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Abstract: - the digital redesign technique is one of the most popular approaches to the design of digital controllers in 
industries. Which converting a good-designed continuous time controller to a digital controller suitable for digital 
implementation. In this paper, the Plant-Input-Mapping algorithm (PIM) is used for converting the S-domain model of 
the PID controller to a Z-domain model counterpart. The proposed digital PID controller is used to enhance the damping 
of a single machine power system. The proposed method is based on a transfer function from the reference input to the 
plant input, which called continuous time plant input transfer function CT-PITF. All the poles of the transfer function 
that need to be controlled must appear in the CT-PITF. The results obtained from the proposed digital PID controller 
more convergence to the CT-PID controller especially for longer sampling period where Tustin's method is violated. 
The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into 
consideration. The computation algorithm is simple and can be implemented easily. The proposed digital PID controller 
is successfully applied to the linearized model of a single machine infinite bus system and the performances of the 
analog PID controller, Tustin's controller and the proposed digital PID controller are compared and their results are 
presented. 
 
Key-Words:- Dynamic stability, Digital redesign, Discretization, Plant-Input-Mapping, Discrete systems. 
 
1 Introduction 
There are many different approaches to designing 
discrete-time controllers for a continuous-time system in 
a feedback configuration. There are two digital design 
approaches for digital control systems [1]. The first 
approach, called the direct digital design approach, is to 
discretize the analog plant and then determine a digital 
controller for the discretized plant. The second approach, 
called the digital redesigns approach [2, 3], is to design a 
good analog controller for the analog plant and then carry 
out the digital redesign for the good designed analog 
controller. Many digital devices have been put into 
practical use in power system such as digital PID, digital 
PSS and digital AVR. The analog PID controller is 
widely used in power system to generate supplementary 
control signal for the excitation system in order to damp 
the low frequency oscillations.  

In the digital redesign technique, a good-designed 
continuous time controller is converted to a digital 
controller counterpart. It is based on an optimal matching 
of continuous-time closed loop step responses of both 
continuous-time and discretized systems. Different 
techniques are used to convert continuous systems into 
discrete systems. However, it is to be noted that 
continuous system can only be approximated and the 
discrete system can never be exactly equivalent. One of  

 
 

 
most popular digital redesign method is the bilinear 
transformation (Tustin’s) method [2]. This method is 
considered as local discretization and it produces 
satisfactory results when the sampling period is 
sufficiently low. 

In recent years, applications of discrete time 
controllers to power systems were reported in a number 
of publications [4, 5, 6, 7, 8, and 9]. It solved the 
transient stability problem addressed by analog 
controller, except that discrete time controller is just a 
matter of reprogramming a software program. [10]. 

In [5] the design of a discrete power system stabilizer 
PSS, which has been presented by linear approximation 
for single-machine infinite-bus system, was represented 
by nonlinear differential equations, the transfer function 
of the PSS was discretized using Tustin’s discretization 
method. The method in [6] analyzed the asymptotical 
stability of the digital controls of power systems with a 
special emphasis on the digital PSS. It treated the power 
systems as nonlinear hybrid dynamical systems so the 
power systems can be analyzed in a more exact way. In 
[4] a technique based on sampled-data control was 
proposed for optimal discretization of analog controllers 
while taking into account both closed-loop and inters 
ample behavior. In [7] a discrete fuzzy PID excitation 
controller utilizing the bilinear transforms (Tustin's) was 
implemented. This controller was developed by first 
designing discrete time linear PID control law and then 
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progressively driving the steps necessary to incorporate a 
fuzzy logic control mechanism into the modification of 
the PID structure. The method in [9] presented a digital 
redesign method for discretizing a continuous-time 
power system stabilizer PSS for a single machine power 
system using Plant-Input-Mapping PIM method. This 
technique guaranteed the stability for any sampling rate 
as well as it took closed-loop characteristics into 
consideration 

In this paper the Plant Input-Mapping (PIM) is applied 
to redesign an analog PID controller. This analog PID 
must have good performances controller. Our goal in this 
paper is to develop a high performance digital PID 
controller for single machine power system that takes 
into consideration the closed loop performance, which 
cannot be attained when using the traditional digital 
redesign method. The PIM method is a discretization 
scheme that can guarantee the stability for virtually any 
sampling rates (non-pathological sampling rates) and that 
has good performances even for large sampling intervals 
[1, 3, 11, 12].  

