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Abstract: - Transient stability has typically received attention in the literature, focusing on its assessment and 
control under limited operational scenarios and contingencies. This often results in persistent transient stability 
issues, leaving the system vulnerable to imminent collapses. In this regard, this work aims to develop an 
adaptable tripping scheme based on the power system dynamics following a major disturbance to prevent grid 
blackouts due to transient stability loss. The proposed methodology takes advantage of data analysis tools based 
on deep learning and Phasor Measurement Units (PMUs) technologies. In this approach, the methodology 
involves generating a database of both operational scenarios and n-1 contingencies, labeling critical generators 
to be tripped to mitigate transient instability, and training a hybrid deep neural network RCNN (recurrent 
convolutional neural network) that constitutes the core of the tripping scheme. Following the application of the 
methodology in a controlled simulation environment, the RCNN model demonstrated strong performance, as it 
not only mitigated transient instability through minimal tripping of generation plants with an effectiveness of 
92.4% but also showed potential for real-time application, as the control action accounts for latencies inherent 
in real-time operation. 
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1  Introduction 
Historically, the transient stability assessment in 
power systems has been conducted offline due to the 
computational time required to determine the 
system’s dynamic response. This assessment 
involves step-by-step methods that solve the 
differential equations that represent the system's 
dynamics. For transient stability in particular, 
advancements in computer technology have enabled 
these methods, embedded in specialized simulation 
programs, to manage large power systems with 
numerous generators, while considering validated 
models of the elements that compose real power 
systems, [1], [2]. 

Although this methodology is highly useful for 
planning and studies focused on adjusting automatic 
generation tripping schemes, it cannot consider a 
large number of operating states and contingencies 
due to human limitations. Additionally, step-by-step 
methods are computationally demanding, and the 
rapid nature of the phenomenon renders real-time 
implementation impractical. 

 

Conversely, direct methods aim to provide 
information on the transient stability status without 
performing simulations, optimizing the time for 
real-time application, [1], [3]. However, the main 
limitation of these methods lies in the complexity of 
managing detailed models of machines and other 
system components. 

On the other hand, Phasor Measurement Unit 
(PMU) technology offers a comprehensive view of 
the electrical system’s dynamics. Moreover, its high 
sampling frequency opens new opportunities to 
develop methodologies that can assess stability 
status and implement corrective control actions to 
mitigate unstable transient phenomena. As an 
example of the aforementioned,  [4] presents, a 
methodology for evaluating out-of-synchronism 
conditions by utilizing the current, voltage, and 
phase angle of the three phases at both ends of two 
interconnected area power systems, allowing for the 
determination of such conditions before the 
synchronous generators lose synchronization. 
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Artificial intelligence has increasingly become 
integrated into various fields of study, yielding 
excellent results in classification tasks, and 
electrical engineering is no exception. Notable 
applications of this technology in this domain 
include [5], which addresses wind resource 
prediction essential data for optimizing real-time 
usage of this energy. Furthermore, [6] employs a 
neural network to determine the optimal unit 
commitment, dispatching the energy to meet 
systems demand while optimizing technical and 
economic parameters, achieving satisfactory results. 
A particularly relevant topic today is smart grids, 
where the paradigm of energy distribution is 
disrupted, leading to bidirectional energy flows and 
presenting new challenges for analysis. In this 
context,  [7] utilizes machine learning techniques to 
predict the stability of these networks. 

Considering the above, a new branch for power 
system stability analysis has emerged, utilizing AI 
tools. Their main advantages over traditional 
methods include faster processing speed, which is 
essential for timely preventive or emergency 
interventions; the capability to extend to a broader 
range of operational areas, including those with 
nonlinear behaviors; and reduced dependence on 
system or model parameters, as they can update the 
database based on historical data and system 
interactions, [1], [8]. 

In this context, various studies on transient 
stability problems have been based on AI 
algorithms. Notable examples include [9], where a 
deep learning model is trained to assess short-term 
stability and classify it into the categories of 
unstable due to loss of transient stability, unstable 
due to loss of short-term voltage stability (STVS), 
and stable. This is done before the system incurs 
instabilities and serves as the basis for applying 
corrective control actions in real time. Likewise, [1] 
constructs a model to predict transient stability 
margins using AI models and direct methods, 
incorporating concepts of extended equal area 
criterion. Finally, [10] employs AI algorithms to 
build special protection to address transient stability 
issues. This research was developed for a specific 
application in the Brazilian power system, where 
generation is disconnected in a specific plant 
considering contingencies in a single 
interconnection yielding excellent results. 

