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Abstract: - We introduce a new generalization m,, (x,y), which we will call Bivariate Bi-periodic Mersenne
polynomials depending on whether n is even or odd. We investigated the bivariate and biperiodic forms of
Mersenne polynomials, focusing on their unique structural properties, roots, and relationships among
coefficients. Key contributions include deriving the generating function and Binet formula, examining the limit
behavior of the polynomials, and identifying connections between positive and negative terms. Also, we give
the limits of the consecutive terms of the polynomials and some important identities such as Catalan, Cassini
and D’Ocagne’s identity. We also find the corresponding binomial addition formula.
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1 Introduction

As number sequences have played a foundational
role in mathematical theory, leading to the discovery
of intricate patterns, recursions, and connections
across various branches of mathematics. In a similar
spirit, the study of Mersenne polynomials and their
bivariate and biperiodic forms extends this
understanding to higher dimensions and periodic
behaviors. Mersenne numbers, originally defined as
Mn = 2n — 1, give rise to Mersenne polynomials,
which inherit recursive properties analogous to
Fibonacci but with distinct combinatorial features.
For any natural number Some studies on
Mersenne numbers by Koshy and Gao [11] have
been on the investigation the divisibility properties
of these numbers into Catalan numbers. Mersenne
sequence has an important place in number theory
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as it is also involved in computer science because of
Mersenne primes. In number theory, Mersenne
number of orders n is defined as 2™ — 1, where n is
a non-negative integer. This identity is defined as
the Binet formula for the Mersenne sequence.
Mersenne sequence was defined as [7]

Mz = 3Myyq — 2My,
with My = 0,M; = 1.

The Mersenne sequence has been generalized in
many ways where some by preserving recurrence
relation and initial condition [7,13,14,17].

Some of these generalizations have been
obtained by describing the bi-periodic relation of

this sequences and other number sequences
[2,5,9,10,12,18-21,23,24,27].
Studies have been carried out on the

polynomials of these new number sequences and
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bivariate polynomials which are the more general
form of polynomials [3,4,6,15,16,22,25,26].

In 2002, Catalani [6] worked on the more general
form of bivariate polynomials with the matrix
approach and focused more on Fibonacci and Lucas
numbers. In 2018, Uygun [9] examined Jacobsthal
and Jacobsthal-Lucas matrix polynomial sequence
and studied the relationship between these
polynomials and bivariate polynomials. Working on
the more general version of these number sequences
in [22,23], she obtained some important properties.

For n € N and a,b € R*, Edson and Yayenie

[9,27] introduced the bi-periodic Fibonacci
sequence as follows
aqn_1 + qn_2, if nis even
= >
n {bqn_l +qn_p ifnisodd’ nz2

with qo = 0, q1 = 1.

The generating function of this sequence is
x(1+ ax — x?
Flx) = ( )
1—(ab + 2)x? + 4x*
also, the Binet’s formula of this sequence is

_ al—e(n) <an _ ﬁn>
(ab)EJ a—p

where |alis the floor function and e(n) =n — 2 EJ

qnn

is the parity function and «,f are the root of
characteristic equation of bi-periodic Fibonacci
sequence, x> — abx — ab = 0.

This paper carries forward earlier work Mersenne
polynomials, an extension of the classical Mersenne
numbers, have gained attention due to their
intriguing algebraic properties and potential
applications in number theory and combinatorics.
Traditionally, these polynomials are defined by
integer sequences that mirror properties of
Mersenne numbers and are further generalized to
account for complex mathematical behaviors in
multidimensional forms. Recently, studies on
bivariate and biperiodic forms of Mersenne
polynomials have opened new avenues for exploring
structural relationships and symmetries within these

polynomials, enhancing our understanding of
polynomial behavior across different forms
[16,17,21].

This study builds upon existing frameworks by
exploring bivariate and Dbiperiodic Mersenne
polynomials and systematically examining their
properties, roots, and coefficients. Our contributions
include deriving fundamental expressions such as
the generating function, the Binet formula, and limit
behavior, and establishing identities that link
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positive and negative terms. Furthermore, we extend
our analysis by proving the Catalan identity specific
to these forms and deriving summation formulas
that encapsulate these polynomials’ recursive nature
and growth characteristics. These findings
contribute to the broader theoretical foundation of
Mersenne polynomials and provide tools for
applications in combinatorial identities and
recursive sequence analysis.

