑
(−1)𝑛𝐸𝑛(0)

2 𝑛!
∞
𝑛=0 𝑥𝑛 =

1

2
+

𝑥

4
−

𝑥3

48
+

𝑥5

480
−

⋯                                                                                 (13) 

where 𝐸𝑛(𝑥) is an Euler polynomial. 

 

3   Solution to Airy’s  ODE with   

     Sigmoid Forcing Function 
Airy’s inhomogeneous ODE with 𝑆(𝑥) as its 
forcing function takes the form: 
 
𝑦′′ − 𝑥𝑦 = 𝑆(𝑥)                                                      (14) 

     The general solution to (14) can be expressed 
in the form 

𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝑦𝑝                              (15) 

where 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are the linearly 
independent Airy’s functions of the first and 
second kind, whose non-zero Wronskian is given 
by, [9,10]: 

𝐴𝑖(𝑥)𝐵′
𝑖(𝑥) − 𝐵𝑖(𝑥)𝐴′

𝑖(𝑥) =
1

𝜋
                         (16) 

and 𝑦𝑝 is the particular solution, expressible as, 
[11]: 

𝑦𝑝 = 𝜋{𝐵𝑖(𝑥) ∫ 𝑆(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐴𝑖(𝑥) ∫ 𝑆(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡}                                              (17) 

 
     The integrals on the right of (17) are evaluated 
using integration by parts, with the help of (6), to 
yield: 
 
∫ 𝑆(𝑡)𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡 = 𝐴𝑖(𝑥) log(1 + 𝑒𝑥) −

𝐴′
𝑖(𝑥) ∫ log(1 + 𝑒𝑡)𝑑𝑡

𝑥

0
                                          (18) 

 
∫ 𝑆(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 = 𝐵𝑖(𝑥) log (1 + 𝑒𝑥) −

𝐵′𝑖(𝑥) ∫ log(1 + 𝑒𝑡)𝑑𝑡
𝑥

0
                                                (19) 

 
Using (18) and (19) in (17), yields 
 
𝑦𝑝 = 𝜋[𝐴𝑖(𝑥)𝐵′𝑖(𝑥) − 𝐵𝑖(𝑥)𝐴′

𝑖(𝑥)] ∫ log(1 +
𝑥

0

𝑒𝑡)𝑑𝑡                                                                        (20) 
 
     Using (16), equation (20) can be written as: 
 
𝑦𝑝 = ∫ log(1 + 𝑒𝑡)𝑑𝑡 = 𝐿𝑖2(−1) − 𝐿𝑖2(−𝑒𝑥) 

𝑥

0
    

                                                                             (21) 
 
where  
 
𝐿𝑖2(𝑥) = ∑

𝑥𝑛

𝑛2
∞
𝑛=1                                                     (21) 

 
is the dilogarithm function, [20,21]. 
     Using the value 𝐿𝑖2(−1) = −

𝜋2

12
 in (21), and 

subsequent use in (15), the general solution to (14) 
can be written as: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − 𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
              (22) 

 
     The above analysis furnishes the proof to the 
following Theorem. 
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Theorem 1.  

 

The particular solution to Airy’s inhomogeneous 

ODE with the sigmoid logistic function as its 

forcing function is given by  

𝑦𝑝 = −𝐿𝑖2(−𝑒𝑥) −
𝜋

12
     … (𝑖) 

and its general solution is given by 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) − 𝐿𝑖2(−𝑒𝑥)

−
𝜋2

12
   … (𝑖𝑖) 

 
 

 

4 Connections with the Scorer 

Functions and the Nield-Kuznetsov 

Functions 
Based on the analysis provided in Hamdan and 
Kamel [11], the particular solution (17) can also be 
expressed in the form 
 
𝑦𝑝 = 𝜋𝐾𝑖(𝑥) − 𝜋𝑆(𝑥)𝑁𝑖(𝑥)                                  (23) 
 
where the integral function, 𝐾𝑖(𝑥), is the Nield-
Kuznetsov function of the second kind that is defined 
by the following equivalent forms, [11]: 

𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑆′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑆′(𝑡)                             (24) 

𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝑆(𝑡)𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑆(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}                           (25) 

and the integral function 𝑁𝑖(𝑥) is the Nield-
Kuznetsov function of the first kind that is 
defined by, [7,11]: 

𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
                                                                                         

                                                                             (26) 
 
     Hamdan and Kamel, [11], showed that  

𝑁𝑖(𝑥) =
2

3
𝐺𝑖(𝑥) −

1

3
𝐻𝑖(𝑥)                               (27)                                                                                            

where  𝐻𝑖(𝑥) and 𝐺𝑖(𝑥) are the Scorer functions, 
[22], that represent particular solutions to the 

Airy’s inhomogeneous equation when the 
forcing functions are ∓ 1

𝜋
. 