However, despite advances in AI-based 
transient stability research, the application of 
corrective control actions to mitigate this instability 
phenomenon remains lacking. Therefore, the present 
research addresses the development of an Adaptive 
Generation Tripping Scheme (AGTS) that enables 

emergency control actions to mitigate system 
collapses caused by the loss of transient stability. 
This methodology surpasses traditional generation 
disconnection schemes by considering a 
significantly larger number of operational states and 
contingencies. Additionally, it offers advantages 
over direct algebraic methods by taking into account 
the system's dynamics, as it builds a database based 
on validated dynamic models. 

 This methodology uses as its core a recurrent 
convolutional neural network (RCNN) which, due 
to their rapid calculation times, enables the real-time 
implementation of the AGTS. Another common 
factor in the literature on transient stability 
assessment is that it does not account for STVS 
phenomena, which occur within the same time 
frame as transient stability. This oversight is often 
due to the static modeling of loads, which inhibits 
the occurrence of such phenomena. In this regard, 
the present study incorporates STVS by using 
dynamic load models, thereby aligning more closely 
with real-world conditions. 

This work is organized into five sections 
detailing the AGTS development. Section 2 
explores key concepts necessary for understanding 
the methodology and presents the technological and 
mathematical tools required for its development. 
Section 3 details the proposed methodology, while 
Section 4 presents the results of its application in a 
simulation environment. Finally, Section 5 
highlights the most important conclusions of the 
work. 
 

 

2 Technological and Mathematical 

 Tools 
This section presents the theoretical framework for 
power system stability and the necessary tools for 
the development of the proposed methodology. 
 
2.1 Transient Stability 
The stability of a power system is defined as its 
ability to return to an operational equilibrium state 
after being affected by a disturbance, starting from a 
specific initial condition, [11]. 

Specifically, transient stability is defined as the 
capability of a power system to maintain generator 
synchronism and achieve acceptable steady-state 
operating conditions after experiencing large 
disturbances, such as short circuits, the loss of major 
generation units, or significant load variations, [11]. 
The variable that best represents phenomena 
involving transient stability is the rotor angle of the 
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machine. Eq. (1) describes the oscillations of this 
angle during disturbances. 

2𝐻

𝜔0

𝑑2𝛿

𝑑𝑡2
=  �̅�𝑚 − �̅�𝑒  (1) 

 
where �̅�𝑚 represents the mechanical torque provided 
by the driving force acting on the machine's shaft, 
and �̅�𝑒 denotes the electromagnetic torque generated 
by the armature reaction; 𝐻 represents the machine's 
inertia constant, 𝜔0 is the nominal angular velocity 
in rad/s, and 𝛿 is the rotor angular position relative 
to a synchronous reference frame. 
 

For a system to be transiently stable during a 
disturbance, the rotor angle must oscillate around an 
equilibrium point. If the rotor angle continues to 
increase indefinitely, the machine is considered 
transiently unstable. Fig. 1 illustrates the rotor angle 
evolution of a synchronous machine over time. In 
Case 1, the oscillations are damped and stabilize at a 
constant value. Conversely, Cases 2 and 3 show 
significant amplitude increases, leading to 
synchronization loss. Case 2 experiences loss of 
synchronization during the first oscillation due to 
insufficient synchronizing torque, while Case 3 
maintains synchronization initially but loses it after 
several oscillations as amplitude grows. This 
instability often occurs when post-fault conditions 
lack sufficient synchronizing torque and/or 
damping, despite corrective measures being 
implemented, [12]. 
 

 
Fig. 1: Responses of the rotor angle to large 
disturbances  
 
2.2 Special Protection Systems 
Special Protection Systems (SPSs) execute 
predefined control actions post-contingency and are 
structured based on offline simulations where both. 
Static and dynamic system security are assessed, 
[1]. Special Protection Systems are typically 
characterized by [13]: 

 Acting in rare contingencies that are often 
beyond the design range intended to 

withstand firm power, thereby allowing 
control actions not utilized under normal 
operating conditions, such as load and 
generation reductions. 

 Enabling the assumption of greater 
operational risks, with consequences 
potentially exceeding the capabilities of 
conventional protection. 

 Providing system-level protection, 
functioning across multiple locations, and 
integrating the control of various signals in 
a coordinated manner. 
 

According to their control variables, SPSs can 
be classified into two types: event-based and 
response-based. 

Event-based SPSs are designed to activate upon 
identifying a specific contingency or a combination 
of events, such as the loss of multiple transmission 
lines or generators. These event-based SPSs are 
faster because they do not need to wait for the 
system's reaction to a particular event; however, 
they require the evaluation of many scenarios to 
define their operation, [13]. 