2 Main Results

This section presents a bi-variate, bi-periodic
Mersenne generating function, binet formula and
their associated properties.

Definition 2.1. For any a,b € R— {0} and x,y €
R, for n =0 the bivariate bi-periodic Mersenne
polynomials is given by

Mpy2 (x' }’) =
{3aymn+1(x, y) — 2xm,(x,y), if nis even 21

3bymy ., (x,y) — 2xm,(x,y), if nis odd 2.1)
with initial conditions my(x,y) = 0, my(x,y) = 1.
When a = b = 1, we have the classic the bivariate
Mersenne polynomials [1]. When
a=b=x=y=1, we have Mersenne
sequences [7,8].
The first four elements of the bivariate bi-periodic
Mersenne polynomials are as follows
mo(x'}’) = 0' ml(x'y) = Lmz(x:)’) = 3a}’,
ms(x,y) = 9aby? — 2x,
my(x,y) = 27aby® — 12axy.
From Definition 2.1, for the bivariate bi-periodic
Mersenne polynomials, we get the quadratic
equation as follows

t? — 3abyt + 2abx = 0

the

with roots
o= 3aby++/9a2b%2yZ2—8abx
2
and (2.2)

—JoaZbZy?—gabx
ﬁ — 3aby 9a2b y 8abx'
Lemma 2.2. The bivariate bi-periodic Mersenne
polynomials satisfy the following properties
I Mons2(x,y) = (9aby? —
4x)My, (X, ) — 42°Myp_5(x,¥)
. Mans1(x,y) = (9aby? —
4x)Man_1 (X, y) — 4x°Myp_3(x, ).

Proof.
1. Mon42(X,y) = 3aymypnq1(x,y) — 2xma,(x,y)
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= 3ay(3byma, (x,¥) — 2xmyp_1(x,y))
— 2xmap(x,y)
= 9aby?m,, — 6axymy,_, — 2xmMyy,
= myn(9aby? — 2x) — 2x(3aymy,_1)
= my, (9aby? — 2x) — 2x(Myy, + 2xMyp,_5)
= m,,(9aby? — 4x) — 4x’m,,_,
. Mynyq (X, y) = 3byman(x,y) — 2xmypn_1(x,y)
= 3by(Baymay,_1(x,y) — 2xmyn_2(x,y))
— 2xmyp-1(x, y)
= 9aby*Myy_1 — 6bXyMyn_p — 2XMypn_4
= Myn-1(9aby? — 2x) — 2x(3bymyy_»)
= Myn_1(9aby? — 2x) — 2x(Mpp_q + 2XM3p_3)
= Man_1(9aby? — 4x) — 4x*myn_3
O

Lemma 2.3. There are the following properties.
e a+f =3aby? af = 2abxy?
2

e Ba-2x)=-%_, (38-2x)= ai;

aby?’
e (Ba-—2x)(3B —2x) = 4x?
o BBa-—2x)=2ax, a(38—2x)=2px
Proof. Their proofs can be easily obtained using the
definition of @ and £3.

O
Theorem 2.4. Let M (,,,)(t) show the generating
function of the bivariate bi-periodic Mersenne
polynomials. Then
. t(1+3ayt+2xt?)
My () = (1-(9aby2—4x)t2+4x2t4)’

Proof. The most general form of M, ,)(t) is as
follows

M(x,y) (t) = Y=o mp(x, ¥)t" = mg +

myt+ -+ myth + -,

By  multiplying the last equation by
—3byt and 2xt?, respectively, we have

_Sbth(x,y)(t) = —3by2¥'f=o mn(x' y)tn+1 =
_3byzg)=1mn—1(x' J’)tn,
2Xt% M () () = 2x Yooy (x, Y2 =

2% Yp=a My —2 (X, y)E™.
So, from Lemma 2.2, we get

(1 = 3byt + 2xt? )M (51 (1)

=my(x,y)

+ (my(x,y) = 3bymq (x, y))t
+(my(x,y) — 3bymy (x,y) + 2xmq(x,y))t?
+(m3(x,y) — 3bym, (x,y) + 2xmy (x,y))¢t3

+(my(x,y) — 3byms(x,¥) + 2xmy (x, y) ) t* + .
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(1 = 3byt + 2xt? )M (5,1 (1)
=t

+ Z(mZn - 3bym'Zn—l
n=1
+ 2xMyy_)t?"