 
Now, equations (22) to (27) render the following 
relationships between 𝐾𝑖(𝑥), 𝑁𝑖(𝑥), 𝑆(𝑥), 𝐺𝑖(𝑥), 
𝐻𝑖(𝑥), 𝐴𝑖(𝑥), 𝐵𝑖(𝑥) and 𝐿𝑖2(𝑥): 
 
𝐾𝑖(𝑥) = 𝑆(𝑥)𝑁𝑖(𝑥) −

1

𝜋
𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
                  (28) 

 
𝐾𝑖(𝑥) = 𝑆(𝑥){𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥

0
−

𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0
} − 𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
                      (29) 

 
Using (13), equation (41) can be written in terms of 
the Scorer functions, as: 
 
𝐾𝑖(𝑥) = 𝑆(𝑥) {

2

3
𝐺𝑖(𝑥) −

1

3
𝐻𝑖(𝑥)} −

1

𝜋
𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
                                                                            (30) 

 
     The above analysis furnishes the proof to the 
following Theorem. 
 

Theorem 2.  

 

The Nield-Kuznetsov functions of the first and 

second kinds are related to dilogarithm, sigmoid,  

Airy’s, and Scorer’s functions through the 

equations 

𝐾𝑖(𝑥) = 𝑆(𝑥)𝑁𝑖(𝑥) −
1

𝜋
𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
    … (𝑖𝑖𝑖) 

𝐾𝑖(𝑥) = 𝑆(𝑥) {𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡
𝑥

0

− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0

}

− 𝐿𝑖2(−𝑒𝑥) −
𝜋2

12
   … (𝑖𝑣) 

𝐾𝑖(𝑥) = 𝑆(𝑥) {
2

3
𝐺𝑖(𝑥) −

1

3
𝐻𝑖(𝑥)} −

1

𝜋
𝐿𝑖2(−𝑒𝑥)

−
𝜋2

12
    … (𝑣) 

 

 
 
5  Solution to Initial Value Problem 
Consider the initial value problem composed of 
solving equation (14) subject to the initial conditions 
 
𝑦(0) = 𝛼                                                                (31)                                                                                                       
 
𝑦′(0) = 𝛽                                                               (32)                                                                                                     
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where 𝛼 and 𝛽 are known constants.  
 
From (15) and (21), the general solution is written as: 
 
𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + ∫ log(1 + 𝑒𝑡)𝑑𝑡

𝑥

0
        (33) 

 
Evaluating (33) at 𝑥 = 0, and using (31) yields 
 
𝛼 = 𝑐1𝐴𝑖(0) + 𝑐2𝐵𝑖(0)                                          (34) 
 
Differentiating (33) once results in: 
 
𝑦′ = 𝑐1𝐴′

𝑖(𝑥) + 𝑐2𝐵′
𝑖(𝑥) + log (1 + 𝑒𝑥)                                                                                             

(35) 
 
Evaluating (35) at 𝑥 = 0, and using (32) yields 
 
𝛽 = 𝑐1𝐴′

𝑖(0) + 𝑐2𝐵′
𝑖(0) + log 2                           (36) 

 
Equations (34) and (36) provide the following 
solution for 𝑐1 and 𝑐2: 
 
c1 =

α[1−πA′
i(0)Bi(0)]

Ai(0)
− [π{β − log2}Bi(0)]         (37) 

 
c2 = π[{β − log 2}Ai(0) − αA′

i(0)]                       (38) 
 
where 
 
𝐴𝑖(0) =

1

3
2
3Γ(

2

3
)
                                                        (39) 

                                                                                                             
𝐵𝑖(0) =

√3

3
2
3Γ(

2

3
)

= √3 𝐴𝑖(0)                                     (40)       

                                                                                                                
𝐴′

𝑖(0) =
−1

3
1
3Γ(

1

3
)
                                                       (41)         

                                                                                       

𝐵′𝑖(0) =
√3

3
1
3Γ(

1

3
)

= −√3𝐴′
𝑖(0)                                 (42) 

                                                                           
wherein Γ(. ) is the Gamma function. 
 

     The following solution to the initial value problem 
is thus obtained: 
 
𝑦 = {

α[1−πA′
i(0)Bi(0)]

Ai(0)
− [π{β −

log2}Bi(0)]} 𝐴𝑖(𝑥) + {π[{β − log 2}Ai(0) −

αA′
i(0)]}𝐵𝑖(𝑥) − 𝐿𝑖2(−𝑒𝑥) −

𝜋2

12
                          (43) 

 
     For the sake of illustration, consider the case of 
𝛼 = 0 and 𝛽 = 1 in the initial conditions (31) and 

(32). Equations (37) and (38) render the following 
values for the arbitrary constants: 

𝑐1 = −0.592793305                                      (44)                                                                                        

𝑐2 = 0.3422493741                                             (45) 
                                                                                   
Solution (43) then gives: 
 
𝑦 = −0.592793305𝐴𝑖(𝑥) +

0.3422493741 𝐵𝑖(𝑥) − 𝐿𝑖2(−𝑒𝑥) −
𝜋2

12
                (46) 

 
Graph of this solution is shown in Fig. 2, below. 
 