Response-based SPSs are triggered based on 
measured electrical variables such as voltage or 
frequency and perform protective actions when the 
measured value reaches a threshold level following 
a contingency. Thus, they are capable of handling 
unplanned situations, [13]. 

This work aims to develop an AGTS that works 
as a special protection system. Unlike conventional 
SPSs, which consider a limited number of scenarios, 
the proposed scheme uses artificial intelligence 
algorithms that consider a vast array of operating 
scenarios and contingencies during its training. 
Additionally, similar to a response-based SPS, the 
proposed methodology requires measurements to 
assess the system's dynamics for making activation 
decisions and defining parameters. 
 

2.3 Deep Learning 
Artificial Intelligence (AI) encompasses the broad 
field of perception and knowledge extraction from 
data, [14]. Within AI, two principal subsets are 

distinguished: Machine Learning (ML) and 
Deep Learning (DL). Machine Learning is a 
fundamental component of AI, whereas Deep 
Learning is considered a specialized subset of 
Machine Learning. 

DL is characterized by employing a series of 
multiple layers of nonlinear processing units to 
automatically extract and transform features, [15]. 
The increase in the number of layers enhances the 
performance of DL methods and enables a higher 
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level of knowledge abstraction. Although the 
general approach of DL is like ML, the key 
difference lies in the automatic feature extraction 
rather than manual extraction. 

The DL model utilized in this work is a hybrid 
model composed of two DL methods: Convolutional 
Neural Networks (CNNs), due to their significant 
capacity for pattern extraction and spatial feature 
identification, and particularly effective in time 
series analysis. Conversely, Long Short-Term 
Memory layers (LSTMs) demonstrate strong 
performance in extracting temporal characteristics. 
Both models comprise the recurrent convolutional 
neural network (RCNN), which leverages the 
strengths of CNNs and LSTMs. 

Convolutional layers aim to construct a 
mapping of spatial features through convolution 
operations applied to multidimensional data, [16]. 
The convolution operation is a specialized linear 
technique that uses a set of small matrices known as 
filters, which are spatially distributed across 
different channels. This computation involves 
summing the products of each filter element with 
the input matrix (input tensor) at each position of 
the tensor, yielding the corresponding value in the 
output matrix (output tensor), known as the feature 
map. On the other hand, as one of the most 
recognized variants of recurrent neural networks 
(RNNs), Long Short-Term Memory (LSTM) 
networks are distinguished by their ability to capture 
temporal features in sequential data. Furthermore, 
they effectively address the vanishing gradient 
problem, a phenomenon where gradients become so 
small during backpropagation that earlier layers 
cannot make adjustments, leading to a halt in the 
learning process of the neural network, [17]. 

The critical generator identification is achieved 
through the reading of power system variables via 
PMUs and the application of the RCNN model. The 
RCNN is capable of establishing a relationship 
between power systems variables time series and 
critical dynamic generation, differentiated by plants. 
It is important to note that the time series data 
encompasses a small window of the faulted state 
and a few samples following its clearance. The 
general framework of the RCNN model is presented 
in Fig. 2. 

As illustrated in Fig. 2, the RCNN model 
requires specific time series data of the power 
system variables and transforms them into a tensor 
format analogous to image data. Subsequently, these 
data pass through the network in a cascading 
manner: first through convolutional layers that 
extract spatial features, then through LSTM layers 
that capture temporal features, followed by fully 

connected (FC) layers that integrate all extracted 
patterns, and finally through the classifier, that 
calculates the output to discriminate critical 
generation. 
 

 
Fig. 2: General framework of the RCNN model 
 
 

3  Methodology 
The proposed methodology aims to identify the 
critical dynamic generation causing instability in 
cases of transient stability loss. Information on 
critical generation will be used to activate and adjust 
the AGTS parameters. 
 
3.1 Database Generation 
The creation of the database is crucial in the 
development of any methodology that employs 
artificial intelligence tools. In this regard, the data 
must be both sufficient and diverse to encompass a 
wide range of operating scenarios and system faults. 
 
3.1.1 Operating Scenarios 

The tool used to construct operating scenarios is 
Monte Carlo simulation, aimed at accurately 
representing the network's behavior. To achieve this, 
probabilistic models of the power system's random 
variables are utilized, focusing on a short-term 
analysis since unstable transient phenomena occur 
within this timeframe. Key probabilistic models 
needed for this short-term context, which must be 
developed during operational planning by the 
system operator, include load forecasting, unit 
commitment, and network topology, [18]. 
 
