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Abstract: - This paper presents the research of analytical functions related to the energy generation of 
photovoltaic systems and the residential and commercial load demanded by end users, concerning a statistical 
function. To test this model, a linear cost function was considered to compute its overestimation and 
underestimation due to its maximum and minimum production limits, where energy consumption is obtained at 
each instant of time, within the established production ranges, through the analytical equations that determine 
solar energy generation and demand load. The result obtained by applying the Uncertainty Quantification 
(UCF) theory in these equations, in the same way through the Monte Carlo (MC) simulation for comparison, is 
the expected value of energy for a hypothetical storage system E (Cu, Co). Better accuracy of results via this 
model can be improved upon when the energy generation parameters are structured as analytical functions each 
instant of time associated with probability distributions based on the uncertainty costs of controllable sources, 
instead of statistical functions. 
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1  Introduction 
The main objective of energy management is to 
ensure the safe, reliable, and efficient operation of 
power systems. Reducing peak demand where there 
is greater consumption by end users is one of 
several approaches that contribute to the 
stabilization of a system. Another method is the 
production of energy through renewable sources in 
microgrids, as they provide a means to stabilize the 
grid’s frequency, [1]. 

Microgrids are defined as a group of distributed 
loads and generators that operate as a controllable 
unit that provides power to its area either in 
isolation or connected to the conventional power 

network, [2], In paper [3], a comprehensive review 
of the current status of microgrids is presented, 
which discusses design trends, challenges and 
research efforts towards their implementation in 
power systems. 

Energy generation in microgrids depends on the 
stochastic behavior of the renewable sources that 
comprise them, which might affect various 
parameters, including frequency. To address the 
issue of frequency deviation in microgrid control, 
various control strategies and methods have been 
proposed in recent research. For instance, the 
authors in [4], introduce a fractional order 
proportional-integral-derivative (FOPID) controller 
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for islanded microgrids using intelligent 
optimization algorithms, which demonstrated 
effective frequency control. Additionally, in [5], the 
necessity of load shedding control schemes to 
maintain power balance and frequency stability in 
islanded microgrids is emphasized. 

Frequency stability refers to the system’s ability 
to maintain a constant nominal electrical frequency 
within acceptable limits, even in the face of 
disturbances or changes in load. To maintain system 
stability regarding frequency, it is fundamental to 
balance energy supply (generation) and demand in 
real time, [6]. 

In this context, the authors in [7], present 
Uncertainty Cost Functions (UCF) to model and 
evaluate stochasticity in power systems with high 
penetration of renewable energy sources, where the 
functions of uncertainty costs have analytically 
calculated minimum cost values and the marginal 
derived cost functions (MUCF) can be used as 
inputs for economic dispatch and optimal power 
flow (OPF) calculations, which support frequency 
stability.  

Related research focusing on the OPF problem 
formulation has considered restrictions dealing with 
the secure operation of power systems in order to 
keep a balance between generation and demand in 
post-contingency states, [8], [9]. Specifically, the 
methodology to solve a probabilistic Security-
Constrained Optimal Power Flow (SCOPF) to 
assess N-k contingencies is detailed in [8]. In [9], an 
iterative algorithm for solving realistic SCOPF 
problems in large-scale power systems is presented 
and its main features are discussed, i.e., 
consideration of nonlinear AC network models in 
both pre-contingency and post-contingency states, 
and optimization of active/reactive power flows 
jointly. 

The before mentioned contingency analyses have 
an application in the framework of short-term asset 
management, also known as real-time asset 
management, [10], [11]. This is a detailed 
assessment of the possible impacts an unexpected 
outage might have on a certain asset’s condition and 
performance. Its results support grid operators in the 
decision-making process concerning the definition 
of post-contingency states. 

As the participation of renewable energy sources 
(e.g., solar and wind) in the generation mix of power 
systems has increased steadily in the last years, 
different approaches have been proposed to update 
the formulation of OPF problems. One such 
proposal is the adaptive geometry estimation-based 
multi-objective differential evolution (AGE-MODE) 
method for multi-objective OPF in hybrid power 

systems, which considers the stochastic behavior of 
solar photovoltaic (PV) and wind through 
probability distribution functions to compute direct 
costs, penalty costs for underestimation, and reserve 
costs for overestimation, [12].  