Overall, the PIM method paved the way to the digital 
re-design of a general analog controller with guaranteed 
stability and continuous-time performance recovery. 
Such generality and stability are not available by any 
other methods. On the other hand the major disadvantage 
of this algorithm is depending on plant model. This 
design technique provides the designer a useful 
alternative to existing digital re-design methods as well 
as to possibly a wide class of direct digital design 
methods including the model reference control as 
explained in this research.  

This article is organized as follows. In section (2), 
describes the system configuration that consists of two 
subsections, which are driving a power system model 
and explains the continuous time proportional, integral 
and derivative controller (PID Controller) model. Section 
(3), describes the standard PIM digital redesign method 
is considered. The discretization of PID controller by 
using Tustin’s method describes in section (4). The 
application of the PIM method to a single-machine 
power system is considered in section (5). Section (6) 
analysis the simulation results. Finally the conclusions 
are given in section (7). 

 
2 The System Configuration 
 
2.1 Power system model 

Fig. 1 shows Schematic of the studied system, which a 
single machine infinite bus (SMIB) power system is 
considered. The SMIB system, called the plant which 
consists of a synchronous generator connected through 
transmission line to a very large power network 
approximated by an infinite bus. The synchronous 
generator is driven by a turbine with a governor and 
excited by an external excitation system. The excitation 

system is controlled by an automatic voltage regulator 
(AVR) and a PID controller. The power system 
considered in this study is the fourth  order linearized 
one-machine and infinite bus system [13]. 

Fig. 1 Schematic of a single-machine infinite-bus (SMIB) 
power system. 

Fig. 2 shows a block diagram of transfer functions 
describing the different subsystems of the one machine 
infinite bus power system. The different subsystems 
blocks are given as [9]; 
A. Excitation system 

E

E

sT
K
1

                                  (1) 

where EK  is the gain of exciter and ET  is time 
constant of exciter. 
B. Field flux decay 

03

3

1 dTsK
K


                                 (2) 

 
where 0dT   is the d-axis transient open circuit time 
constant. 
C. Machine mechanical dynamics loop: 

dKHs 2
1

                                 (3) 

where H is the inertia constant and dK  is damping 
coefficient. 
 Parameters K1……….K6 are the constant of linearized 
model of synchronous machine. From the block diagram 
shown in Fig. 2, and using Eqs. (1,2 and3) the following 
fourth order linearized one machine infinite bus system 
can be derived as described in [9,13]. The equations 
which describe the system are (Eqs: 4:7):- 
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The following fourth order linearized model of a one 

machine with infinite bus system can be given in state 

variable form as follows 

DUCXY
BUAXX






                            (8) 
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The state variables comprise the generator are speed 

deviation  , rotor angle deviation  , transient 

internal voltage deviation qE  and field voltage 

deviation fdE . The deviation of the angular velocity 

  is assumed to be measured as the output of the 

system. The constants of the generation system and 

connected power system used for study are given in 

appendix I [9, 13]. The damping coefficient dK is 

included in the swing equation. The eigenvalues of the 

matrix A should lie in LHP in the S-plane for the system 

to be stable. It is to be noted that the elements of matrix 

A are depended on the operating condition. The values of 

K1 : K6 in the matrix A are to be calculated according to 

the operating conditions of the generation system and 

connected power System [13]. Details of these constants 

are given in appendix II. 

