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Abstract: This paper investigates the reduced-order observer-based containment control problems of general linear
multi-agent systems (MASs) with multiple interaction leaders. Assuming that (A, B, C) is stabilizable and de-
tectable and the directed graph is weakly connected, we establish the necessary and sufficient containment control
criteria for continuous-time MASs and discrete-time MASs, respectively. Our main results show that the eigen-
values of the Laplacian matrix, the communication topology graph, the selection of protocol parameters and gain
matrices play an important role in the achievement of containment control. Finally, numerical simulations are
given to illustrate our main results.
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1 Introduction

In recent years, cooperative control of multi-agent
systems has made great progress due to the rapid and
sustainable developments of computer science and
communication technologies. It has attracted more
and more attention in a wide range including system
control theory, applied mathematics, biology, commu-
nication, computer science and so on. This is part-
ly due to its challenging features and many applica-
tions in multiple spacecraft alignment, rendezvous of
multiple vehicles, cooperative surveillance and so on.
For multi-agent systems, consensus is an importan-
t and fundamental problem, which generally mean-
s to develop distributed control protocols such that
the agents reach an agreement on a state of inter-
est. The consistent value might represent physical
quantities such as altitude, position, voltage and so
on. Consensus algorithms were studied in [1-5] for
a group of single, double and high-order integrators
under fixed/switching network topologies. The rela-
tively complete coverage on consensus can be found
in [6-7].

The earlier mentioned references mainly focus on
consensus for a group of agents without any leader or
with only a leader. However, in some practical appli-
cations, there may exist multiple stationary or dynam-
ic leaders in the agent network. In the case of multiple
leaders, the agents can fulfill more complicated tasks
and the containment control problem arises, where the

followers are driven into a given geometric space s-
panned by the leaders. As a kind of cooperative con-
trol, containment control has several potential applica-
tions. For instance, a flock of autonomous agents (des-
ignated as leaders) equipped with necessary sensors
to detect the obstacles can be used to safely maneu-
ver another flock of agents (designated as followers)
from one target to another, such that the followers are
contained within the safety area formed by the lead-
ers. Containment control of multi-agent systems was
put forward firstly in [8]. In [9], containment control
of general linear multi-agent systems under weakly
connected topologies was studied, where it assumed
that the system state can be obtained directely. Sup-
pose that distributed dynamic containment controllers
were based on the relative outputs of the neighboring,
[10] obtained the sufficient conditions to achieve con-
tainment control with full-order observer-based proto-
col, but there existed no interaction between leaders.
Based on [10], the authors in [11] studied the contain-
ment control problems with full-order observe-based
protocol, whereas, there existed interaction between
leaders. The full-order observer constructs an esti-
mate of the entire state, while part of the state informa-
tion is already reflected in the system output. Because
of this, the author in [12] proposed a reduced-order
observer-based protocol and studied the containmen-
t control of multi-agent systems. However, [12] ne-
glected the interaction between leaders.

Motivated by the above discussions, this pa-
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per will focus on investigating the reduced-order
observer-based containment control problems of gen-
eral linear multi-agent systems with multiple inter-
action leaders. In addition, this paper investigates
the containment control with continuous-time and
discrete-time protocol under weakly connected topol-
ogy, respectively. The main contributions of this
paper are as follows. Firstly, compared with previ-
ous papers that study the multi-agent systems with
first-order or second-order dynamics, this paper in-
vestigates the containment control with general linear
system. Secondly, compared with [11], we study the
reduced-order observer-based protocols, which can e-
liminate the redundancy of the system. Thirdly, com-
pared with [12], we study the containment control
with multiple interaction leaders. Consequently, we
get the necessary and sufficient conditions of achiev-
ing containment control and we select the parameters
to guarantee the achievement of containment control.

This paper is organized as follows. In Section 2,
we introduce some graph knowledge and basic defini-
tions. Our main results are given in Section 3. Several
examples are given in Section 4 to illustrate the effec-
tiveness of our results. Conclusions are finally drawn
in section 5.