=t+ Z(3aym2n—1 — 3bymap_t*"

n=1

=t+ Z(3ay — 3by)my,_t*"

n=1
=t + (3ay — 3by)t? + (3ay —
3by)t Ymoy Man_1t*" 1.

For simplicity in operations, let’s define iy, (t)
as follows.

oo
7'/r\l(x,y)(t) = Z "7*271—11:211_1
n=1

where
Man_1(x,y) = 3bymypn_,(x,y) — 2xmy,_3(x,y)
= 3by(Baymyp—3(x,y) — 2xmy,_4(x,¥))
— 2xmap-3(X,y)
= Man—3(x,¥)(9aby?® — 2x) — 6bxymy,_4(x,y)
= (9aby? — 4x)my,_3(x,y) —
4x*mayn_s(x,y).
So, we get
Mxy) () = (1 — (9aby? — 4x)t?
+ 4x2t4)m(x’y) 3]
=my(x,y)t
+ (m3 (x, }’)
— (9aby? — 4x)my(x,y))t?
+(ms(x,y) — (9aby? — 4x)ms(x,y) +
4x?my (x, Y))t> + .

From Lemma 2.2, we get

(1 — (9aby? — 4x)t* + 4x2t*)m,. ) ()
=t+ 2xt3 +0t> +0t7 + -
+ 021 4.

t + 2xt3
1 — (9aby? — 4x)t? + 4x2t*)

M) (t) = (

Plugging iy, )(t) into M (, ,)(t), we obtain

(1 = 3byt + 2xt? )M (51 (t)
=t
N t(3ay — 3by)(2xt3 +t)
(1 — (9aby? — 4x)t? + 4x2t*)
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t(1 — 9aby?t? + 4xt? + 4x%t* + 6axyt3 + 3ayt — 6bxyt3 — 3byt)

M) (£) =

(1 — (9aby? — 4x)t? + 4x?t*)(1 — 3byt + 2xt?)

t(1+ 3ayt + 2xt?)

M) (£) =

as desired.
]

Theorem 2.5. The Binet’s formula for my,(x,y) is

given by
(ay)l—zS(m) <am _ ﬁm>
(abyz)lgj —-B
where  §(m) =m—2[§] is the parity function
[9.27].

mm(xv)’) =

Proof. The function can be expressed as follows:

_ (0, if miseven
§(m) = {1, if misodd"

We can find Binet’s formula as follow.

For generating function, we use partial fraction
decomposition method, Lemma 2.3 and then we
apply Maclaurin’s Series expansion.

» ©) = 1 at + ay
I (@ - B (1 — Ba - 2x)t2)
Bt + ay ]
(1- (3B —2x)t?)
_ 1 at + ay
(a— _ _ 2__ 1
( A (Ba —2x) (t (3a—2x))
Bt + ay
_ _ 2__ 1
(36 =20 (¢ - 755)
1 at + ay
~(q— - _ , _ (B—2x)
(a—p) (Ba — 2x) (t e )
4 Bt + ay
(Ba—-2x)
(36 -2 (62 - 257)
at 3a—2x Bt 38—-2x]
— 1 E+ ay 4x2 2x Y 4x2
a — 2 (Ba—-2x) 2 (3B-2x)
( B) (t 4x2 ) (t 4x2 )
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= ax2(a-p)

1 [oe]
T ax2(a - B) [;0(_2"3) <3ﬂ —2
~ i ay(3f — 2x)(4x2)™+1 th]

(1 — (9aby? — 4x)t? + 4x?t*)

1 2xat+ay(3a—2x)
(tz _(3a—2x))