Using the data given above, the transfer function of the 

power system )(sG given by Fig. 2 and the state space 

equations given by Eq. 8 can be calculated using the 

MATLAB function SS2TF in the signal processing 

toolbox and are given by: 

28765252.14767.20
33.12181.2108.0

)(
)(

)(
234

23





ssss

sss
sU
sY

sG    (9) 

The power system transfer function )(sG poles and zero 

is given in Table (1) 

Table (1) power system transfer function poles and zeros 
 

poles zeros 

3.692610.2216- j  3.484210.0990- j  

4.93340.1150- j  0.0 

 
2.2 Continuous time PID controller model 
 
The PID controller is simple and easy to implement. It is 

widely applied in industry to solve various control 

problems. PID controllers have been used for decades. 

During this time, many modifications have been 

presented in the literature [14, 15]. Then the transfer 

function of the modified continuous time PID controller 
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[16] is given by 

1
1)(




s
sK

s
KKsPID DIP 

             (10) 

where PK  is the proportional gain, IK is the integral 

gain, DK  is the derivative gain and the term 






1
1

s
acts 

as an effective low-pass filter on the D regulator to 

attenuate noise in the derivative block. The individual 

effects of these three terms on the closed-loop 

performance are summarized in [16]. PID controller 

parameters are determined from the Matlab tuning given 

by 

5.15pK , 0.5IK , 0115.0DK , 01.0  
where the speed deviation ∆ω is the input to the PID 
controller, and the filter is used to remove the controller 
effect at steady state conditions. Utilizing the parameter 
of the PID controller, the transfer function of the PID 
controller given can be calculated as; 
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555.151665.0)(   (11) 

 
3 PIM Digital Redesign Method 

Fig. 3 shows a SISO system which consists of plant 
with a transfer function )(sG and three analog 
controllers with rational, proper transfer 
functions )(sA , )(sB  and )s(C [16, 17]. 

 

Fig. 3 Continuous-time control system. 

The continuous-time plant is linear, time-invariant, and 
strictly proper, and is denoted as 

)(
)()(

sd
snsG

G

G                                                               (12) 

The plant transfer function )(sG is now discretized using 
the step invariant-model (SIM), which is a combination 
of the zero-order-hold (ZOH), the plant and the sampler 

as shown in Fig. 4 
 

 
 

Fig. 4 Step invariant model (SIM) of the plant 

 
Let the step-invariant model of this plant be expressed as 
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where mn G  )]([   , nd G  )]([  , and   
denotes the degree of its argument. The plant is 
expressed in Euler operator [18], which is defined as 

T
z 1

                                                                     (14) 

Where z is the usual zee operator and T is the sampling 
interval. The Euler operator is used here for better 
numerical properties in digital control implementation 
and ease of relating discrete-time results to continuous –
time counterparts [12].  
Assume that the analog control system is internally 
stable, satisfies all the design specifications, and is 
realized with proper transfer functions, which given as; 
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sd
snsA

A

A ,  
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)()(

sd
snsB

B

B , 
)(
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)(
sd
snsC

C

C       (15) 

In the PIM method, both the closed-loop characteristics 
and plant information are used in the discretization 
process in the name of the Plant-Input-Transfer Function 
(PITF). The PITF is the transfer function from the 
reference input to the plant input and is given by 

 
)()()(1

)()(
)(
)()(

sGsCsB
sCsA

sr
susM


                         (16) 

The PITF is discretized in the standard PIM method. This 
is carried out using the Matched-pole-zero (MPZ) 
method [19] and the resulting discrete time model 
becomes the target PITF. 
The target discrete-time PITF can be expressed as 

)(
)()())(()(


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
M

GM

d
dnsMMPZM                       (17) 

It is found that the denominator of the SIM of the plant 
appears in the numerator of DT-PITF. Choosing the 
discrete-time controller blocks [12] as; 

)(
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
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)()(




 B ,
)(
)()(



 C              (18) 

Once this discrete-time PITF is obtained, this must be 
realized in closed-loop configuration, such as one shown 
in Fig. 5.  