1.1 Notations

We use standard notations throughout this paper.
Given a complex number λ ∈ C , Re(λ), Im(λ) and
|λ| are the real part, the imaginary part and the modu-
lus of λ, respectively. i is the imaginary unit. The su-
perscript ⊤ means transpose for real matrices and H
means conjugate transpose for complex matrices. Let
Rn×n be the set of n×n real matrix. M > 0(M < 0)
means that matrixM is positive definite (negative def-
inite). In represents the identity matrix of dimension
n, and I denotes the identity matrix of an appropri-
ate dimension. det(·) represents the determinant of a
matrix. A ⊗ B denotes the Kronecker product. Ma-
trices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2 Preliminaries

In this section, some graph theory knowledge and
definitions are presented.

2.1 Graph theory

It is natural to model information exchange a-
mong agents by weighted directed graphs. G =

{V ,E ,A } is a weighted directed graph, where V =
{v1, · · · , vn} is a finite nonempty node set, E ∈
V × V is an edge set, and A = [aij ] ∈ Rn×n

is a weighted adjacency matrix with nonnegative el-
ements. In this paper, aii = 0 for i = 1, · · · , N , and
aij > 0 implies that there is an edge from vj to vi.
Let D = [dij ] ∈ Rn×n be a row-stochastic matrix
with the additional assumption that dii > 0, dij > 0 if
(vj , vi) ∈ E and dij = 0 otherwise. An edge (vi, vj)
in a weighted directed graph denotes that agent j can
obtain information from agent i, but not necessarily
vice versa. The set of neighbors of node i is denoted
by Ni = {vj ∈ V : (vj , vi) ∈ E , j ̸= i}.

A directed path in a directed graph G is a se-
quence (vi1 , · · · , vik) of vertices such that for s =
1, · · · , k − 1, (vis , vis+1) ∈ E and a weak path, with
either (vis , vis+1) ∈ E or (vis+1 , vis) ∈ E . A weak
path in a directed graph G is a sequence (vi1 , · · · , vik)
of vertices such that for s = 1, · · · , k − 1, either
(vis , vis+1) ∈ E or (vis+1 , vis) ∈ E . A directed tree
is a directed graph, where every node, except for the
root, has exactly one parent. A directed spanning tree
is a directed tree, which consist of all the nodes and
some edges in G . A directed graph G is strongly con-
nected if between every pair of distinct vertices vi, vj
in G , there is a directed path that begins at vi and ends
at vj , and is weakly connected if any two vertices can
be jointed by a weak path. A strong component of a
directed graph is an induced subgraph that is maximal,
subjected to being strongly connected.

The Laplacian matrix L = [lij ] ∈ Rn×n of G is
defined as

lij =


n∑

k=1,k ̸=i
aik, i = j;

−aij , i ̸= j.

The in-degree and out-degree of node i are, re-
spectively, defined as degin(i) =

∑
j∈Ni

aij ,

degout(i) =
∑
j∈Ni

aji. The degree matrix is an n × n

matrix defined as D = [d̃ij ], where d̃ij = degin(i)

for i = j, otherwise, d̃ij = 0. Then the Laplancian
matrix of the graph G can be written as L = D − A .

In this paper, the definition of condensation di-
rected graph of G (A ) is the same as [9]. Let Ḡ (Ā )
be the condensation directed graph of G (A ), where
the vertex set consists of all the strong components
of G (A ), i.e., denote v̄i as the strong component Gi.
There is an edge between a pair of distinct vertices
v̄i and v̄j , where i ̸= j, in Ḡ (Ā ) if and only if
there exists vi ∈ V (Gi) and vj ∈ V (Gj), such that
(vi, vj) ∈ E (G (A )).
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2.2 Definitions

In this subsection, we give some basic definitions
below.

Definition 1. For a directed graph Ḡ (Ā ). We define
the vertices with 0 in-degree as leaders, and the others
as followers.