4x2

2xBt+ay(3f—-2x)
- (tz_(3ﬁ—2x))
4x2

form

oo oo
— Z Bc—n—122n+1 _ Z AC_n_lzZ”.
n=0 n=0

So, the generating function M(,,y(t) can be
expanded as

M x.y) ®©

— 1 N 2 4x2 e 2m+1
T 4xZ(a—p) nZo(_ *a) <3a — 2x> t

B i ay(3a — 2x)(4x?)"m+1 th]

Ba — 2x)m+1

m=0

2 m+1

(3B — 2x)™+1

m=0
00 4x2 m+1
4x2(a B) Z (=2xa) <3a - 2x>
m=
m+1
3B — 2x
ay(3p — 2x)(4x?)m+1

1 [ee)
T 2@ —p) L;( Gf — 20+

ay(3a — 2x)(4x*)™H\
B Ba — 2x)m*1 ) ‘

o
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_ 1 o [ (—2xa) (4x2)™L(3B — 2x)™L + (2xB) (4x2)™F (3 — 2x)™ 1 N
T 2@ —p) ;O< (3B — 20™1(3a — 2x)™*1 )t

1 i (ay)(4x®)™*1(B3a — 2x)™* (38 — 2x) — (ay)(4x?)™*1 (38 — 2x)™* 1 (Ba — 2x) (2m
4x2(a —pB) (BB — 2x)M*1(3a — 2x)m+1
From the parity function, the expansion can be

considered into the following form
From Lemma 2.3,

M ®) = T @2 (8™ o
1 2 m i " apyplzl N @B
M(x,y) (t) = m Z (4ax (3& - ZX)
m=0 hence by comparing the above with M, ,)(t) =
— 48X (3B — 2x)™) t2m+1] Ym=0 Mm (x, y)t™, it follows that
(ay)l—zS(m) a™ — ’Bm
- 4 2 3 mm(x;}’) = m ( >
T 2 (a ﬂ)[z(ay *"(3a @by»)lzl \ @ =B

—2x)™
as desired.

—ay.4x*(3p — 2x)™) t2™m o _
Theorem 2.6. The limit of every two consecutive
terms of the polynomial is as follows

Z 4x2a2m+1 lim Moyme1 (X, V) _a
4x2(a B (aby?)™ noo Moy (X,y)  ay
2 p2m+1
_M p2m+1 and
(aby?)™
Mo (x, a
2 om lim —m Zm((xyzl) = E
ay 4x“a n=0Mym-1X,
4x2 a— [Z (aby?)™
( A (aby®) Proof. Considering that |f| < a and properties of
_ay. 4x2pB 2m> zm] the limit, it is obtained
abv2)m
( y ) (ay)1—6(2m+1) (a2m+1—,82m+1)
2m+1
o lim Mym+1(X,Y) _ (abyz)ITJ a=Fp
Z ( ) (a 2m+1 _ﬁ2m+1)t2m+1 n-w My (X,y) - (ay)1-8@m) (azm_ﬁzm)
aby? e a—p
m=0 (aby?)l 2
o) _ Q?mE1_pgrm+1 _a
T ﬁ ayz (aby ) (a®™ — pmyem . ay(@*™-p>m)  ay’
m=0

Similarly,
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(ay)l—S(Zm) (azm_ﬂzm)
lim Mo (X, Y) @y 71\ @B
n-oo mZm—l(x' y) (ay)l—S(zm—l) (azm—l_ﬁzm—l)
Zm—1 a—B
(abyz)[ 2 J
ay aZm_ﬁZm
(abyz)m( a-B ) _ @
1 (aZm—l_ﬁZm—l) - by
(abyz)ym-1 a-pB

as desired. We can conclude that the bivariate bi-
periodic Mersenne polynomial does not converge.

O

Theorem 2.7. There is a relationship between
positive terms and their corresponding negative
terms in the polynomials is

m_p(x,y) = —my (%, y)(22) 7"

Proof. From Binet’s formula,

N € L )
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(a:V)l_a(_n) a—pB"
m_n(x,y) = ~ ( )
(abyz)lTJ a—p
_ (aY)l_a(n)< g —a )
B (abyz)l_TnJ (a — B)(abxy>)"
_(ay) ™ pnign N N
(aybyZ)l 3 ((a—ﬁ)(zx)n) = —m,(x,y)(2x)™".