 
Fig. 2. Solution to the Initial Value Problem 

𝛼 = 0 and 𝛽 = 1 

Computation and graphing of (46) was carried 
out on Wolfram Alpha.  
 

 

6  Solution to Boundary Value Problem 
Consider the two-point boundary value problem 
composed of solving equation (14) subject to the 
following conditions on interval [𝑎, 𝑏]: 
 

𝑦(𝑎) = 𝛼                                                                     (47)                                                                                           
𝑦(𝑏) = 𝛽                                                                (48)                                                                                           
 
where 𝛼 and 𝛽 are known constants.  
     Using conditions (47) and (48) in the general 
solution (2) yields: 
 
𝑐1𝐴𝑖(𝑎) + 𝑐2𝐵𝑖(𝑎) = 𝛼 +

𝜋2

12
+ 𝐿𝑖2(−𝑒𝑎)            (49) 

 
𝑐1𝐴𝑖(𝑏) + 𝑐2𝐵𝑖(𝑏) = 𝛽 +

𝜋2

12
+ 𝐿𝑖2(−𝑒𝑏)            (50) 

 
Solutions to (49) and (50) are given by 
 

𝑐1 =
𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)

𝐴𝑖(𝑎)
−

 
[𝛽+

𝜋2

12
+𝐿𝑖2(−𝑒𝑏)]𝐵𝑖(𝑎)−{𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)} 

 𝐴𝑖(𝑏)𝐵𝑖(𝑎)

𝐴𝑖(𝑎)
  

[𝐴𝑖(𝑎)𝐵𝑖(𝑏)−𝐴𝑖(𝑏)𝐵𝑖(𝑎)]
      (51) 
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  𝑐2 =
[𝛽+

𝜋2

12
+𝐿𝑖2(−𝑒𝑏)]𝐴𝑖(𝑎)−{𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)}𝐴𝑖(𝑏)

𝐴𝑖(𝑎)𝐵𝑖(𝑏)−𝐴𝑖(𝑏)𝐵𝑖(𝑎)
   (52) 

     Using (51) and (52) in (22) gives the 
following solution to the posed boundary value 
problem: 

 

𝑦 = {
𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)

𝐴𝑖(𝑎)
−

 
[𝛽+

𝜋2

12
+𝐿𝑖2(−𝑒𝑏)]𝐵𝑖(𝑎)−{𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)} 

 𝐴𝑖(𝑏)𝐵𝑖(𝑎)

𝐴𝑖(𝑎)
  

[𝐴𝑖(𝑎)𝐵𝑖(𝑏)−𝐴𝑖(𝑏)𝐵𝑖(𝑎)]
} ∗     

𝐴𝑖(𝑥) +

{
[𝛽+

𝜋2

12
+𝐿𝑖2(−𝑒𝑏)]𝐴𝑖(𝑎)−{𝛼+

𝜋2

12
+𝐿𝑖2(−𝑒𝑎)}𝐴𝑖(𝑏)

𝐴𝑖(𝑎)𝐵𝑖(𝑏)−𝐴𝑖(𝑏)𝐵𝑖(𝑎)
} 𝐵𝑖(𝑥) −

𝐿𝑖2(−𝑒𝑥) −
𝜋2

12
                                                       (53) 

 

     For the sake of illustration, consider the 
values 𝑎 = 𝛼 = 1, 𝑏 = 𝛽 = 2 in boundary 
conditions (47) and (48). Expressions (51) and 
(52) then render the following values for the 
arbitrary constants: 

𝑐1 = 2.19841                                                   (54)                                                                                                                    

𝑐2 = −0.232932                                            (55)                                                                             

and solution (53) then takes the form: 

𝑦 = 2.19841 ∗ 𝐴𝑖(𝑥) − 0.232932 ∗ 𝐵𝑖(𝑥) −

𝐿𝑖2(−𝑒𝑥) −
𝜋2

12
                                                           (56) 

Graph of (56) is shown in Fig. 3 below. 

 
7  Conclusion 

The problem of solving the inhomogeneous 
Airy’s equation (14), when its forcing function is 
the sigmoid logistic function, was provided in 
this work. Relationships between the Nield-
Kuznetsov functions of the first and second 
kinds, Airy’s functions, the Scorer functions, the 
sigmoid logistic function and the dilogarithm 
function have been established and given in 
Theorems 1 and 2. 

 
Fig. 3. Solution to the Initial Value Problem 

𝑎 = 𝛼 = 1, 𝑏 = 𝛽 = 2 
 
     Computation and graphing of (56) was 
carried out using Wolfram Alpha. 
 

General solution to the posed problem was cast 
in terms of Euler’s dilogarithm function, as given 
in Theorem 1. General formulations of an initial 
value problem and a two-point boundary value 
problem were given and solutions were obtained 
for particular values of the initial and boundary 
conditions. Solutions and graphs have been 
carried out using Wolfram Alpha.  
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