In this paper, we assume that there are M leaders
and S −M followers.

Definition 2. For a directed graph G (A ). We define
the vertices in the leaders set as boundary vertices,
and the others as internal vertices.

Definition 3. [13] A set K ∈ Rm is said to be convex
if (1 − γ)x + γy ∈ K for arbitrary x ∈ K, y ∈ K
and 0 < γ < 1. The convex hull of a finite set
of points x1, · · · , xn ∈ Rm is the minimal convex
set containing all points xi, i = 1, · · · , n, denoted
by co{x1, · · · , xn}. Particularly, co{x1, · · · , xn} =

{
n∑
i=1

αixi|αi ∈ R,αi > 0,
n∑
i=1

αi = 1}.

Definition 4. If the leaders in the same strong com-
ponent achieve consensus asymptotically, and all the
followers converge to the convex hull spanned by the
leaders, then the containment control achieved.

3 Containment Control Analysis

In this section, we assume that the directed graph
is weakly connected and each agent has access to
the relative output measurements with respect to it-
s neighbors. Next, we will analyze the contain-
ment control of multi-agent systems with reduced-
order observer-based continuous-time protocol and
discrete-time protocol, respectively.

3.1 Continuous-time case

Consider N agents with general linear dynamics
as follows{

ẋi(t) = Axi(t) +Bui(t), t ∈ R+,
yi(t) = Cxi(t), i = 1, · · · , N, (1)

where xi(t) ∈ Rn is the state, ui(t) ∈ Rp is the con-
trol input, and yi(t) ∈ Rq is the measured output.
A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n are the system ma-
trix, input matrix and the output matrix, respectively.
Without loss of generality, C is assumed to have full
row rank.

Here, we adopt the same reduced-order observer-
based continuous-time protocol as shown in [12]

v̇i = Fvi +Gyi + TBui,

ui = cKQ1

∑
j∈F∪R

aij(yi − yj)

+cKQ2

∑
j∈F∪R

aij(vi − vj), (2)

where i ∈ F ∪ R, vi ∈ Rn−q is the protocol state,
c > 0 is the coupling strength, F ∈ R(n−q)×(n−q) is
hurwitz and has no eigenvalues in common with those
of A, G ∈ R(n−q)×q, T ∈ R(n−q)×n is the unique
solution to the following Sylvester equation:

TA− FT = GC, (3)

which further satisfies that
[
C
T

]
is nonsingular, Q1 ∈

Rn×q and Q2 ∈ Rn×(n−q) are given by
[
Q1 Q2

]
=[

C
T

]−1

, and K ∈ Rp×n is the feedback gain matrix to

be designed.

Remark 5. The full-order observer-based protocols
give an estimate of all the state, in practice, part of the
information has already reflected in the system out-
put. The reduced-order observer-based protocol pro-
posed here eliminate this redundancy compared with
full-order observer and thereby can considerably re-
duce the dimension of the system.

Let zi = [x⊤i , v
⊤
i ]

⊤ and z = [z⊤1 , · · · , z⊤N ]. Then,
system (1) with protocol (2) can be written as

ż(t) = (IN ⊗M+ cL ⊗H)z(t), (4)

where L is the Laplacian matrix of G , M =[
A 0
GC F

]
,H =

[
BKQ1C BKQ2

TBKQ1C TBKQ2

]
.

Let εi(t) =
∑

j∈F∪R
aij(zi(t)− zj(t)), i ∈ F ∪R.

Then, we obtain

ε(k + 1) = (L ⊗ I2n−q)z(k)

= (L ⊗ I2n−q)(IN ⊗M+ cL ⊗H)

(L−1 ⊗ I2n−q)ε(k)

= (IN ⊗M+ cL ⊗H)ε(k). (5)

Suppose that the directed graph is weakly con-
nected and containsM(M ≥ 1) zero in-degree strong
components, then the Laplacian matrix L can be writ-
ten as

L =



L11 0 · · · 0 0 · · · 0
0 L22 · · · 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

. . . .