3.1.2  Simulationof N-1 Contingencies 
In this study, N-1 contingencies are assumed to be 
independent and randomly generated events, 
including the loss of generation plants and three-
phase short circuits on transmission lines. The 
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selected contingencies are tailored to the system 
under study, focusing on the most likely 
disturbances and those that exert the greatest stress. 
The probability of each fault type is derived from 
historical data and follows a discrete probability 
distribution. Additionally, the fault location for 
short-circuit contingencies is determined using 
appropriate probability density functions based on 
historical statistics. The random generation of 
contingencies utilizes both uniform and Weibull 
distribution functions, [19]. 
 
3.1.3  Selection of Input Variables  

The RCNN input data consists of a time series of 
power system variables. These time series must be 
selected to enable the accurate identification of 
critical generation plants within a reduced time 
window. In other words, the chosen variables must 
effectively reflect the issues that the model needs to 
analyze and recognize. Additionally, these variables 
should be measured or estimated using PMU data to 
ensure that the methodology can be applied in real 
time. 

This study selects the power system variables 
corresponding to voltage magnitude (U), voltage 
angle (𝜃), and rotor angle (δ); all of them located in 
generation buses as inputs. The voltage magnitude 
reflects the STVS phenomena considered in this 
work and is measured by PMU devices. The voltage 
angle, according to various studies, [20], [21]. 
Provides information about the synchronism state of 
machines and is also measured by PMUs. Finally, 
the rotor angle directly indicates the synchronism 
state of generators, and currently, this variable is 
estimated with certain types of PMU, [22]. 

It is crucial to highlight that these variables (U, 
𝜃, δ) are the only inputs considered by the model. In 
other words, the proposed methodology is not 
affected by the network topology or the location of 
the fault. This suggests that the methodology can be 
applied to any network, as long as a solid database 
is established through simulations within that 
network. In line with the above, it is also important 
to note that if there are changes in the network 
topology and in the generation fleet, a new database 
must be created, and the model should be retrained. 
 
3.1.4  Identification of Critical Generators 
To generate the labeling of critical generators for 
RCNN training, it is necessary to identify the 
generation plants responsible for instability in each 
case of transient stability loss. These cases are 
distinguished from those unstable due to STVS, 
which may occur within the same time window in 
the generated database, [9]. 

In this regard, a tripping ranking is created for each 
case. This ranking is used to identify, through 
dynamic simulations, the plants whose tripping 
allows the system to maintain stability. The 
methodology for this process is described in detail 
below. 

 Tripping ranking: 
The first step in identifying critical generators is 
to create a tripping ranking. This involves 
tripping generation plants that have reached the 
theoretical stability limit one by one, based on 
the time it takes for each machine’s rotor angle 
to reach the stability limit (180° or -180°), [22]. 
To better understand this process, two unstable 
cases in the IEEE New England 39-bus system 
are provided to illustrate how the ranking is 
constructed. In this case, transient instability is 
caused by a three-phase fault on a different 
transmission line in similar operating states 
where they are operating close to their technical 
limits. The response of the rotor angles of the 
system's machines to these events obtained 
through simulation in the software DigSilent 
Power Factory are shown in Fig. 3 and Fig. 4. 

 

 
Fig. 3: Evolution of rotor angles Case 1 
 

 
Fig. 4: Evolution of rotor angles Case 2 
 

Fig. 3 and Fig. 4 illustrate the rotor angles of the 
machines. The occurrence of the faults is visible 100 
ms after the simulation starts, with a successful 
clearing 100 ms later. According to the chosen 
methodology, the ranking for these cases is 
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determined in Table 1 where the generators are 
presented from left to right in the order in which 
they lost synchronism. 

In Fig. 3, it can be observed how generators 
G30, G33, G34, G36, G37, G38, and G39 rapidly 
lose synchronization following the fault, with the 
first two to lose synchronization being generators 
G36 and G35. It is important to note that 8 out of 
the 10 available generators in the system lose 
synchronization between 0.5 seconds and 2 seconds. 

On the other hand, in Case 2 (Figure 4), it can 
be observed that although the loss of 
synchronization is slower, 8 out of the 10 available 
generators lose synchronization like in case 1, with 
generator G36 being the first to do so. 
 

