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Abstract: Hybrid electric vehicles (HEV) have great potential to reduce emissions and improve fuel economy. 

The application of artificial intelligence-based control algorithms for controlling the electric motor speed and 

torque yields excellent fuel economy by reducing the losses drastically. In this paper, a novel strategy to 

improve the performance of an electric motor-like control system for Permanent Magnet Synchronous Motor 

(PMSM) with the help of a sensorless vector control method where a trained reinforcement learning agent is 

used and provides accurate signals which will be added to the control signals. Control Signals referred to here 

are direct and quadrature voltage signals with reference quadrature current signals. The types of reinforcement 

learning used are the Deep Deterministic Policy Gradient (DDPG) and Deep Q Network (DQN) agents. 

Integration and implementation of these control systems are presented, and results are published in this paper. 

The advantages of the proposed method over the conventional vector control strategy are validated by 

numerical simulation results. 
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1 Introduction 
Hybrid electric vehicles have come into vogue due 

to the limitations of the total IC engine vehicles and 

fully electric vehicles. Even today, most of the 

vehicles in India are powered by internal 

combustion (IC) engines using petrol or diesel fuel 

for commercial and long travel purposes, [1]. The 

engine power capacity used in these vehicles caters 

to the power required for maximum speed. In 

hybrid electric vehicles, Permanent Magnet 

Synchronous Motor (PMSM) plays a vital role due 

to its compact size, lower torque ripple, 

comfortable cooling technique, high ratio of torque 

to volume, and efficiency in HEV and EV vehicles. 

However, many motor control algorithms have 

been developed for PMSM motors in the past 

including classic PID control, adaptive control, 

predictive control, robust control, fuzzy and neuro-

fuzzy, artificial neural networks, and advanced 

intelligent control algorithms. The reinforcement 

Learning  

algorithm which is one of the most important 

Machine learning algorithms that contribute to the 

development of intelligent control systems is used 

for PMSM control have been utilized in HEVs, [2], 

[3], [4], [5], [9], [10]. Reinforcement learning is 

characterized by the fact that the accurate 

mathematical model of the motor does not need to 

be given as input. In this paper, the mathematical 

model of the PMSM is considered by assuming the 

set of simplifications of the parameters in line with 

the classical control algorithms. Signals 

representing the state of the system are given as 

actions to the motor with the involvement of 

reward optimization. A reward is also consisting of 

characteristics of signals which are added as a 

driven process into the control strategy.  
In this research, adaptive sensorless stator 

field-oriented control (SFOC) technique for PMSM 

motor with deep reinforcement learning agent for 

creation, training, and testing have been analyzed 

and discussed the same with results in this paper. 

Deep reinforcement learning (DRL) proposed also 

contributes towards improving and contributes 

towards the improvement of the performance of the 

PMSM control system. DDPG and DQN agents are 

used in the proposed deep reinforcement algorithm 

and an improved variant of this algorithm called the 

Twin-Delayed Deep Deterministic Policy Gradient 

(TD3) agent is mainly used for the presented SFOC 
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control system. TD3 algorithm is an effective 

algorithm with an optimized process for precise 

estimation of parameters. The advantages of the 

PMSM control system using deep reinforcement 

learning are analysed with the help of real-time 

data in the Matlab/Simulink platform, [6], [7], [8], 

[9]. The main contributions presented in this paper 

are (i) Proposed Deep Reinforcement Learning, (ii) 

Methods of optimizing the control signals for the 

PMSM based on the SFOC control technique with 

the different deep reinforcement learning agents 

(iii) the Behaviour of proposed PMSM motor 

control strategy in hybrid electric vehicle and (iv) 

Analysis of real-time results. The results of real-

time simulations are presented in this paper and the 

conclusion and ideas for further approaches have 

also been presented. 

 

 

2 Deep Reinforcement Learning 

Algorithm 
A deep reinforcement learning algorithm is mainly 

used for a system where only a minimum of 

information is available. DRL algorithm is applied 

to closed-loop control of motors to execute the 

tasks without explicitly using complex 

programming. The learning process in the DRL 

algorithm is based on the set of decisions made 

which will be helpful to extend the cumulative 

reward. In this algorithm, the deep deterministic 

policy gradient is used in which an off-policy 

reinforcement learning method is deployed and it is 

highly suitable for HEVs. This gradient is a model-

free, online, and flexible one. DDPG is an actor-

critic agent that computes an optimal policy and 

maximizes the long-term reward. DDPG agent is 

highly suitable for HEV application. Figure 1 

shows the generic schematic of the deep 

reinforcement learning algorithm where 

observation and reward are the input signals to the 

policy update, [9], [10], [11], [12]. 