.

.

.
0 0 · · · LMM 0 · · · 0

LM+1,1 LM+2,1 · · · LM+1,M LM+1,M+1 · · · 0

.

.

.
.
.
. . . .

.

.

.
.
.
.

. . .
.
.
.

LS1 LS2 · · · LS,M LS,M+1 · · · LSS


,
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where Lii ∈ Rni×ni is the Laplacian matrix corre-
sponding to the strong component Gi, 1 ≤ i ≤M .

Lemma 6. [9] Suppose that directed graph G (A ) is
weakly connected and L is the Laplacian matrix of
G . Then Rank(L) = N −M if and only if G (A )
contains M zero in-degree strong components.

Let V (G1) = {v1, v2, · · · , vk1},
V (G2) = {vk1+1, vk1+2, · · · , vk2}, · · · ,
V (GM ) = {vkM−1+1, vkM−1+2, · · · , vkM},

V (G )\V (∪Mi=1) = {vkM+1, vkM+2, · · · , vkM+1
},

where k1 = n1, k2 = k1 + n2, · · · , kM = kM−1 +
nM , kM+1 = kM + nM+1 + · · · + ns. Then, the
Laplacian matrix becomes

L =


L11 0 · · · 0 0
0 L22 · · · 0 0
...

...
. . .

...
...

0 0 · · · LMM 0
LM+1,1 LM+1,2 · · · LM+1,M LM+1,M+1



Remark 7. From the notations above, we know ni is
the number of agents in Gi, i = 1, · · · ,M.

From the Definition 2, we can obtain that vi, i =
1, 2, · · · , kM are the boundary vertices and vi, i =
kM + 1, · · · , kM+1 are the internal vertices.

Let z̄1 = [z⊤1 , · · · , z⊤k1 ]
⊤,

z̄2 = [z⊤k1+1, · · · , z⊤k2 ]
⊤, · · · ,

z̄M+1 = [z⊤kM+1, · · · , z⊤kM+1
]⊤, then (4) can be

rewritten as follows


˙̄z1(t)
˙̄z2(t)

.

.

.
˙̄zM (t)

˙̄zM+1(t)

 =



L̄11 0 · · · 0 0
0 L̄22 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · L̄MM 0

L̄M+1,1 L̄M+1,2 · · · L̄M+1,M L̄M+1,M+1



×



z̄1(t)
z̄2(t)

.

.

.
z̄M (t)

z̄M+1(t)

 , (6)

where L̄ii = Ini ⊗ M + cLii ⊗ H, L̄M+1,i =
cLM+1,i ⊗ H, , i = 1, · · · ,M, and L̄M+1,M+1 =
InkM+1−kM

⊗M+ cLM+1,M+1 ⊗H.
Next, we will give the necessary and suffi-

cient containment control criteria for MASs with
continuous-time reduced-order observer-based proto-
col as follows.

Theorem 8. Assume that the directed graph G (A )
is weakly connected and contains M zero in-degree
strong components. System (1) under observer-based
protocol (2) achieves containment control if and only

if A+ cλiBK is Hurwitz stable, λi ∈ ∧+(L). Specif-
ically, the final states of the leaders and followers are
given as

lim
t→∞

z̄i(t) = lim
t→∞

1ni f̄
⊤
i ⊗ eMtz̄i(0), i = 1, · · · ,M,

lim
t→∞

z̄M+1(t) = − lim
t→∞

L−1
M+1,M+1

×[LM+1,1,LM+1,2, · · · ,LM+1,M ]

 z̄1(t)...
z̄M (t)

 .(7)

Proof. (Sufficiency.) From Lemma 6, we know that
the algebraic multiplicity of eigenvalue 0 of the Lapla-
cian matrix L is M. Let

ωr1 =


1n1

0n2×1
...

0nM×1

−L−1
M+1,M+1LM+1,11n1

 , · · · ,

ωrM =


0n1×1

0n2×1
...

1nM

−L−1
M+1,M+1LM+1,M1nM

 .