Table. 1 Example’s disconnection ranking  
Case 

1 

 

Generator G36 G35 G34 G33 G38 G37 G39 G30 

Ranking 1 2 3 4 5 6 7 8 
Case 

2 

 

Generator G36 G38 G34 G35 G33 G37 G39 G30 

Ranking 1 2 3 4 5 6 7 8 

 
 Labeling of critical generators: 

After obtaining the necessary input to identify 
the critical generators, an algorithm was 
developed to perform dynamic simulations by 
tripping generators according to the ranking 
until the system remains in a stable state. 
 
Returning to the previously mentioned cases, to 

illustrate the methodology, the final dynamic 
simulations are shown in Fig. 5 and Fig. 6. In case 
1, instability has been avoided by disconnecting 
only the two first generators in the ranking (G36, 
G35) while in case 2 it only requires the tripping of 
the first generator in the ranking (G36). Thus, these 
generators will be the only ones labeled as a critical 
generators in each case, providing the necessary 
information for training the machine learning 
models. 

 

 
Fig. 5: Evolution of rotor angles after critical 
generators disconnection, G36, and G35, Case 1 

 
Fig. 6: Evolution of rotor angles after critical 
generator disconnection, G36, Case 2 
 

3.2  RCNN Model 
 

3.2.1  Data Preprocessing 

Initially, the data must be represented in a format 
that the initial layers of the model, specifically the 
convolutional layers, can process. This format refers 
to a multidimensional tensor analogous to images, 
where the three axes correspond to the number of 
buses (B), number of samples (T), and number of 
selected variables from the power system, 
respectively. 

The first axis represents the number of samples 
(T) within a time window chosen considering 
calculation times, switch operation times, and other 
latencies to enable an early avoidance of instability. 
The second axis represents the number of buses (B) 
where electrical variables are monitored. It is 
important to note that in this study, these buses are 
those with generator plants. At last, the third axis 
consists of the three time series variables (𝑈, 𝜃, δ), 

which are voltage magnitude, voltage angle, and 
rotor angle of the machine, respectively. Therefore, 
the input tensor for the RCNN model has the shape 
(U, θ, δ) ∈ R^(15×9×3). 

Finally, the dataset must be divided into a 
training set, a validation set, and a test set, where 
each element has its corresponding critical generator 
label. It is important to note that the labels for data 
from stable time series and those unstable due to 
short-term voltage instability will be zeros, as the 
model's duty is not to disconnect critical generation 
in these cases. The data split is performed by 
randomly shuffling into 70% for training, 15% for 
validation, and the remaining 15% for testing. 

Additionally, a normalization process is 
necessary due to the different scales of the variables 
in the time series data. In this context, the z-score 
normalization algorithm is implemented, which 
ensures that each feature has a mean of 0 and a 
variance of 1, thereby placing the data on the same 
scale, [23]. 
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3.3  Performance Metrics 
Considering that the model predicts a set of classes 
corresponding to a set of generator plants, its 
performance should be evaluated using similarity 
sets. To assess the model's performance, the Jaccard 
Index is used, which estimates the similarity 
between two sets of integers, [24], eq. (2). 

𝐽(𝑆𝑖, 𝑆𝑗) =
|𝑆𝑖 ∩ 𝑆𝑗|

|𝑆𝑖 ∩ 𝑆𝑗|

=
|𝑆𝑖 ∩ 𝑆𝑗|

|𝑆𝑖| + |𝑆𝑗| − |𝑆𝑖 ∩ 𝑆𝑗|
 

(2) 

 
where 𝐽 ∈ [0,1] y 𝐽 (𝑠𝑖, 𝑠𝑗) = 1. In this case, a 
classification is considered correct when 𝐽(𝐺𝑐 ̃,G𝑐) = 
1. 
 

The Jaccard Accuracy Index (JACC) evaluates 
performance across all samples, including both 
stable and unstable samples. When the model 
evaluates stable and unstable cases due to STVS, 
predictions of empty sets of critical machines are 
expected. Similarly, the Jaccard Accuracy Index for 
unstable samples (JACCU) calculates performance 
considering only unstable samples. 

To conclude this section, the Jaccard 
Effectiveness Index (JACCUE) is used to assess 
whether the predicted set of machines is enough to 
mitigate the development of transient instability. 
Consequently, if the model identifies fewer or 
different generators than those labeled, it will not be 
able to mitigate the phenomenon. In this sense, this 
index reflects the degree of effectiveness of the task 
within transiently unstable samples, which is the 
objective of the work. 
 
