
Singular Perturbation Method Applied to Power Factor Correction 

Converter Application 

KISHOR BABU GUNTI 
Department of Electrical and Electronics Engineering  

Gudlavalleru Engineering College  
Gudlavaller  

INDIA. 
 

SREE KRISHNARAYALU MOVVA 
Department of Electrical and Electronics Engineering 

V.R Siddhartha Engineering College    
Vijayawada  

INDIA 
 

Abstract: -  A linear discrete stable control system is considered. The Power Factor Correction (PFC) converter 
to allow independent control of current and voltage. It converter are fast and slow states to inheres sty present 
small parameters inductor and capacitor its computes stiffness and to include switching ripple effects. As an 
alternative a Singular Perturbation Method (SPM) is presented Initial Value Problem (IVP) and Boundary Value 
Problem (BVP). It is applied to two state switching power converters to provide rigorous justification of the time 
scale separation. It is modeled as a one parameter singularly perturbed system. SPM consists of an outer series 
solution and one boundary layer correction (BLC) solution. A boundary layer correction is required to recover 
the initial conditions lost in the process of degeneration and to improve the solution. SPM is carried out up to 
second-order approximate solution for the PFC converter model for IVP and BVP. The results are compared 
with the exact solution (between with and without parameters). The results substantiate the application. 
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1 Introduction 

The singularly perturbed systems are ill-
conditioned systems with computational stiffness. 
Hence exact solution of these systems requires 
special numerical methods to overcome this stiffness. 
The SPM removes the stiffness of the system, 
reduces the order of the system and satisfies all the 
specified boundary conditions thereby giving a 
solution very close to the exact solution. The 
singularly perturbed systems are time-scale systems. 
A two-time scale system results in one parameter 
singularly perturbed system. A three-time scale 
system results in a two parameter singularly 
perturbed system. Similarly a Multi Time Scale 
(MTS) system results in n parameter singularly 
perturbed system. MTS systems are highly stiff 
exhibiting chaotic behavior with butterfly 
phenomenon. Obviously these systems need an 

alternative. The alternative is SPM. The singular 
perturbation theory is well developed for continuous-
time control systems [1], [2], [3], [4], [5] compared 
to discrete-time control systems [6], [7], [8], [9], 
[10], [11], [12], [13], [14], [15], [16], [17]. Chaos 
associated with multiple time-scales exhibiting 
butterfly phenomenon [18]. [19], [20], [21] creates 
hurdles for finding the solution. 

Conventional wisdom in power electronics is 
that in DC–DC converters and many other 
applications, inductor currents are “fast” state 
variables, while capacitor voltages are “slow” state 
variables. Often, this is used as justification for a 
particular design methodology or control scheme as 
singular perturbation method. As power conversion 
densities increase, switching frequencies increase, 
control bandwidths increase, and components are 
miniaturized, a designer should wonder whether the 
conventional wisdom is still valid. Frequently, 
controllers for DC–DC converters use two loops: an 
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inner current loop and an outer voltage loop. The 
current loop can take many forms. If there is a 
separation in timescales between the current 
dynamics and voltage dynamics, the two loops can be 
designed independently.  

While timescale separation, removes the 
stiffness of the system and reduces the order of the 
system are important for many DC–DC converters, 
power factor correction converters require singular 
perturbation method for proper operation. The 
objective of a PFC converter is to force an inductor 
current to follow the input voltage wave shape 
(normally a rectified sinusoid), while the output 
capacitor voltage is as close to dc as possible [22]. 
The typical solution is to use a large output capacitor 
to smooth out the power fluctuations from the input. 
Hence, reduce error between with separation and 
without separation by SPM. 

Here a singular perturbation theory for DC–
DC Converters and application to PFC Converters 
with two time scales is considered as a case study. It 
is modeled as a one parameter SPS then IVP and 
BVP are studied using the SPM extended up to 
second-order approximation  

Singular perturbation theory [2] is a tool for 
formally partitioning a dynamic system into slow and 
fast variables. The two timescales differ in scale by a 
small parameterε. The fast variables, denoted here as 
x1, are related to the slow variables, denoted as x0, 
by an integral manifold (an algebraic relation) plus a 
small dynamic error parameter ε.  

2. Singular Perturbation Method 

I. Discrete  Multi-Parameter  Problem 

 The multi-parameter discrete control systems are 
being studied extensively. From control view here we 
present the Discrete Multi-Parameter Singular 
Perturbation Method (DMPSPM) in state space form. 
Consider the linear, singularly perturbed multi-
parameter discrete control system. This can be 
represented as 

xj(k+1) = A [μ0… μ j  xj(k)] + B u(k)       (1a)                                                
xj(k+1) = A [ε0…εj  xj(k)] + B u(k)        (1b)                                                 

 xj(k = 0) =  xj(0),  j = 0, 1, …, n. 

where A=  [

A11 A12 … A1m

A21 A22 … A2m

⋮
Am1

⋮
Am2

⋮ ⋮
… Amm

],  B = [

B1

B2

⋮
Bm

] 

and state vector  xj−1 (k) ∈ Rnj,  j=1, 2, …, m; m 
= n+1. Aij and Bi are matrices of suitable 
dimensionality. The control vector free of the small 
parameters is u(k)∈ Rr . Redefined the parameters as 

ε1 = μ1and εj =
μj

μj−1
, j = 2, … , n. The parameter 

ε0 = μ0,   ε1  is not a small parameter and is 
introduced to facilitate the presentation of the multi-
parameter problem. The initial conditions of the 
system (1b) are  

xj(k = 0) =  xj(0), j = 0, 1, …, n.                  (1c)                                           
The (n1+n2+…+nm) order discrete TPBVP 
represented by (1) is said to be in singularly 
perturbed form based on the degenerate TPBVP 

