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1 Introduction
One of the most significant computational
techniques is the Bernstein polynomial
method. The main strategy of this method
is to transform every problem term into
a matrix form. The fractional Bernstein
method is a generalization of the standard
Bernstein method in writing. Numerous
authors have used the Bernstein polynomial
method to solve significant problems in
applied mathematics and physics.; see, [1],
[2], [3]. Fractional integral equations have
received a lot of attention (FIDEs) for inten-
sity, physical system, [4], radio astronomy,
[5], and dynamical system, [6]. This paper
will investigate stability and error correction
procedures while solving a class of integral
differential equations using the Bernstein
polynomial method.
This paper examines a class of fractional
order integro-differential equations (FIDEs)
and discusses some of them.

yα(x) = y(x)+µ1

x∫
0

g(x, t)y(α)(t)dt+h(x)

(1)

under the initial condition

y(α)(ϵ) = yi. n− 1 < α ≤ n, n ∈ N.

(2)

2 Method of Solutions
To create the method, let us use the oper-
ational matrices of derivatives with applica-
tions. The objective is to approximate the so-
lution of the problem as the Bernstein series
solution, which can be accomplished by using
the operational matrix of differentiation.

y(x) = Bn(x)C (3)

C is the matrix of unknown coefficients. It is
possible to express the method solution and its
fractional derivative using similar arguments
as

y(x) = X(x)DTC. (4)

then

Dαy(x) = [DαX(x)]DTC, (5)

The same way. According to Ca-
puto’s definition, the relationship be-
tween the matrix X(x) and its deriva-
tive Dα[X(x)] can be presented as
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Dα[X(x)] =
[
0 Γ(2)

Γ(2−α)x
1−α Γ(3)

Γ(3−α)x
2−α · · · Γ(n+1)

Γ(n+1−α)x
n−α

]
.(6)

The relation (6) can be presented as

Dα[X(x)] = [1 x x2 . . . xn]



0 0 0 . . . 0

0 Γ(2)
Γ(2−α)x

−α 0 . . . 0

0 0 Γ(3)
Γ(3−α)x

−α . . . 0
...

...
... . . . ...

0 0 0 . . . Γ(n+1)
Γ(n+1−α)x

−α


(7)

from the matrix form (7) we have

Dα[X(x)] = X(x)ψ(x), (8)

Thus, we are able to write the relationship in
(5) as

y(α)(x) = X(x)ψ(x)DTC, (9)

For the part µ1
x∫
0

g(x, t)u(α)(t)dt using

formula, [7].

µ1

x∫
0

g(x, t)y(α)(t)dt = µ1Vxψ(x)DTC,

(10)
Substituting the relations in (9)
and (10) into Eq. (1) The signif-
icant matrix equation is derived.[
X(x)ψ(x)DT − X(x)DT − µ1Vxψ(x)DT]C = H(x).(11)

By substituting collocation points
{xi : 0 ≤ i ≤ n} into Eq. (11), the
matrix W(n+1)×(n+1) will be obtained.
Hence, the relation matrix in (11) become

[
XψDT − XDT − µ1V ψDT]C = H, (12)

it is able to formulate (12) as the basic matrix
form provided by

WC = H, (13)

where

W = XψDT − XDT − µ1V ψDT. (14)

Then

C = (W)−1H

The initial conditions can be written as corre-
sponding matrix forms as follow

X(δ)DTC = [yi], 0 ≤ δ ≤ R, i = 0, 1,

2.1 Stability analysis of method and
residual analysis

In this section, we will constitute the stability
estimation related to the linear systems see,
[8].
To construct the residual correction procedure
for the problem, LetRn be defined as follows.

Rn(x) := yαn(x)− yn(x)− µ1
x∫
0

g(x, t)y
(α)
n (t)dt.

Then, adding and subtracting the term
Rn from Eq. (1) gives the following problem
for the absolute error

eαn(x) = en(x)+µ1

x∫
0

g(x, t)e(α)n (t)dt+h(x)

(15)
where en = y − yn with the following initial
condition

e(α)n (δ) = 0. (16)

See, [8].

3 Results and discussion in
numbers

Example 1.
The fractional integro differential equation
will be examined, [9].

y(0.75)(x) + 1
5x

2exu(x)−
x∫
0

extu(t)dt = 6x2.25

Γ(3.25) (17)

The initial condition is

y(0) = 0.

The exact solution of this problem is

y(x) = x3.
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By applying the technique in Section 2, with n
= 3, the fundamental matrices for Eq. (17) are
obtained as

C=


z0
z1
z2
z3

 =


0

0

0

1

 , W =


−0.5205 −0.7962 −1.4405 1.3748

−0.6009 −0.7085 0.5194 1.2883

−1.7617 0.1926 0.7150 0.845

2.1568 1.0257 0.1671 0.0015

 , H =


2.1568

1.0257

0.1671

0.0015

 .

By applying all the matrices founded above
in relation (4):

y(x) = X(x)DTC. (18)

we have

y(x) = x3.

which is the exact solution.
Our method produced an exact solution,
whereas the methods used dealt with example
1 had been found to include errors (see, [9]).
In this case, using the method with different
values of n = 2, 4 caused a few errors in our
results. As a result, we improved our results
using an error correction procedure. (see Fig.
1) and stability tests to validate the stability of
the method. Table 1 shows the findings.

n = 2 n = 3 n = 4

cond(W ) 8.84 17 25.10

∥∆A∥ 0 0 1.15 × 10−16

∥A∥ 10−16 10−16 4.68 × 10−11

∥∆G∥ 10−16 10−16 10−16

∥G∥ 2.01 2.15 2.22

Upper Bound 1.54 × 10−15 6.30 × 10−15 1.64 × 10−14∥∥∥un − u
p
n

∥∥∥ 1.0 × 10−16 2.0 × 10−16 3.0 × 10−16

Table 1: Stability results of the system ob-
tained by present method for example 1.

Figure 1: Error correction procedure for ex-
ample 1, with n = 2 andm = 6.
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4 Conclusions
In this work, we suggest a numerical method
to solve a kind of fractional-order integro-
differential equations by using operational
matrices based on B-polynomials. To study
the stability results based on the techniques
and estimate the absolute error, we presented
the residual correction procedure for the meth-
ods. We also tested the effectiveness of the
suggested approaches in a few examples. The
numerical experiments show that theoretical
predictions and numerical results agree very
well.
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