 
4  Results Analysis  
The chosen test system for applying the proposed 
methodology is the IEEE New England 39-bus 
system. This system was selected due to its effective 
performance as a test system in various studies 
addressing similar tasks, such as the classification of 
short-term stability state. [9] and the evaluation of 
transient stability margins [1], both of which employ 
machine learning techniques as a core component. 
The system comprises 39 buses, 10 generators 
representing generation plants with parallel 
connected synchronous generators, 19 loads, and 46 
transmission lines operating at a voltage level of 345 
kV and a frequency of 60 Hz. 

On the other hand, to accurately represent the 
transient stability phenomena, the standard model 
for RMS simulations (sixth-order subtransient 

model) is used in the DigSilent PowerFactory 
software [25] as the model for the synchronous 
machine generator. Similarly, to account for STVS 
occurring within the same time window as transient 
stability, a dynamic load model presented in [26] is 
considered. 

The simulations in this section were carried out 
on a computer with a 64-bit Windows 10 Home 
operating system, and an i5-7400 CPU with 8GB of 
RAM. 
 
4.1  Evaluation of Critical Generators 
The first step in identifying critical generators that 
is, the set of generators whose tripping after a 
significant disturbance allows the rest to remain in 
synchrony is to establish a tripping ranking. This 
ranking facilitates the tripping of generators one by 
one until the system remains stable within a five-
second window. 

Fig. 7, presents the sets of cases, including both 
the unstable generators classified in the ranking and 
the critical generators identified by applying the 
proposed methodology where the tripping of this set 
mitigates transient stability issues. 
 

 
Fig. 7: Number of Unstable Generators vs. Number 
of Critical Generators 
 

As shown in Fig. 7 the case of six plants to 
disconnect, it is observed that the set of unstable 
machines is 50%, while only 22% of these cases 
require the tripping of that many machines. 
Similarly, it can be noted that approximately 5% of 
the cases are groups of eight and nine unstable 
plants, while in reality there is no need to trip such 
groups. A similar situation occurs when only one 
generator needs to be tripped, where the ranking 
shows around 12% of cases in this category, while 
after applying the proposed method, this percentage 
increases to 24% of the cases. 

This concludes that, although a large group of 
plants may lose stability after a significant 
disturbance, total tripping is not necessary. 
Therefore, through this methodology, a substantially 
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smaller number of tripped generator plants can 
avoid instability.  
 
4.2  Design and Model Training 
 

4.2.1 Model Design 

Training DL models begins with configuring their 
design, it means, involves selecting the 
hyperparameters that the RCNN model will use to 
find the most suitable parameters for correctly 
mapping inputs to classify labels or objectives. 
Hyperparameters are values defined before starting 
the learning process, and they can be adjusted to 
directly influence the model's performance. On the 
other hand, parameters related to the model’s 
weights and biases are computed during training 
using an optimization algorithm, [27]. 
The goal of model training is to find the parameters 
that minimize the difference between the model's 
predictions and the true classification of labels. In 
this regard, the objective function to be minimized 
and the optimization algorithm for learning 
parameters are crucial for obtaining good results. 
The objective function estimates the similarity 
between the model’s predictions and the true 
classification states, while the optimization 
algorithm is responsible for updating the parameters 
iteratively to minimize this objective function. In 
this context, the chosen objective function and 
optimization algorithm are weighted cross-entropy 
and Adam, respectively, due to their excellent 
performance in classification tasks, [28], [29]. 

Based on the architecture of deep learning 
models for short-term stability studies, specifically 
the one proposed in [9], and to achieve high 
performance in the classification process, the 
architecture shown in Fig. 8 was designed. The 
hyperparameters adjusted in this architecture 
include the number of convolutional layers, the size 
and number of filters, the max pooling operations, 
the dropout probability, the number of LSTM 
layers, the number of fully connected layers, the 
activation functions, and the normalization layers.  

In Fig. 8, the hierarchical CNN module (blocks 
in blue) consists of three convolutional layers, each 
with a different number of filters (64, 32, and 4) and 
a uniform size of 3×3. Additionally, the ReLU 
activation function is used in these layers. To 
prevent overfitting, max pooling with a size of 2×2, 
batch normalization, and dropout with a rate of 0.1 
is incorporated. 

Next, the flattening process is applied, which 
converts the spatial feature tensor into an 
onedimensional flat array, allowing this information 
to pass through 32 fully connected layers, also using 

ReLU as the activation function. The output of this 
process is directed to the hierarchical LSTM 
module, which adjusts 128 neurons to function as 
the memory unit, using tanh as the activation 
function. Layer normalization is also included to 
stabilize the training of this recurrent architecture. 
The extracted temporal features are then passed 
through 64 FC layers with ReLU activation and 
subsequently to the multi-layer classifier, which 
consists of 9 neurons responsible for performing 
binary classification of the system's generators. 
Finally, a sigmoid activation function is used to 
provide the probability of each generator being 
classified as critical. 
 