It’s easy to get that Lωri = 0 · ωri, i =
1, · · · ,M . Moreover, ωri are linearly independen-
t vectors, and we can get that the geometric mul-
tiplicity of eigenvalue 0 is also M . Let ωl1 =
[f̄⊤1 , 0, · · · , 0, 0], · · · , ωlM = [0, 0, · · · , f̄⊤M , 0]. We
can get that ω⊤

liL = 0 · ω⊤
li , i = 1, · · · ,M.

Then the Laplacian matrix L can be written in Jor-
dan canonical form as follows

J = W−1LW

=



ω⊤
l1
...

ω⊤
lM

ω⊤
l,M+1

...
ω⊤
lN


L
[
ω⊤
r1 · · · ω⊤

rM ω⊤
r,M+1 · · · ω⊤

rN

]

=


0

. . .
0

J1

 ,

where J1 ∈ C(N−M)×(N−M) is the Jordan upper
diagonal block matrix whose diagonal entries are the

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Fang Yan, Dongmei Xie

E-ISSN: 2224-2856 154 Issue 4, Volume 8, October 2013



positive eigenvalues of L. Then, we can get that

(W−1 ⊗ I2N )(IN ⊗M+ cL ⊗H)(W ⊗ I2N )

= IN ⊗M+ cW−1LW ⊗H

=


M

M
M

IN−M ⊗M+ cJ1 ⊗H

 , ∆.

Set Q =

[
I 0
−T I

]
. One obtains that

Q(M+ cλiH)Q−1

=

[
A+ cλiBK(Q1C +Q2T ) cλiBKQ2

−AT +GC + FT F

]
=

[
A+ cλiBK cλiBKQ2

0 F

]
.

Since A+ cλiBK and F are Hurwitz stable, then

lim
t→∞

e(IN−M⊗M+cJ1⊗H)t = 0,

where λi is the positive eigenvalue of L, M,H,J1

are defined above.
Next, we will consider the solution of system (4).

lim
t→∞

z(t)

= lim
t→∞


z̄1(t)
z̄2(t)

...
z̄M (t)
z̄M+1(t)


= lim

t→∞
e(IN⊗M+cL⊗H)tz(0)

= lim
t→∞

(W ⊗ I2N )e
∆t(W−1 ⊗ I2N )z(0)

= lim
t→∞


1n1 f̄

⊤
1 ⊗ eMt 0
0 1n2 f̄

⊤
2 ⊗ eMt

...
...

0 0
QM+1,1 QM+1,2

· · · 0 0
· · · 0 0
. . .

...
...

· · · 1nM f̄
⊤
M ⊗ eMt 0

· · · QM+1,M 0

z(0),

where QM+1,i = −(L−1
M+1,M+1LM+1,i1ni f̄

⊤
i ) ⊗

eMt, i = 1, · · · ,M.

Then, we can get that the final states of boundary
agents in Gi are as follows

lim
t→∞

z̄i(t) = lim
t→∞

1ni f̄
⊤
i ⊗ eMtz̄i(0), i = 1, · · · ,M,

the final states of the followers are given as follows

lim
t→∞

z̄M+1(t)

= − lim
t→∞

L−1
M+1,M+1 ×

[LM+1,1,LM+1,2, · · · ,LM+1,M ]

 z̄1(t)...
z̄M (t)


As proved in [9], we can get that

−L−1
M+1,M+1[LM+1,1,LM+1,2, · · · ,LM+1,M ] is

a nonnegative matrix with row sums being 1, i.e.,
(1) −L−1

M+1,M+1[LM+1,1,LM+1,2, · · · ,LM+1,M ] ≥
0,
(2) −L−1

M+1,M+1[LM+1,1,LM+1,2, · · · ,LM+1,M ]1kM =
1kM+1−kM .
Moreover, the agent in the same strong component
can achieve consensus, then from Definition 4, system
(1) under reduced-order observer-based protocol (2)
achieves containment control.