ZOH )s(G  Sampler )(u   )(y   
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Fig. 5 Discrete-time control system redesigned using the PIM 
method. 

And )( is an arbitrary stable polynomial of appropriate 
degree [1, 16]. The actual PITF of this control system is 
given by 
 

)()()()(
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dn
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The polynomial )(Gn and )(Gd are known from of 
the plant (see Eq. 13). By equating the target and the 
actual PITF, it can be seen that the polynomial 

)(m must be in the numerator of polynomial )(Mn , 
whereas )( and )( must be determined by solving 
the following Diophantine equation: 
 

)()()()()(  MGG dnd                  (20) 
If the order of denominator of )(M  is P, where P≥2n 
-1, and n is the order of denominator of the plant )(sG , 
which is not satisfied. The uniqueness of the solution of 
Eq. 20 is not assured. As in the case, a stable polynomial 

)(  of order q must be multiplied in the numerator 
and denominator of the target PITF )(M  to guarantee 
the solution of Eq. 21 [20].  

q

T
)

2
1()(    , where q≥2n-1-p                (21) 

The Diophantine equation after modification becomes; 
)(d)()(n)()(d)( MGG           (22)                        

Equation (21) can be solved to find the unknown terms 
)( and )( using for instance Eliminant matrix and a 

state space formulation [1]. Fig. 6 shows the three 
controller block of the PIM model. 
 

 
 

Fig. 6 PIM design method for a plant. 

The PIM design guarantees the internal stability for any 
nonpathological sampling interval and that the 
performance of the resulting control system approaches 
that of the analog control system as T→0. 
 
4 Discretization of PID controller by 

using (Tustin’s Method) 
Discretization of PID controllers by using bilinear 
method (Tustin’s method) is investigated [21]. By 
replacing each S-domain in analog controllers to 
Z-domain, according to this relation.  
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Then, the transfer function of a digital PID controller 
(Tustin’s method) is 
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From Eq. 11, then; 1665.02 a , 55.151 a , 50 a , 

01.02 b , 11 b , 00 b .and the sampling interval 

selected according to the sampling theorem which defined 

as the sampling frequency should be at least twice the 

highest frequency contained in the signal [22]. Then the 

sampling time for digital control is 0.2sec selecting by 

sampling theory [22], then the transfer function of a 

digital PID controller is 

09.002.011.0
339.1233.0772.1)( 2

2





zz
zzzPID            (25) 

 
After design of discrete-time PID controllers for 
discrete-time control systems by using traditional method 
(Tustin’s method) compare it with design of 
discrete-time control system by using the proposed 
method (PIM) which presented in the next section.    
 
5 Application of PIM Digital Redesign 

Method to Power System Model 
To apply the design technique presented in section 3, the 

transfer function )(sG for the power system given by Eq. 

9 and the transfer function for the PID controller given by 

Eq. 11 are used in the design Procedure with the blocks 
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)( sA and )(sC  equal to one as shown in Fig. 3 [16]. 

Simulations responses of the power system based on the 

linear model given by state space representation are 

presented. The power system is subject to a step change in 

the mechanical torque denoted by mP . The signal to be 

controlled is the rotor speed denoted by Δω. The analog 

PID is placed on the block )(sB of Fig. 3 of the three 

block controllers PIM digital redesign method [9]. For 

comparison, results of the analog PID and the digital PID 

obtained by the bilinear transformation (Tustin’s method) 

are investigated [21]. The CT-PITF is found to be 

)68.24851.1)(6.119625.20)(53.99(
)36.242305.0)(118435.20)(100()( 22

22





sssss

ssssssM  (26) 

It is clear that all power system poles and PID controller 

poles are appearing in the numerator of the CT-PITF. The 

CT-PITF poles and zero are given in Table (3). 