 

 
Fig. 1: Block diagram of Deep Reinforcement 

Learning Algorithm 

 

The environment gets the action from policy and 

gives the observation which consists of a set of 

predefined signals deriving the process, and the 

reward is the output of the environment and 

represents the success rate. The action is 

represented by the control variables of the closed-

loop control system. Observations represent signals 

visible to the agent and they are found in the form 

of measured signals, their rates of change, and 

associated errors. Usually, the reward is created as 

part of the continuous actions in the form of a sum, 

the square of the error of the signals of the present, 

and the square of the past actions. Weight bias is 

given to these terms and the same is determined by 

the problem statement. In motor control, the reward 

is expressed as a function to reduce the steady-state 

error. The policy is a component of an agent that 

implements the learning algorithm and it represents 

the way of actions associated with the observations 

it is described by a function with configurable 

parameters. In the case of a motor control 

application, the policy is the same as the operating 

mode of the control system. The optimal policy is 

determined by the configured learning algorithm 

with the help of continuous functional parameter 

configuration. These parameters are associated with 

the policy depending on cumulative reward 

maximization. The environment consists of 

physical devices, reference & actual signals and 

steady-state errors, filters, disturbances, 

measurement noise, and A/D and D/A converters, 

[9],[10].  

Important steps of the RL Programming are:  

(i)     Problem Identification – Learning 

agents and policy are defined and the 

process integration is initiated  

(ii)   Creation of Process model as the 

environment – Dynamic model of physical 
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systems and the interface between the 

subsystems to be defined 

(iii)  Creation of rewards in DRL – Reward 

in the form of mathematical equations has 

been defined to measure the output of the 

task assigned  

(iv)  To train the agent – Training of the 

agent is to be done to accomplish a policy 

as per reward, algorithm and the process 

followed. 

(v)    Policy deployment – Integration of 

agent and control system of HEV. In this 

step, auto code generation is playing an 

important role where executable code with 

reference to the target embedded platform 

is generated from the Simulink models. 

DDPG is usually an agent used in the 

continuous system and TD3 is a subvariant 

reagent from DDPG considered for 

simulation in this research work. It is an 

actor-critical agent meant for long-term 

reward maximization, [9].  

 

The improved variant of the DDPG agent is a 

continuous system and is used in this research 

work. This agent calculates the long-term 

maximization award. Training considered in this 

work has the following phases: 

(i) For the observation, the present state is S 

and the action is “, where, N is the 

stochastic noise level. 

(ii) After the execution of A, rewards R and S’ 

are calculated. S’ is the next state 

observation 

(iii) The experience formulated as (S, A, R, S’) 

and which is stored in the next step 

(iv) “(Si, Ai, Ri, Si’)” are randomly generated, 

[9] 

(v)  

𝒚𝒊 =  𝑹𝒊 + 𝜹. 𝐦𝐢𝐧 (𝑸′
𝒌(𝑺′

𝒌, 𝒄𝒍𝒊𝒑(𝝁
′(𝑺′

𝒌|𝜽𝝁)

+ (𝜺)|𝜽𝑸′𝒌)) 

                                                                    (1) 

 

The main target value function given in equation 

(1) is as below: 

 Sum of experience reward (Ri) and the 

minimum discounted feature reward 

 

 

3 Optimization of SFOC Control 

Strategy for PMSM with Deep 

Reinforcement Learning 
SFOC is an efficient method of controlling the 

PMSM motor and is effectively integrated with a 

deep reinforcement learning algorithm.  

The following equations represent the dynamics of 

PMSM: 
𝒅𝒊𝒅

𝒅𝒕
= −

𝑹𝒔

𝑳𝒔
𝒊𝒅 +

𝑳𝒒

𝑳𝒅
𝒏𝒑𝝎𝒊𝒒 +

𝟏

𝑳𝒅
𝒗𝒅            (2)                                

𝒅𝒊𝒒

𝒅𝒕
= −

𝑹𝒔

𝑳𝒔
𝒊𝒒 +

𝑳𝒅

𝑳𝒒
𝒏𝒑𝝎𝒊𝒅 −

𝝀𝟎

𝑳𝒒
𝒏𝒑𝝎 +

𝟏

𝑳𝒒
𝒗𝒒     

                                                                  (3)                           
𝒅𝝎

𝒅𝒕
=

𝟑

𝟐

𝒏𝒑

𝑱
(𝝀𝟎𝒊𝒒 + (𝑳𝒅 − 𝑳𝒒)𝒊𝒅𝒊𝒒) - 1/J TL-B/J ω                                                        

(4) 