(Necessity.) Suppose that there exists at least one
λi ∈ ∧+(L) such that A + cλiBK is not Hurwitz
stable, when λi ∈ ∧+(Lii), i = 1, · · · ,M, which
means the agents in the same strong component will
not achieve consensus, when λi ∈ ∧+(L+

M+1,M+1),
which means the internal agents will not converge to
the convex hull of boundary agents. Therefore, for all
λi ∈ ∧+(L), A+ cλiBK must be Hurwitz stable.

From Theorem 8, we can see even there exist-
s interaction between leaders, our containment con-
trol criteria is consistent with those shown in [12].
[12] proposes an algorithm to guarantee the achieve-
ment control of system (1). Specially, the contain-
ment control can be ascribed to the Hurwitz stable of
A + cλiBK. Then, we can choose the parameters as
follows.

◦ Let c =
1

min{Re(λi)}
, K = −B⊤P−1, where λi

is the i-th non-zero eigenvalue of L, P > 0 is the
solution of linear matrix inequality(LMI):

AP + PA⊤ − 2BB⊤ < 0.

◦ Let K = −B⊤Q−1, where Q > 0 is the solution of
LMI:

AQ+QA⊤ − 2BB⊤ + 2αQ < 0.

c is the same as above. Then, system (1) achieves
containment control with a convergence rate larger
than α.
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3.2 Discrete-time case

In this subsection, we adopt the following
discrete-time dynamics below

xi(k + 1) = Axi(k) +Bui(k),

yi(k + 1) = Cxi(k), i = 1, · · · , N, (8)

where xi(k), ui(k), yi(k) are the state, control input
and measured output at the current time instant, re-
spectively. A,B,C are the same as above.

Similar to the continuous-time case, we adopt the
following discrete-time observer-based protocol

vi(k + 1) = Fvi(k) +Gyi(k) + TBui(k),

ui(k) = KQ1

∑
j∈F∪R

dij(yi(k)− yj(k))

+KQ2

∑
j∈F∪R

dij(vi(k)− vj(k)), (9)

where i ∈ F ∪ R, vi ∈ Rn−q is the state of the
protocol, F ∈ R(n−q)×(n−q) is Schur stable and have
no eigenvalues in common with those of A, G ∈
R(n−q)×q, T ∈ R(n−q)×n is the unique solution of e-

quation (3), which further satisfies that
[
C
T

]
is nonsin-

gular, Q1 ∈ Rn×q and Q2 ∈ Rn×(n−q) are given by[
Q1 Q2

]
=

[
C
T

]−1

, and K ∈ Rp×n is the feedback

gain matrix to be designed, dij is the (i, j)-th entry of
the row-stochastic matrix D.

Let zi(k) = [x⊤i (k), v
⊤
i (k)], z(k) =

[z⊤1 (k), · · · , z⊤N (k)], we can get

z(k + 1) = (IN ⊗M+ (IN −D)⊗H)z(k), (10)

where M,H,D are defined above.
Let εi(k) =

∑
j∈F∪R

aij(zi(k)−zj(k)), i ∈ F∪R.

Then, we obtain

ε(k + 1) = (L ⊗ I2n−q)z(k + 1)

= (L ⊗ I2n−q)(IN ⊗M+ (IN −D)⊗H)

(L−1 ⊗ I2n−q)ε(k)

= (IN ⊗M+ (IN −D)⊗H)ε(k). (11)

Similar to the continuous-time case, D can be
written as

D =


D11 0 · · · 0 0
0 D22 · · · 0 0
...

...
. . .

...
...