Regarding the costs (i.e., under- and 
overestimation costs) associated with the 
intermittency and variability over time of generation 
based on renewable energy sources, different papers 
have analyzed the potential of UCF to enhance the 
mathematical formulation of OPF problems. For 
example, the authors in [13], propose the application 
of UCF in the economic dispatch of power systems 
with a penetration of small hydroelectric plants 
(SHPs). To this end, the analytical development of 
the UCF based on the power injected by a SHP is 
presented, as well as the validation procedure of the 
computed under- and overestimation costs via a 
Monte Carlo (MC) simulation.  

Similar research has developed UCF for the 
power consumed by electric vehicles and the power 
output of solar PV and wind plants, [14], [15]. The 
detailed mathematical approach to compute the 
under- and overestimation costs was also validated 
using a MC simulation. 

As it has been explained, different studies have 
analyzed the enhancement of OPF problems and, 
particularly, the ability of UCF to model the 
stochastic behavior inherent to the power output of 
renewable energy sources as a means to improve the 
formulation of the before mentioned problems. 
However, for the authors’ best knowledge, any of 
these studies have analyzed the potential of UCF to 
support the frequency control of power systems in a 
context of increased solar PV generation. 

For this reason, this article introduces the use of 
UCF to estimate an expected energy value that 
should be stored or released in a Battery Storage 
System (BSS) to control the stability of the grid’s 
frequency. This methodology has two parts, i.e., an 
analytical development to calculate the expected 
energy value and a MC simulation. The obtained 
quantities are compared and the percentage error is 
computed to validate the accuracy of the analytical 
proposed UCF. 

The structure of the remaining part of the paper 
is as follows: section 2 explains the selected 
methodology; section 3 covers the data analysis, 
study case, and application of results; and section 4 
deals with the discussion of results and concluding 
remarks. 
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2   Problem Formulation 
Renewable energy sources like wind and solar 
exhibit variable behaviors due to their dependence 
on weather conditions. This variability can lead to 
fluctuations in electrical grid frequency, causing 
instability and equipment damage. Frequency 
variation, ∆f(t), is linked to the power system’s 
demand and generation, D(t) and G(t), respectively, 
as indicated by the following equation:  
 

𝐷(𝑡) − 𝐺(𝑡) = 𝐾∆𝑓(𝑡), (1) 

where K is a constant that represents the power 
system’s inertia. If an ideal power system is 
considered, i.e., losses in conductors are not 
disregarded, the total demand must match the output 
of all available generators at each time instant. This 
ensures a stable frequency, i.e., ∆f(t) = 0, and 
Equation 2 is obtained if it is assumed the 
generation of electrical energy is provided just by 
solar PV, Gsun(t), and wind plants, Gwind(t). 
 

𝐷(𝑡) = 𝐺𝑠𝑢𝑛(𝑡) + 𝐺𝑤𝑖𝑛𝑑(𝑡) (2) 
 

As it is mentioned previously, renewable energy 
sources have a stochastic or variable output and a 
Battery Storage System (BSS) is required to ensure 
frequency stability. The amount of electrical energy 
(Eb) that should be stored or released from the BSS 
within a time range (t1, t2) is computed by solving 
Equation 3. 
 

𝐸𝑏 = ∫ [𝐷(𝑡) − 𝐺𝑠𝑢𝑛(𝑡) − 𝐺𝑤𝑖𝑛𝑑(𝑡)]

𝑡2

𝑡1

𝑑𝑡 (3) 

 
The proposed methodology requires an 

analytical function with sinusoidal behavior that 
represents the energy output of a PV-system as a 
function of time, referenced to the time of sunrise 
(trise) and sunset (tset) during the day. Another 
function represents the power demanded by a 
residential and industrial load, considering the 
before mentioned time variables and a change 
concerning the peak demand during the morning 
and afternoon. The energy in MWh for both 
functions could be determined calculating the area 
below the curve, i.e., calculating the integral. 
 
2.1 Power Supplied by a PV-Plant as a 

Function of Time 
The daily power output of a PV-plant as a function 
of time can be expressed analytically as:  
 

𝑃(𝑡) = 𝑃𝑠 ∗ 𝑠𝑖𝑛2 (
𝜋(𝑡 − 𝑡𝑟𝑖𝑠𝑒)

𝑡𝑠𝑒𝑡 − 𝑡𝑟𝑖𝑠𝑒
) (4) 

 
where the variation in the intensity of sunlight is 
modeled during the period between trise and tset. The 
equation follows the radiation curve, which is 
modeled as a sinusoidal function, having some 
variation during the day. This variation for practical 
purposes and for the development of the paper, a 
Pmax and Pmin will be analyzed, reaching their 
maximum powers around noon and being minimum 
at dawn and dusk, respectively, in their established 
ranges. 
 