 
Fig. 8: Model architecture 

 
In addition to the above, training the model 

requires tuning hyperparameters related to the loss 
minimization function, the optimization algorithm, 
the initialization technique, the batch size, and the 
number of epochs, as well as a β parameter that 
serves as a regularizer to prevent overfitting during 
training.  Table. 2 summarizes the adjustments made 
to these hyperparameters. 

 
Table. 2 Model Hyperparameters 

Training hiperparameters Functions / chosen 

parameters 

Loss function Weighted Cross-
Entropy (WCE), 𝛽 = 
0.001 
 

Optimization algorithm Adam, learning rate 
= 0.0001 

Initialization technic Gloriot Uniform 
Batch size 64 
Epochs 1000 
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4.2.2  Model Training 

To train the model, a 140 ms time window is 
utilized, which corresponds to 15 samples at a 
sampling PMU frequency of 100 Hz [30]. This 
window size captures data on the dynamics during 
the fault and shortly after its clearance from the 
selected variables (U, θ, δ).  

To analyze the training process, the loss 
function behavior is analyzed (Fig. 9). This 
function, also known as the cost function, serves as 
an essential metric for evaluating the performance 
of machine learning models. The function represents 
the difference between predictions and actual 
values, diagnosing issues in learning such as 
underfitting or overfitting, as well as assessing 
whether the training and validation sets are 
adequately representative.  
 

 
Fig. 9: RCNN Loss function during training 
 

As observed in Fig. 9, after 1,000 epochs, the 
model has reached a state of convergence. 
Additionally, there are no signs of overfitting or 
underfitting between the training and validation 
function loss, indicating that the model 
demonstrates a very good potential for 
generalization. 

Furthermore, both algorithms comprising the 
RCNN model are trained independently to facilitate 
a comprehensive analysis of their respective training 
processes. The methods evaluated include a 
convolutional module (CNN) with three hidden 
layers containing 64, 32, and 4 filters, respectively, 
each with a uniform size of 3×3, and an LSTM 
module with a memory unit of 128 neurons. As 
illustrated in Fig. 10, the reduction in loss for the 
hybrid model RCNN converges more quickly 
compared to the other two models. Although the 
LSTM-only model achieves a lower final error, it 
presents a significant degree of overfitting not 

shown in this work, which limits its generalization 
capabilities compared to the hybrid model.  
 

 
Fig. 10: Comparison of deep learning algorithms 
 
4.3  Performance Results 
Following the training process, the RCNN model's 
performance is evaluated for both the training 
dataset and the test dataset to verify that it achieves 
good results with previously unseen cases. In this 
manner, excellent performance is achieved in the 
JACC and JACCUE indices, with values exceeding 
98%, and a good performance is observed in the 
JACCUE index, with a percentage greater than 
92%. As shown in Table 3, the performance of both 
datasets is very similar, demonstrating that the 
model was able to generalize its patterns effectively 
and achieve favorable results with new data.  
  

Table 3. RCNN Performance Results 
Performance metric Training data   Test data   

JACC [%] 99,42 99,3 
JACCU [%] 98,02 98 

JACCUE [%] 92,77 92,35 
 

To evaluate the effectiveness of the hybrid deep 
learning model, it has been used the performance 
results of the two other DL algorithms analyzed 
(CNN, LSTM). This comparison aims to 
demonstrate the improvement achieved by 
combining these two methodologies in the proposed 
RCNN hybrid model. The performance results of 
these three models are presented in Table 4. 

 
Table 4. Performance Results for CNN and LSTM 

Models on test data 
Performance 

metric 

CNN   LSTM   RCNN 

JACC [%] 99 99,36 99,3 
JACCU [%] 96,4 97,38 98 

JACCUE [%] 77,64 86,47 92,35 
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As evidenced in Table 4, the best accuracy 
results are obtained with the RCNN model. While 
the CNN and LSTM models achieve good 
performance for the JACC and JACCU indices. The 
index that reflects the effectiveness of the task 
(JACCUE) to be performed is up to 15% lower 
compared to the model designed in this work. 
Therefore, the constructed RCNN model not only 
provides outstanding performance metrics but also 
proves to be more efficient in its training process 
compared to other neural network-based models. 
 