0 0 · · · DMM 0
DM+1,1 DM+1,2 · · · DM+1,M DM+1,M+1

 . (12)

Let z̄1 = [z⊤1 , · · · , z⊤k1 ]
⊤,

z̄2 = [z⊤k1+1, · · · , z⊤k2 ]
⊤, · · · ,

z̄M+1 = [z⊤kM+1, · · · , z⊤kM+1
]⊤, we obtain

z̄1(k + 1)
z̄2(k + 1)

...
z̄M (k + 1)
z̄M+1(k + 1)

 = D̄


z̄1(k)
z̄2(k)

...
z̄M (k)
z̄M+1(k)

 ,

where D̄ii = Ini ⊗ M + (Ini − Dii) ⊗
H, L̄M+1,i = (Ini − DM+1,i) ⊗ H, i =
1, · · · ,M, and D̄M+1,M+1 = InkM+1−kM

⊗
M + (InkM+1−kM

− DM+1,M+1) ⊗ H, D̄ =
D̄11 0 · · · 0 0
0 D̄22 · · · 0 0
...

...
. . .

...
...

0 0 · · · D̄MM 0
D̄M+1,1 D̄M+1,2 · · · D̄M+1,M D̄M+1,M+1

,

Then, we will give the necessary and sufficien-
t conditions of achieving containment control with
discrete-time reduced-order observer-based protocol
(9) below.

Theorem 9. Assume that G (A ) is weakly connect-
ed and contains M zero in-degree strong compo-
nents. System (8) under observer-based protocol (9)
achieves containment control if and only if A + (1 −
λ̃i)BK is Schur stable, λ̃i ∈ ∧(D). Specifically, the
final states of the leaders and followers are given as

lim
t→∞

z̄i(k) = lim
t→∞

1ni f̄
⊤
i ⊗Mkz̄i(0), i = 1, · · · ,M,

lim
t→∞

z̄M+1(k) = lim
t→∞

(I −DM+1,M+1)
−1

× [DM+1,1,DM+1,2, · · · ,DM+1,M ]

 z̄1(k)...
z̄M (k)

 .
Proof. (Sufficiency.) Similar with the prove of Theo-
rem 1, there exists W such that

(W−1 ⊗ I2N )(IN ⊗M+ (IN −D)⊗H)(W ⊗ I2N )

= IN ⊗M+W−1(IN −D)W ⊗H

=


M

M
M

IN−M ⊗M+ (IN−M − ∧)⊗H

 ,
where ∧ is an upper-triangular matrix with 1− λi, λi
is the eigenvalue of D except 1.

Then, we can get

Q(M+ cλiH)Q−1

=

[
A+ cλiBK cλiBKQ2

0 F

]
.
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where Q is defined above.
By system (10),we get

lim
k→∞

z(k)

= lim
t→∞


z̄1(t)
z̄2(t)

...
z̄M (t)
z̄M+1(t)


= lim

k→∞
(IN ⊗M+ (IN −D)⊗H)kz(0)

= lim
k→∞

(W ⊗ I2N )(


M 0 · · · 0 0
0 M · · · 0 0
...

...
. . .

...
...

0 0 · · · M 0
0 0 0 0 Θ

)k

(W−1 ⊗ I2N )z(0)

=


1n1 f̄

⊤
1 ⊗Mk 0
0 1n1 f̄

⊤
2 ⊗Mk

...
...

0 0
SM+1,1 SM+1,2

· · · 0 0
· · · 0 0
. . .

...
...

· · · 1n1 f̄
⊤
M ⊗Mk 0

· · · SM+1,M 0

z(0),

where SM+1,i = (I −DM+1,M+1)
−1DM+1,i1ni f̄

⊤
i ,

i = 1, · · · ,M,Θ = IN−M ⊗M+(IN−M −Ω)⊗H,
W and W−1 is defined above.

Then, we can get that the final states of agents in
Gi are as follows

z̄i(k) → 1ni f̄
⊤
i ⊗Mkz̄i(0), i = 1, · · · ,M,

the final states of the followers are given as follows

lim
t→∞

z̄M+1(k)

= lim
t→∞

(I −DM+1,M+1)
−1

× [DM+1,1,DM+1,2, · · · ,DM+1,M ]

 z̄1(k)...
z̄M (k)

 .
The rest prove is similar to Theorem 8, and it’s omit-
ted here for lack of space.