𝑃𝑚𝑎𝑥(𝑡)

= 𝑃𝑚𝑎𝑥 ∗ 𝑠𝑖𝑛2 (
𝜋(𝑡 − 𝑡𝑟𝑖𝑠𝑒_𝑚𝑎𝑥)

𝑡𝑠𝑒𝑡_𝑚𝑎𝑥 −  𝑡𝑟𝑖𝑠𝑒_𝑚𝑎𝑥
)  (5) 

𝑃𝑚𝑖𝑛(𝑡)

= 𝑃𝑚𝑖𝑛 ∗ 𝑠𝑖𝑛2 (
𝜋(𝑡 − 𝑡𝑟𝑖𝑠𝑒_𝑚𝑖𝑛)

𝑡𝑠𝑒𝑡_𝑚𝑖𝑛 −  𝑡𝑟𝑖𝑠𝑒_𝑚𝑖𝑛
)  (6) 

 
These functions are normalized so that the 

power of each function varies from 0 to a maximum 
within allowable ranges. The power generated by a 
solar panel or solar system depends on many 
factors, such as geographical location, panel 
inclination, weather conditions, among others. 
However, for this analysis it was simplified by 
providing random values. 
 
2.2 Power Required by the Selected Load as 

a Function of Time 
The power demanded in a residential or industrial 
load can vary throughout the day, and its load 
profile typically follows predictable patterns. The 
analytical expression of the power demanded as a 
function of time is represented as: 
 

𝑃𝐷(𝑡) = 𝑃𝑝𝑒𝑎𝑘_𝑡𝑜 ∗ 𝑠𝑖𝑛 (
2𝜋(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑡𝑜)

𝑡𝑒𝑛𝑑_𝑡𝑜 −  𝑡𝑠𝑡𝑎𝑟𝑡_𝑡𝑜
)

+ 𝑃𝑝𝑒𝑎𝑘_𝑎𝑓

∗ 𝑠𝑖𝑛 (
2𝜋(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡_𝑎𝑓)

𝑡𝑒𝑛𝑑_𝑎𝑓 −  𝑡𝑠𝑡𝑎𝑟𝑡_𝑎𝑓
) 

(7) 

 
This function considers a daily variation with 

different patterns during the day, where the equation 
models the electrical demand with a constant base 
component and two sinusoidal components that 
represent the demand peaks in the morning and 
afternoon. It is necessary to adjust the parameters of 
the equation depending on the specific consumption 
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patterns of the residential or industrial load being 
modeled. 
 
2.3 Uncertainty Quantification 
The mathematical development obtained using the 
uncertainty quantification theory, considering in 
each time instant D and Gsun, which have associated 
some probability distributions, would provide an 
expected value of E. 
 
𝐸[𝐶𝑢(𝑃)] = 

𝐶𝑢

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
(

𝑃𝑠
2

2
− 𝑃𝑠𝑃𝑚𝑎𝑥 +

𝑃𝑚𝑎𝑥
2

2
) (8) 

 
𝐸[𝐶𝑜(𝑃)] = 

𝐶𝑜

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
(

𝑃𝑠
2

2
− 𝑃𝑠𝑃𝑚𝑖𝑛 +

𝑃𝑚𝑖𝑛
2

2
) (9) 

 
The previous results make it possible to 

calculate the expected uncertainty cost function 
(UCF), which describes a remarkable quadratic 
pattern, something useful for conventional economic 
dispatch software. 
 

𝐸[𝑈𝐶𝐹] = 𝐸[𝐶𝑢(𝑃)] + 𝐸[𝐶𝑜(𝑃)] (10) 
 

The uncertainty cost can be modeled as a 
function of time performing simple calculations. 
 
 

3  Study Case and Simulations 
 
3.1  Monte Carlo simulation  
Monte Carlo (MC) simulation uses random 
sampling and statistical modeling to estimate 
mathematical functions and mimic the operations of 
complex systems. When applied in physical models, 
this method generates data from fixed probability 
distribution functions of stochastic variables such as 
solar irradiance, customer demands, etc., [16], [17], 
and it has gained widespread acceptance to validate 
their accuracy, [15], [18].  