Theorem 2.8. (Catalan Identity)

Let n and r any two nonnegative integers such that
n = r, we have

a®=Ipt=8=Nm, (%, y) My (%, ¥)
a&(n) bl—tS(n) mrzl (x’ y)

— _(Zx)n—ratS(r)bl—S(r)m% (x’ )I)-

Proof. From Binet’s formula, we obtain

(a—pB)?

3 a&(n—r)bl—(S(n—r) (ay)l—(S(n—r) <an—r _ ﬂn—r> (ay)1—6(n+r) <an+r _ ﬁn+r>
(@y)l71 N a=F @yl N e p
(ay)Z—S(n—r)—S(n+r)aﬁ(n—r)bl—zS(n—r) a7 — ‘Bn r a™tr ‘Bn+r
B (aby?)n=5(n=r) ( a—p ) ( a=p )
ooy —0T = BT+ 2(ap)”
= Ty () (@—p)?
_ a (a2n+B2n_(aB)n—T(a2T+BZT)) y
- (aby?)nt (a=p)? ‘ 2
—a ( T_BT
=———— (@B)"” T< > >
From that §(n) = n — 2 BJ, we get (aby?)n~1 -B
6(n)b1—6(n)m2 (x y) g ( y )Zl J
_ 5 15 (ay)z—zs(n) <a2n +ﬁ2n _ 2(0([3)”) = —(abyz)n‘l (zabxyZ)n—r( 7 50 Z(X )

(aby?)?E]

a2—6(n)(y2)1—6(n)b1—6(n)
= an—S(n)(yZ)n—S(n)bn—é(n) ( (d _ ,3)2
_ a (a2"+ﬁ2"—2(aﬁ)n) _
- an-1pn-1(y2)n-1 (a—PB)>? -
a2n+an—2(aB)")

(a—p)?

an
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3 _(_Z)n—ra(ab)n—r(xyZ)n—r (ab)r—S(r) (yz)r—(S(r)

(ab)n=1(y?)n=1(a)2=28() (y2)1-8(r) mZ(x,y)

_(Zx)n—raa(r)bl—a(r)mg (x' )/)-
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Theorem 2.9. (Cassini ldentity)

Forn € Z*, we get

a®=Vpt=00=Dm, (6, y)Mps1 (%, )
_ a6(n)b1—6(n)mrzl (x, y)
= —2x)" a.

Proof. The proof is seen easily by choosing r = 1 in
Catalan identity.

Theorem 2.10. (d’Ocagne Identity)

Forr,s € Z* and r = s, we have

aSUstIpSTs+Im (x, yI)mgy1 (%, y)
_ aS(rS+S)b8(rs+r)mT+1(x' y)ms (x’ y)
0, e

€= aS(rs+r)b8(rs+s)mr (x, Y)ms+1 (x, y)

Bahar Kuloglu, Enze Cui, Engin Ozkan, James F. Peters

Proof. Let's consider the following equations.

6(r)+6(s+1)—28(rs+r)=6(r+1)+
6(s)—26(rs+s)=1—-86(r—5s)
2.3)

6(r—s)=68@s+r)+ §(rs+s)
(2.4)

A 41205 4 -

2.5)

r—s=6(r—s) _ lﬂ
2 L2
(2.6)

J+EJ—6(rs+r)—s

==
2.7)

By using the extended Binet’s formula (2.3), (2.4),
(2.5), (2.6), it is obtained

(abyz)lglﬂ%]

B a(a)S(rs+r)+1—5(r)—6(s+1)b5(rs+s)y2—5(r)—6(s+1) (ar_ﬂr) <0{S+1—ﬂs+1)

a—p a—p

B a(a)S(r—s)—S(rs+r)b5(rs+s)y2—5(r)—8(s+1) (ar_ﬁr> <as+1_ﬂs+1>

r—s=6(r-s)

(abyz)f+5(rs+s)+s

a—pf a—pf

r—s=6(r-s)

B a(a)5(rs+s)b5(rs+s)y2—6(r)—5(s+1) <ar_ﬁr> (as+1_ﬁs+1>

(abyz)f+5(rs+s)+s

a—p a—p

r—s=6(r-s)