Table (3) CT-PITF poles and zero 
 

poles zeros 
3.6492 10.3104- j  3.7010.22- j  
4.8807 0.9253- j  4.93 0.120- j  

-99.5287 -100.0 
 
The SIM model of the power system is given by 

)93.21611.4)(63.200435.9(
)25.20963.8(087558.0)( 22

2








G

     (27) 
The SIM of the power system contains poles and zeros are 
given in Table (4) 
 
Table (4) SIM poles and zeros 

 
poles zeros 

4.0762  2.3054- j 0.4101 4.4817- j 
0.4358 4.5213- j -0.0000 

 
The MPZ model of the ZOH type with its DC gain 
adjusted is used for discretizing the CT-PITF and is given 
as 

)99.18344.5)(66.20052.9)(5(
)93.21612.4)(63.200425.9)(5(84888.0)( 22

22







M

                                                        (28) 

The DT-PITF (Case of PIM PID) contains poles and zeros 

are given in Table (5) 

Table (5) DT-PITF poles and zeros 
 

poles zeros 
3.44202.6721- j  0.43694.5212- j  
0.042404.5260- j  4.07632.3060- j  

-5.0000 -5.0000 
 
The sampling interval selected for digital control is 0.2 
sec, (any sampling interval T>0 is nonpathological), 
which is reasonable compared with the dynamic of the 
system. The condition P≥2n -1, where P is the order of 
denominator of )(M and n is the order of denominator 
of the plant )( sG  is required to assure uniqueness for 
solving the Diophantine equation Eq. 20, but in this 
study of PID controller the condition (P≥2n -1) is not 
satisfied, then the uniqueness of the solution of Eq. 20 is 
not assured. To account for this, C. A. Rabbath [20] 
proposed a modification of Diophantine equation to 
solve for this problem, a stable polynomial )(  of 
order q must be multiplied in the numerator and 
denominator of the target PITF )(M  to guarantee the 
solution of Eq. 20. According to Eq. 21 the polynomial 

)( is selected as 

3)
2
1()(
T

                                  (29) 

The polynomial )(m  is obtained from the numerator of 

)(M  which is defined 

2452.484898.0)(  m                 (30) 

It is clear that the numerator of )(M  includes the 

poles of the SIM of the power system and the 

polynomial )(m . The modified Diophantine equation in 

Eq. 22 can be solving by the Eliminant matrix method. 

Using the numerator and denominator of the SIM of 

power system the Eliminate matrix E can be constructed 

as follows: 
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0.78481.77340.0000-084.2565293.4392452.47070
0.08760.78481.77340.0000-13.653484.2565293.4392452.4707

00.08760.78481.77341.000013.653484.2565293.4392
000.08760.784801.000013.653484.2565
0000.0876001.000013.6534
00000001.0000

E
 

 
 (31) 

Solving the modified Diophantine equation (Eq. 22) with 
the aid of the Eliminate matrix given by Eq. (31), the 
polynomial )( and )( are obtained as follows; 
 

0993.273496.297309.9000.1)( 23    (32) 

  (33) 

To relate a discrete-time system to continuous time 
counterpart, the following operator is used 

T
1z 

                                      

(34) 
Where T is the sampling interval and z is the usual shift 
operator. The three controller blocks, )( zA , )( zC and 

)(zB  are calculated using the results obtained above by 
taking A(z) as a unity then C (z) and B (z) are; 

6  Simulation Results 
The test system has been modeled through Matlab 
programming. Fig. 7 to fig. 10 show simulations results 
of the proposed digital redesign technique PIM method 
by using the control sampling rates of 5Hz, 4Hz, 2.5Hz, 
and 2Hz, respectively. It is noticed that the PIM 
controllers is stable for any sampling rates and closely 
match those of the continuous-time PID controller. On 
other hand, it is found that Tustin’s method is violated 
when sampling interval becomes large. 
As shown in Fig. 7 the responses of  Tustin’s and PIM 
of  PID controller  produces  a smaller overshoot than 
analog controller while the performance of  Tustin’s 
and PIM of  PID controller  converge to the analog 
case at the control sampling rate of 5Hz. At the 4Hz 
control sampling rate, the overshoot of the Tustin’s and 
PIM of PID controller become larger than the 
corresponding case of 5Hz, though they are acceptable. 