  

The above equations represent the dynamics of 

PMSM in the ‘d-q’ reference frame. Field-oriented 

control of the PMSM motor along with the deep 

learning algorithm is shown in Figure 2. DRL with 

TD3 agent learns the behaviour of the PMSM 

control system as given in Figure 2 is analysed in 

this paper. It provides the reference signals as the 

three control inputs to the cascade control system 

(iqref, vdref, vqref) after the training phase, so that the 

improved control system will have better 

performance. These three control signals are 

reference quadrature current, reference direct 

voltage, and reference quadrature voltage 

respectively. 

TD3 agent is trained with 300 episodes for 

PMSM control and the number of steps per episode 

is 100. The sampling time taken for every agent is 

10-4s. The training phase for the agent gets stopped 

when the cumulative average reward is greater than 

-150 for 100 consecutive episodes or after 300 

episodes initially set training episodes have 

elapsed. During the simulation, learning needs to be 

improved to get the best training and for this 

purpose, Gaussian noise intersects the signals 

received and the same is transmitted by the agent. 
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Fig. 2: Block diagram of HEV with DRL Algorithm 

 

 4 Deep Reinforcement Learning with 

Inner Current Control Loop 
The inner loop is working based on the current 

control operation with the TD3 agent as shown in 

Figure 2. Once the learning is done, the TD3 agent 

will provide the command/reference signals for the 

voltage control signals vd and vq. Figure 3 shows 

the Simulink implementation of the proposed deep 

reinforcement learning for both the inner current 

control loop (Torque Control) and outer voltage 

control loop (Speed Control). In the inner current 

control loop, the observation signals are id, iq, iderror, 

and iqerror. To start with, the deep neural network is 

created with two inputs and one output. The total 

training time for this case is 7:12:5. 

 

5 Deep Reinforcement Learning with 

outer Speed control loop 
Figure 3 shows the Matlab/Simulink 

implementation diagram of PMSM control for 

outer-loop speed/voltage control using a 

TD3 agent. In this case, the 

command/reference signal from the TD3 

agent is added to the control signal iqref. 

The observations consist of the signals and error 

signals such as ω, ωerror, id, iq, iderror, and iqerror. In this 

phase, the total training time taken is 2:54:45. 

 

 

Fig. 3: PMSM Motor Control with outer Speed loop 
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In Figure 3, the speed controller and current 

controller are cascaded in which the current 

controller feeds the speed feedback to the speed 

controller to derive the PWM pulses (uniform duty 

cycle). Motor torque is estimated from stator 

current components like id and iq and these 

components are to be compared with the desired 

components such as id
* and iq 

* respectively.  Figure 

4 shows the Rewards r1,r2,r3, and r4 during the 

deep learning training process, and episode rewards 

are shown in Figure 5. Episode number 

information, average results, training options, and 

final results are shown in Figure 5. 

 

  

Fig. 4: Rewards during the training of DRL 

 

 
Fig. 5:  DRL Training Progress 

 

  

6 Results and Analysis 
TD3 approximates reward from the environment 

for Idref and Iqref was taken from the PI controller 

model and actions such as actual Id and Iq using the 

representations such as speed and torque values of 

the closed-loop control system. Agent TD3 tunes 

the feedback current and voltage values delivered 

from FOC which would influence the given 

reference current values using the actor 

representation. Both DDPG and its agent TD3 are 

using the same structure in the proposed Simulink 

model. The DDPG agent maximizes the Q value 

and the actor-network network is used to estimate 

the action such as feedback values of current and 

voltage. Since the TD3 uses the value of Q to 

update the policy and the resulting policy may be 

suboptimal and accumulating training errors may 

lead to different behavior. The TD3 algorithm is an 

extension of DDPG with improvements that make 

it more robust by preventing over-estimation of Q 

values, [13]. 

Figure 6 shows the proposed HEV with 

PMSM control based on the DRL algorithm. The 

main contribution of the DRL algorithm is to 

optimize the control loop of PMSM in HEV to 

achieve the energy management cycle. Inputs to 

DRL blocks are actual Id and Iq, the reference value 

of Id and Iq, and actual speed with reference speed. 