4.4  RCNN Real-time Application 

The application of the AGTS requires the real-time 
implementation of the RCNN model. The evaluation 
delay for the problem depends on the length of the 
window chosen for the classification tasks of critical 
generation and the computational capacity of the 
system on which it is implemented. Given the time 
necessary for the model implementation and the 
external delay in real-time operation, Fig. 11 
illustrates the total time required for the real-time 
application of the scheme. This figure illustrates the 
time window considered for measurement (1), (2), 
the acquisition of that data by the PMUs, and their 
transmission (3) as well as the application of the 
model in real-time (5), accounting for both pre-
processing (4) and the signal transfer times for 
activating the scheme (6) and finally the action of 
the switches (7). 
 

 
Fig. 11: Timeline of the real-time application of the 
scheme 

 
In Fig. 12, a real-time event simulation is 

illustrated, showcasing the time required for the 
application of the methodology. Although the time 
needed for model calculations and preprocessing is 
sufficient to act 300 ms after data acquisition, an 
additional 100 ms is allowed to account for delays. 
The control action is performed at 0.5 seconds, 
considering the calculation times and delays of 400 
ms, meaning 

400 ms after the start of the dynamic simulation 
when the failure occurs at 100 ms. Furthermore, the 

0.5 seconds also represents the latest moment in the 
most critical case from the database before reaching 
180º. In this sense, the times considered are 
sufficient to prevent instability in the case that loses 
transient stability more quickly. The data acquisition 
times, signal transfer times, and switch action were 
taken from references, [31], [32]. 

Additionally, it is possible to observe in Figure 
12 the difference in scheme activation at 0.5 
seconds in the dynamic response for a generator, as 
when the control action is taken, the machine 
remains in synchronism (blue), in contrast to the 
instability evidenced in orange when this action is 
not performed. 

 

 
Fig. 12: Real-time case simulation 
 
 
5  Conclusions 
The proposed AGTS was evaluated in a controlled 
simulation environment using the commonly 
referenced IEEE New England 39-bus test system 
Achieving good results. The main conclusions are as 
follows: 

 The methodology presents a promising 
alternative to traditional generation 
disconnection schemes, as compared to 
these, the AGTS considers a vast array of 
operational scenarios and contingencies. 
Based on the system's dynamic response to 
these disturbances, it determines a specific 
generation disconnection scheme. On the 
other hand, the methodology involves using 
a limited number of Phasor Measurement 
Units (PMUs), needing their deployment 
only at buses with synchronous generation. 
In certain countries [33]Regulations require 
that these generators be equipped with this 
monitoring technology, making the 
methodology easily applicable. 
Additionally, synchronous generators are 
equipped with automatic tripping, allowing 
for the methodology to be easily applicable, 
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similar to how a widely used conventional 
automatic generation disconnection scheme 
would be implemented. 

 This study presents a methodological 
framework for developing an AGTS that 
can be applied to any network, given its 
independence from topology. The primary 
requirement is to obtain a complete database 
for model training. It is noteworthy that if 
the topology changes, the model will need 
to be retrained. The time required for this 
retraining can vary depending on 
computational resources; in the case of the 
computer used in this research, the training 
took between 25 and 30 minutes. 

 The results of the RCNN model 
demonstrate high adaptability to operating 
conditions and the system's response to 
different contingencies. Additionally, it 
shows advantages due to the minimal 
disconnection of plants needed to maintain 
the system in a stable state. 

 The performance metrics results of the 
RCNN model show high accuracy in 
avoiding system collapse in more than 92% 
of cases. Additionally, this model is 
superior to other deep learning models, such 
as convolutional networks or LSTM 
networks separately. 

 The analysis of the design and training of 
the RCNN model demonstrates that it does 
not exhibit overfitting during the learning 
process. This indicates that the model 
performs well with previously unseen cases. 

 Considering the times for both calculations, 
as well as the delays within the system for 
activating the emergency control scheme, it 
is shown that the methodology can be used 
in real-time. An estimated processing time 
of 300 ms is sufficient to carry out the 
necessary actions before stability is lost and 
the system collapses. 

 As one of the pillars of this work, the 
importance of having PMU measurements 
at generation buses is demonstrated. While 
some PMUs can estimate the rotor angle, 
this is not the case for most technologies on 
the market. In this regard, it is proposed as 
future work to develop a methodology to 
estimate this angle based on voltage angle 
measurements and other measurements 
typically provided by PMUs. 

 Although the methodology was validated 
using a widely used test system, it does not 

account for the penetration of non-
conventional renewable generation. In this 
regard, the application of this methodology 
and the results obtained from a test system 
with these characteristics would be of great 
significance, considering current trends. 
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