For this reason, this research considers MC 
simulation to study the behavior of overestimation 
and underestimation instances for a predetermined 
power value (Ps), within a set of power values 
uniformly distributed over a 24-hour range. The test 
values initially set for analysis were the variables Ps 
(average power), Pmax (maximum power), and Pmin 
(minimum power) at 100, 110, and 90 watts, 
respectively. The uncertainty costs of 
underestimation and overestimation were adopted 
from reference [4], with Cu=300 and Co=700 values, 
respectively. 

Equations 4, 5, and 6 represent the demanded 
powers of a residential or industrial load, wherein 
the sunrise time (trise) was considered at 6 AM, 
while the sunset time (tset) was taken as 6 PM. These 
values were considered for practical purposes; 
however, they can be analytically obtained by 
considering various factors such as incidence angle, 
extraterrestrial radiation, climate type, solar 
declination, among others. Figure 1 illustrates the 
power values derived from Equations 4, 5, and 6 
concerning the predetermined time. 

 

 
Fig. 1: Solar power 
 

Equation 11 will generate random values within 
the interval (Pmin, Pmax) following a uniform 
distribution. 

 
𝑃(𝑟𝑎𝑛𝑑𝑜𝑚) = 
𝑃𝑚𝑖𝑛 + (𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛) ∗ 𝑟𝑎𝑛𝑑() (11) 

 
The outcome will establish values within the 

generated scenarios (N=1000) for the 
Overestimation Cost (Co) and Underestimation Cost 
(Cu), depending on the average power value (Ps), as 
depicted in Figure 2. 
 
𝐸[𝐶𝑜,𝑖(𝑃𝑠,𝑖, 𝑃𝑟,𝑖)]  =  𝐶𝑜,𝑖  ∗  (𝑃𝑠,𝑖  −  𝑃𝑟,𝑖) (12) 
 
𝐸[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝑃𝑟,𝑖)]  =  𝐶𝑢,𝑖  ∗  (𝑃𝑟,𝑖  − 𝑃𝑠,𝑖) (13) 
 

Following an elapsed simulation time of 
approximately 0.18 seconds, multiple statistical 
parameters were obtained. 
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a) 

 
b) 

Fig. 2: Behavioral curve of solar generation 
throughout the day, including: a) random scenario 
of solar generation and b) Monte Carlo simulation 
curves in scenarios with maximum and minimum 
values. 
 

The histogram in Figure 3 represents the sum of 
all generated powers across the N scenarios, 
exhibiting a high frequency around 600 MW. The 
estimated energy output resulted in 599.82 MWh. 

 
Fig. 3: Expected energy from MC scenarios 
 

3.2  Uncertainty Cost Functions 
MC simulation was employed to derive 
underestimation and overestimation penalty values 
for the Uncertainty Cost (UC) of photovoltaic 
generation at a specific time instance. Under a 
uniform distribution model, the validation for the 
Uncertainty Cost Function (UCF) was presented and 
compared favorably with MC simulation, 
showcasing minimal error. 
 

𝑈𝐶𝐹𝑃𝐴𝐻  =  
𝐶𝑢 (𝜎1)  + 𝐶𝑜 (𝜎2)

(𝑃𝑚𝑎𝑥,𝑖  −  𝑃𝑚𝑖𝑛,𝑖)
 

where, 
 

𝜎1  =  
𝑃𝑠,𝑖

2

2
 −  𝑃𝑠.𝑖𝑃𝑚𝑎𝑥,𝑖  + 

𝑃𝑚𝑎𝑥,𝑖
2

2
 

 

𝜎2  =  
𝑃𝑠,𝑖

2

2
 −  𝑃𝑠.𝑖𝑃𝑚𝑖𝑛,𝑖  + 

𝑃𝑚𝑖𝑛,𝑖
2

2
 

(14) 

 
The average of the sum of 

𝐸[𝐶𝑢,𝑖, 𝐶𝑜,𝑖 (𝑃𝑠,𝑖 , 𝑃𝑟,𝑖)] and the result from the 
Analytical Hourly Uncertainty Cost Function 
(UCFPAH) in Equation 14 is illustrated in Table 1, 
demonstrating minimal error percentage. 
 

Table 1. Comparison of results between the 
analytical method and the Montecarlo method 

Time 
(Hour) 

UCF MEAN 
(MW/$) 

UCFPAH 
(MW/$) 

%error 

7 0.1725 0.1674 0.2953 
8 0.6165 0.6250 0.1367 
9 1.2657 1.2499 0.1246 
10 1.8341 1.8749 0.2228 
11 2.4129 2.3325 0.3331 
12 2.5283 2.5000 0.1121 
13 2.4040 2.3325 0.2974 
14 1.8958 1.8750 0.1102 
15 1.2838 1.2500 0.2640 
16 0.6149 0.6250 0.1632 
17 0.1673 0.1674 0.0045 
 

Given text already adheres to the principles. 
Considering that it is photovoltaic solar generation, 
the other hours of the series have a value of zero. 