(Necessity.) Similar to Theorem 8, and it’s omit-
ted here.

From Theorem 9, we can see even there exist-
s interaction between leaders, our containment con-
trol criteria is consistent with those shown in [12].

[12] proposes an algorithm to guarantee the achieve-
ment control of system (8). Specially, the contain-
ment control can be ascribed to the Schur stable of
A + (1 − λ̃i)BK. Then, we can choose the parame-
ters as follow.

◦ Choose K = −(B⊤PB+ I)−1B⊤PA, where P >
0 is the solution of the modified algebraic Riccati
equation (MARE):

P = A⊤PA− (1− max
|λ̃i|<1

|λ̃i|2)A⊤PB(B⊤PB +

I)−1B⊤PA+Q,

Q > 0, λ̃i is the i-th eigenvalue of D.

4 Simulations

In this section, several examples are given to il-
lustrate our main results about continuous-time case
in this paper.

Example 1. Assume that the directed graph is
given by Fig.1, then the Laplacian matrix is shown as
follows, where agent 1, agent 2, agent3 and agent 8,
agent 9 are boundary agents, the others are internal
agents.

����
3

����
1

�
�	 ����

2-
@

@I

����
8 ����

9-�

����
4 ����

5
? ?

����
6 ����

7

�

?
-

?

Fig. 1 A weakly connected directed graph.

L =



1 0 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 −1 0 2 −1 0 0 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 −1 0 1 0 0 0
0 0 0 0 −1 −1 2 0 0
0 0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 −1 1


.

The dynamics in (1) are given as

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
.

In addition, choose F = −2, G = −1. From
equation (3), we can obtain T = [−0.50.25].
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Then, we can get Q1 =

[
1
2

]
, Q2 =

[
0
4

]
. Choose

K = [−0.8543 − 2.5628], c ≥ 1. Let initial state be
[−5,−1, 2, 5, 4, 1,−5, 2, 0,−1, 2, 1, 2, 1, 2, 3, 2,−3, 4,
2, 4, 6, 3, 5,−6, 0, 4]. From Fig.2- Fig.4, we get that
the containment control can be achieved.
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Fig.2 Trajectories of x1 under continuous-time
protocols.
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Fig.3 Trajectories of x2 under continuous-time
protocols.

Example 2. Still see Fig.1, choose A,B,C, F,,
G,T,Q1, Q2 and the initial state the same as the
above example, select α = 1,K = [−5.1121 −
3.6481]. From Fig.5 - Fig.7, we obtain that the con-
tainment control can be achieved with a convergence
rate larger than 1.

5 Conclusion
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Fig.4 Trajectories of v under continuous-time
protocols.
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Fig.5 Trajectories of x1 under continuous-time
protocols.

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

time

st
at

e(
x)

 

 
agent1
agent2
agent3
agent4
agent5
agent6
agent7
agent8
agent9

Fig.6 Trajectories of x2 under continuous-time
protocols.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Fang Yan, Dongmei Xie

E-ISSN: 2224-2856 158 Issue 4, Volume 8, October 2013



0 5 10 15 20
−20

−15

−10

−5

0

5

time

ob
se

rv
er

 s
ta

te

 

 
agent1
agent2
agent3
agent4
agent5
agent6
agent7
agent8
agent9

Fig.7 Trajectories of v under continuous-time
protocols.

This paper studies the reduced-order observer-
based containment control problems for multi-agent
systems with multiple interaction leaders, where the
interaction topology is weakly connected. Neces-
sary and sufficient containment control criteria are es-
tablished for both continuous-time and discrete-time
multi-agent systems, respectively. Our main result-
s show that the eigenvalues of the Laplacian matrix,
the communication topology graph, the selection of
protocol parameters and gain matrices play an impor-
tant role in the achievement of containment control.
Our future work includes (observer-based) contain-
ment control for multi-agent systems with interaction
leaders and time-delays, since time-delays are ubiqui-
tous. This is an interesting and challenging research
problems deserving further investigation.
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