B a(ab)—syl—r—s (
(ab) =z

on the other hand, similarly,

¥ = a5(rs+s)b6(rs+r)mr+1(x’ y)ms (x’ y)

3 a(ab)—syl—r—s <ar_'b)r> (as+1_'b)s+1>

r—s—8(r-s) _ _
(ab) 2 a—p a—p

from (2.7), we obtain

€—-¥

ar_ﬁr as+1_ﬁs+1
=) (=)

_ (2x)Say (ar—s_ﬁr—s>
(ab)l?JyT_S a-— '8

_ (zx)smr_s(x’ y)ac?(r—s)yr—s ar—s_ﬁr—s
- yr—s a— ﬂ

= (2x)°a®Tm,_s(x, ).

O

_a(ab) =yt ((aﬂ)S[—ﬂar—s GBS 4T ¢ ﬁr-m])

r=s=8(r-s)

(ab)” z (a —p)*?

E-ISSN: 2732-9941
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Theorem 2.11. For any numbers n € Z*, we have

NgE

(") 3m =20 (abydE] )2 mm,, 0, )

I3

=0
Mon (X, y)

NIE

n
m

I3

=0
Mont1(X,Y).

Proof. By using Binet’s formula, we have
Ba)™ - (38)™
a—p
= 3m(aby?) [ (ay)?™m,, (x, )

(ay)

from above equation and binomial expansion, we
get

> (%)3m 20 @byl @yem, )

m=0

Z () 2 man B f,)wn

m=0

_ aa_yﬂ (Z (::1) (3a)™(—2x)"™

m=0
> () (3ﬁ)m(—2x)”-m>

m=0

- _Ofay ) (Ba— 20" - (38 — 200"

—-B
_ay o2 n [32 n
“a25(a) (@)
_ay @ =-A*"
C(abyH"  a-p
= Myp(x,y)
similarly,
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> (%) 3m20m @byl @y e g, )

m=0

a@Ba)™ - BBA™
a—p

> () 20m ey

m=0

> () Gam=2nm T

m=0

-5 (") (3ﬁ)m<—2x)"-m>
m=0

__Y
_a—ﬁ a

_ (Cly) n __ _ n
= m((x(&x —2x)" = BBB —2x)™)

_ay az \" ﬂz n
-2 (<(a) # () )
ay (a,)Zn+1 _ (B)2n+1

" (aby?)n a—p
= m2n+1(xr )’)

4 Conclusion

The exploration of bivariate and biperiodic
Mersenne polynomials reveals deep connections
among their roots, coefficients, and unique
properties, contributing significantly to the current
understanding of these polynomials. When
compared to earlier studies, this work advances the
field by deriving the generating function, Binet
formula, and summation formulas, which offer fresh
perspectives and insights. The identification of links
to Catalan identities and the behavior of positive and
negative terms further strengthens the relevance and
impact of these findings. This research not only
adds to the theoretical framework of Mersenne
polynomials but also opens up new avenues for
future investigations.

Expanding this study to other number sequences and
exploring the relationships among them could yield
valuable insights, enhancing both the theoretical and
practical applications of these polynomials in
various mathematical domains.
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Appendix

| {
Marin  Mersenne (1588-1648)&" = observed
conjectured incorrectly that the numbers 2P~1,p a
prime, were prime for the numbers 2, 3, 5, 7, 13, 17,
19, 31, 67, 127, and 257 and were composite for all
other positive integers p < 257. However,
Mersenne overlooked the primes 26! —1,289 —
1,297 — 1. The correct list is
2,3,5,7,13,17,19,31,61,89, 107,127
for the Mersenne primes

M3q = 2311
3,7,31,127,8191,131071,524287,2147483647,
Mgy = 2671
147573952589676412927, and

Myp; = 2127-1,

170141183460469231731687303715884105727

Some studies on Mersenne numbers by Koshy and
Gao [11] have been on the investigation the
divisibility properties of these numbers into Catalan
numbers. Mersenne sequence has an important place
in number theory as it is also involved in computer
science because of Mersenne primes. In number
theory, Mersenne number of orders n is defined as
2™ — 1, where n is a non-negative integer. This
identity is defined as the Binet formula for the
Mersenne sequence.
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