On the other hand, the variable k is associated 
with the uncertainty cost function, either hourly 
estimated costs or analytical hourly costs, within the 
24-hour time range. 
 

𝐾𝑃𝐴𝐻  =  
𝑃𝑠,𝑖

𝑈𝐶𝐹𝑃𝐴𝐻
 (15) 
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The average KPAHprom, shown in Figure 4, serves 
as a link for MWh energy estimation in an analytical 
model, affirming its similarity. It is noteworthy that 
only non-zero values are taken into consideration. 
 
𝐾𝑃𝐴𝐻𝑝𝑟𝑜𝑚

 =  
𝑚𝑒𝑎𝑛(𝐾𝑃𝐴𝐻(7: 17))  =  0.04 (𝑀𝑊/$) 

(16) 

 

 
Fig. 4: Constant KPAHprom 
 

Figure 5 shows the values from Table 1, 
comparing the analytical and Monte Carlo methods 
graphically, with a minimum error observed. 

 
Fig. 5: Comparison of UCF, analytical and Monte 
Carlo simulation 
 
3.3  Analytical Method 
An analytical method represents a systematic 
approach employed to comprehend, explain, or 
solve problems by utilizing analysis, logical 
reasoning, and, often, mathematical formulas or 
existing theories. It is characterized by its emphasis 
on breaking down a problem into smaller, more 
manageable parts for detailed examination. These 
methods enable the dissection of complex issues 

into simpler components, facilitating their 
comprehension and resolution. 

The necessity of providing a model for load and 
generation with variability in behavior becomes 
evident when estimating costs. Therefore, an 
analytical proposal will be developed to estimate the 
energy in MWh that the photovoltaic system will 
produce over 24 hours. 

For a linear function representing the cost of 
underestimation penalty, determining the 
corresponding expected penalty cost function can be 
achieved as follows: 

 

𝐸[𝐶𝑢(𝑃)]  =  
𝐶𝑢 (𝜎3)

𝑃𝑚𝑎𝑥,𝑖 𝜎5  −  𝑃𝑚𝑖𝑛,𝑖  𝜎5
 

 
where, 
 

𝜎3 =
𝑃𝑚𝑎𝑥,𝑖

2 ∗ 𝜎4

2
−  𝑃𝑠.𝑖 𝑃𝑚𝑎𝑥,𝑖𝜎4 +

𝑃𝑠,𝑖
2𝜎4

2
 

 

𝜎4  =  𝑠𝑖𝑛 (
𝜋 (𝑡 −  𝑡𝑟𝑖𝑠𝑒)

𝑡𝑟𝑖𝑠𝑒  − 𝑡𝑠𝑒𝑡
)

4

 

 

𝜎5  =  𝑠𝑖𝑛 (
𝜋 (𝑡 −  𝑡𝑟𝑖𝑠𝑒)

𝑡𝑟𝑖𝑠𝑒  − 𝑡𝑠𝑒𝑡
)

2

 

(17) 

 
To obtain the energy produced over time, the 

function is integrated to find the area under the 
curve within the established range (6, 18), denoting 
sunrise and sunset hours. 
 

𝐸[𝐶𝑢(𝑃(𝑡))]  =  ∫
𝐶𝑢 (𝜎3)

𝑃𝑚𝑎𝑥,𝑖 𝜎4 − 𝑃𝑚𝑖𝑛,𝑖 𝜎5

18

6

 

 
(18) 

 
𝐸[𝐶𝑢(𝑃(𝑡))]  

=  
𝐶𝑢(𝑃𝑚𝑎𝑥,𝑖  − 𝑃𝑠)2(𝜎6 −  𝜎7 + 6)

2(𝑃𝑚𝑎𝑥,𝑖 −  𝑃𝑚𝑖𝑛,𝑖)
 

 
where, 
 

𝜎6 =
𝑠𝑖𝑛 (

2𝜋 (𝑡 − 18)

𝑡𝑟𝑖𝑠𝑒 − 𝑡𝑠𝑒𝑡
) (𝑡𝑟𝑖𝑠𝑒  − 𝑡𝑠𝑒𝑡)