Their plant inputs are still close to that of the analog 
controller as shown in Fig. 8. When the sampling rate 
becomes slow as shown in Fig. 9 the Tustin’s response 
oscillates violently and is not satisfactory while the PIM 
of PID controller produces a different transient response 
from analog one and it has a small overshoot, it settles in 
5sec at the same time as the analogue one with no steady 
state error and almost no oscillation at the 2.5Hz 
sampling rate. At the 2Hz control sampling rate, the 
Tustin’s case oscillates to such an extent that it is not 
acceptable and doesn’t settle even after 10 sec. Although 
the PIM of PID yields transient responses that are 
different from analog case, their performance is very 
good as shown in Fig.10. 

 
Fig. 7 Dynamic responses to step change in the mechanical 

torque (sampling interval 0.2 s) of PID controller. 

Fig. 8 Dynamic responses to step change in the mechanical 
torque (sampling interval 0.25 s) of PID controller. 

 

01101.02816.0054.1
125.075.05.1)( 23

23





zzz

zzzzB       (35) 

 

125.075.05.1
5761.0425.507.1756.11)( 23

23





zzz

zzzzC    (36) 

 

3896.9679518.6256006.2421742.18)( 23  
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Fig. 9 Dynamic responses to step change in the mechanical 

torque (sampling interval 0.4 s) of PID controller. 

 
Fig. 10 Dynamic responses to step change in the 

mechanical torque (sampling interval 0.5 s) of PID controller. 
 
7 Conclusion 
The presented technique in this study guarantees the 
stability for any sampling rate as well as it takes closed-
loop characteristics into consideration and that has good 
performances even for large sampling intervals, unlike 
the popular conventional such as Tustin’s method of 
discretization. On the other hand the major disadvantage 
of the presented technique is depending on plant model. 
The proposed digital PID controller is applied to a single 
machine infinite power system for stability enhancement. 
Design PIM-PID controller require to design of the three 
discrete-time controllers )(ZA , )(ZB , )(ZC which 
depend on solution of  the Diophantine equation, the 
condition  P≥2n -1, where P is the order of denominator 
of )(M and n is the order of denominator of the plant 

)( sG  must be satisfied assure uniqueness of the solution 
of  this equation, but in this study of PID controller the 
condition ( P≥2n -1) is not satisfied, then the uniqueness 
of the solution of this equation is not assured. To account 
for this, C. A. Rabbath [20] proposed a modification of 
Diophantine equation to solve for this problem. It 

enables us to solve the problem and design the three 
discrete-time controller. A comparison study of the 
proposed digital PID controller is carried out with 
conventional continuous-time PID controller and 
Tustin’s PID controller. The results observed by 
simulations showed that the proposed digital PID 
controller converge to the CT-PID controller especially 
for longer sampling period where Tustin's method is 
violated. 
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APPENDIX I 

I.1 Generator parameters:  
H=4.63, dK =4.4, '

0dT =7.67, B =377.0, Xd=0.973 pu,    
'
dx =0.19 pu,  Xq=0.55 pu 

I.2 Exciter parameters: 
Ke=50.0, Te=0.05.  
I.3 The K’s:  
K1=0.5758, K2=0.9738, K3=0.6584, K4=0.5266, 
K5=-0.0494,   K6=0.8450.  
I.4 Transmission line:  
Re=0.0, Xe=0.997 pu. 
I.5 Operating point: 
Qe0=0.015 pu, Vt0=1.05 pu, Pe0=0.75 pu. 
 

 
APPENDIX II 

The constants K1 : K6 are evaluated with transmission line 
resistance re=0 and are given as follows: 
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