Action from the DRL algorithm is the voltage 

which has the components such as direct and 

quadrature values. So, based on the training process 

proposed in this paper, learning takes place, and 

action is generated.  

Figure 7 shows the speed tracking of the 

PMSM motor in HEV where the actual speed of the 

motor is following the reference and met the target 

value. The target value of PMSM speed is set to 

600 rpm and the actual speed attains the set value 

by the combination of the TD3 agent and SFOC 

algorithm. Figure 8 shows the current waveforms 

such as id & idref and iq and iqref. Both the id and iq 

values are tracking the reference respective values 

and placing 90o apart. 
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Fig. 6: Simulink Diagram of Proposed DRL-based PMSM for HEV 

 

 

  

Fig. 7: Speed of PMSM 

 

Figure 9 shows the voltage profile Vd and Vq with 

DRL learning and these components are also 

following their respective values closely and 90o 

phase apart. Figure 10 shows the logic analyzer 

which shows the digital and analog signals for the 

input and output characteristics of the proposed 

HEV control system. From this figure, it is 

observed that analog and digital signals with 

reference to the sampling time, time offset, time 

span values are well within the limit as per the 

given speed control system parameters. 

 

 
Fig. 8: Current Control 

 

 
Fig. 9: Voltage profile 
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Fig. 10: Logic Analyzer 

 

Figure 11 shows the output results with reference to 

the performance of hybrid electric vehicles. The 

following waveforms are captured from the HEV 

scope: 

(i) Drive cycle (mph) 

(ii) Engine and Motor Speed 

Comparison (RPM) 

(iii) Engine and Motor Torque 

Comparison (Nm) 

(iv) Battery Current (A) 

(v) Battery State of Charge (%) 

(vi) Fuel Consumption (g/kWh) 

 

Vehicle velocity varies from 0 to 60 mph as the 

drive cycle and engine speed is in line with the 

drive cycle profile. Motor speed is also tried to 

follow the driving schedule as shown in the figure. 

Engine speed and motor speed vary from 0 to 3500 

rpm whereas torque delivered from the motor and 

engine varies from 0 to 200 Nm. In most cases, the 

engine and motor are dividing the power delivered 

by contributing the torque. From the battery current 

waveform, it is understood that currently varies 

from -50A to +50A as per the drive schedule and 

torque profile of HEV, and hence based on the 

DRL control mechanism of the motor battery 

current is also tuned to minimize the losses and 

hence it is proven that the solution presented in this 

paper is energy efficient one by using a deep 

learning algorithm. In Figure 11, the battery state of 

charge is also shown and it is evident that charging 

is controlled within the band of 70%. Fuel 

consumption is also controlled and 40% of fuel 

saving is proven from the result. 

 
Fig. 11: HEV Vehicle Parameters 

 

Hence benefits of the proposed algorithm with a 

speed control of the PMSM motor are given below: 

(i) Motor and engine speed profiles are 

inline with the HEV speed profile 

(ii) Steady-state error of the control system 

is less than 1% and the efficiency of 

the control accuracy is more than 

99.5% 

(iii) Percentage of Fuel saving is improved 

by 40% 

(iv) Accuracy of estimation of the state of 

charge (SoC) and state of health (SoH) 

are improved by 99.9% 

(v) High torque-to-speed ratio 

(vi) Very high torque/volume ratio 

 

 

7 Conclusions 
In this paper, the SFOC-type control structure for 

the PMSM for HEV energy management is 

presented which shows improved performance 

using the deep reinforcement learning 

algorithm. Comparison results are thus presented 

for a case where a deep reinforcement learning 

agent is properly trained to provide the reference/ 

command signals that are added to actual control 

signals vd, vq, and iqref. The main objective of this 

research work is to improve the performance of the 

HEV by incorporating the novel control technique 
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of the PMSM motor in order to save the energy that 

is monitored by an energy management system.  

 Numerical simulations were used to 

demonstrate the superiority of control systems 

using deep reinforcement learning and subsequent 

work exploring optimization possibilities 

associated with implementing deep reinforcement 

learning on PMSM controllers for HEVs. Proposed 

algorithm is proven successful in Matlab/Simulink 

platform but has not yet been implemented in real-

time passenger vehicles and that needs to be done 

in a real-time vehicle to show the performance of 

upcoming versions. Moreover, the suggested 

algorithm may also be suggested for core electric 

vehicles (EV) and to suggest the rugged energy 

management system. 
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