4𝜋
 

 

𝜎7  =  
𝑠𝑖𝑛 (

2𝜋 (𝑡 − 6)

𝑡𝑟𝑖𝑠𝑒 − 𝑡𝑠𝑒𝑡
) (𝑡𝑟𝑖𝑠𝑒  −  𝑡𝑠𝑒𝑡)

4𝜋
 

 

(19) 

Similarly, the expected cost function for 
overestimation with E[Co(P)] can be derived: 
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𝐸[𝐶𝑜(𝑃)]  =  
𝐶𝑜 (𝜎8)

𝑃𝑚𝑎𝑥,𝑖 𝜎10  −  𝑃𝑚𝑖𝑛,𝑖 𝜎10
 

 
where, 
 

𝜎8 =
𝑃𝑚𝑖𝑛,𝑖

2 ∗ 𝜎9

2
−  𝑃𝑠.𝑖 𝑃𝑚𝑖𝑛,𝑖𝜎9 +

𝑃𝑠,𝑖
2𝜎9

2
 

 

𝜎9  =  𝑠𝑖𝑛 (
𝜋 (𝑡 − 𝑡𝑟𝑖𝑠𝑒)

𝑡𝑟𝑖𝑠𝑒  − 𝑡𝑠𝑒𝑡
)

4

 

 

𝜎10  =  𝑠𝑖𝑛 (
𝜋 (𝑡 −  𝑡𝑟𝑖𝑠𝑒)

𝑡𝑟𝑖𝑠𝑒  −  𝑡𝑠𝑒𝑡
)

2

 

(20) 

 
𝐸[𝐶𝑢(𝑃(𝑡))]  

=  ∫
𝐶𝑢 (𝜎8)

𝑃𝑚𝑎𝑥,𝑖 𝜎10  − 𝑃𝑚𝑖𝑛,𝑖 𝜎10

18

6

 

 

(21) 

 
𝐸[𝐶𝑢(𝑃(𝑡))]  

=  
𝐶𝑢(𝑃𝑚𝑖𝑛,𝑖  − 𝑃𝑠)2(𝜎11 −  𝜎12 + 6)

2(𝑃𝑚𝑎𝑥,𝑖 −  𝑃𝑚𝑖𝑛,𝑖)
 

 
where, 
 

𝜎11 =
𝑠𝑖𝑛 (

2𝜋 (𝑡 − 18)

𝑡𝑟𝑖𝑠𝑒 − 𝑡𝑠𝑒𝑡
) (𝑡𝑟𝑖𝑠𝑒  −  𝑡𝑠𝑒𝑡)

4𝜋
 

 

𝜎12  =  
𝑠𝑖𝑛 (

2𝜋 (𝑡 − 6)

𝑡𝑟𝑖𝑠𝑒 − 𝑡𝑠𝑒𝑡
) (𝑡𝑟𝑖𝑠𝑒  −  𝑡𝑠𝑒𝑡)

4𝜋
 

 

(22) 

The results enable the calculation of the 
expected UCF for both overestimation and 
underestimation, whose outcome, multiplied by the 
variable Kprom obtained from Monte Carlo 
simulation, allows us to calculate the energy in 
MWh. The result from the analytical function is 
600 MWh, which is like the result obtained with the 
Monte Carlo simulation 599.85 MWh. 
 

 

4 Discussion of Results and Conclusion 
The results of the previous sections, where the 
Monte Carlo simulations and the analytical results 
shown in Table 1 clearly show that the results are 
equivalent with estimation errors of less than 0.34%, 
demonstrating the possibility of using the analytical 
method for energy estimation. 

This result makes it possible to consider the 
implementation of algorithms for calculating energy 

to manage storage in batteries in scenarios where 
there are variable loads.  

On the contrary, regarding the estimation of 
variable KPAHprom that relates to the cost function of 
uncertainty, forthcoming research could explore the 
use of a polynomial function approximation capable 
of capturing changes in uncertainty magnitude in 
difference time instances. 

Among the conclusions, the following are 
highlighted: 

 The analytical equations for estimating the 
energy in loads and in solar photovoltaic 
generation are equivalent to the log-normal 
statistical function considered. 

 The finding of equivalence makes it 
possible to apply this new method for 
energy management in hybrid systems 
where there is solar generation and batteries 
for storage. 

 The initial hypothesis about the possibility 
of maintaining the frequency from the 
energy equivalence is fulfilled, leading to 
improvements in the response of the 
algorithms. 
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