[
x0

0…0(k + 1)

xj
0…0(k + 1)

] = A [x0
0…0(k)

0
] +  B u(k),    

                              j = 1, 2, …, n.                          (2a)                                                                            
obtained by suppressing the small parameters 
ε1, ε2, … , εn in (2a) is of order n1 and can satisfy the 
boundary conditions of slow modes only, resulting in              
x0

00…0(k = 0) = x0(0) and  xj
00…0(k = 0) ≠ xj(0),  

                      j = 1, 2,…, n.                                    (2b)                                            
The (n2+…+nm) initial condition missing in the 

process of degeneration are restored by the following 
singular perturbation method. 
II. Initial and Boundary Value Problems for 

Singular  Perturbation  Method  

(a).Outer solution 

 Asymptotic expansions for the outer solution are 
expressed in terms of the small parameters as 
{xv,o(k)}=∑ [xv

ij…rq
i,j,…,r≥0 (k)]ε1

i ε2
j

… εn
r ,   

                           v = 0, 1, …, n.                               (3)                                                                                                      
for qth order of approximation. By substituting (3) 

in (1b) and equating like powers of the small 
parameter a set of equations may be obtained. (2a) is 
the resulting zero-order equation. We can get 
equations may be obtained for n≥3.  
(b). Boundary layer correction (BLC) solutions 

 In order to get back the boundary conditions lost 
due to degeneration, to supply the required boundary 
conditions to solve the outer and BLC equations and 
to get a distinctive solution, the following 
transformations need to be applied for the n boundary 
layer corrections. 
Transformations for BLC:  
 x0ci(k) =  x0(k)/(ε1. . . εi)

k+1, i=1, 2…, n;                                      
 x1c1(k) =  x1(k)/(ε1)k ;                                               
 x1ci(k) =  x1(k)/(ε1

k(ε2 … εi)
k+1), i=2, 3, …, n. 

 x2ci(k) =  x2(k)/(ε1 … εi)
k, i=1, 2; 

 x2ci(k) =  x2(k)/((ε1ε2)k(ε3 … εi)
k+1) ,i=3,..., n; 

     …                     … 
 xnci(k) =  xn(k)/(ε1 … εi)

k,i=1,2,…,n.           (4)                                                                                                                                        
Here suffix c refers to initial boundary layer 

correction.  
 
 

BLC Equations: 
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 BLC equations may be obtained by seeking 
asymptotic expansions for n initial BLC as   
 {xvcs(k)}= ∑ {xvcs

ij…r(k)}
q
ij…r≥0 ε1

i ε2
j

… εn
r ;    

                                 v = 0, 1, … n. s = 1, 2, …, n.  (5)                                 
for qth order of approximation. By substituting (5) 

in (4) and collecting the coefficients of like powers of 
the small parameters ε1,  ε2, … , εn;  a set of 
subsystems for BLC may be obtained. 
 (c). Total series solution (TSS) 

  For a desired order of approximation q, the total 
series solution of states x(k) may be obtained from 
outer and BLC solutions as  
 x0

q(k)

= ∑ {x0
ij…r(k)}ε1 

i ε2
j

… εn
r

q

i,j,…,r≥0

+ ∑ (ε1 … εs)k+1
n

s=1
∑ {x0cs

ij…r(k)}ε1 
i ε2

j
… εn

r
q

i,j,…,r≥0
 

 xf
q(k)

=  ∑ {xf
ij…r(k)}

q

i,j,…,r≥0

ε1 
i ε2

j
… εn

r

+ ∑ (ε1 … εs)k
f

s=1
∑ {xfcs

ij…r(k)}ε1 
i ε2

j
… εn

r
q

i,j,…,r≥0

+ ∑ (ε1 … εf)
k

n

s=f+1
(εf+1 … εs)k+1 

∗ ∑ {xfcs
ij…r(k)}ε1 

i ε2
j

… εn
rq

i,j,…,r≥0    f=1,2,…,n. (6)                                                                        
 Here terms with negative power for singular 

perturbation parameters  εi are defined to be zero, if 
any. 
(d). Boundary conditions  

 The boundary conditions to solve outer equations 
(2a, 3) and BLC equation are to be provided in 
advance. These are determined uniquely from the 
fact that the total series solution (6) should satisfy the 
specified boundary conditions (1c). Consequently the 
following boundary conditions result [10], [11], [17].  
 (e). Algorithm 

The algorithm is similar to other SPM [15], [17]. 
First start with zero-order solution to improve the 
degenerate solution. Here Outer and BLC solutions 
to be found using outer and BLC equations and 
conditions (5, 6).Then added according to TSS to get 
the zero-order solution. Similar procedure to be 
followed for first and higher order approximate 
solutions for further improvement.    

3. Boost Converter Analysis 
      The PFC boost converter shown in Fig. 1 can be 
modeled as a switched linear system.  

Vin
+

-

i i i
i

R D

R
R

CVc

Vo

+

-

Trp

i i

L
L

S

L Tr D C O

C

+

-

Fig. 1: Boost converter 

The PFC application, implies large variation in input 
voltage and inductor current; otherwise, the dynamics 
are identical to any other boost converter. The 
switched linear model is  
 
dvC

dt
= −

1

C(R+Rc)
vC + Sd

1

C(R+Rc)
iL  

 
diL

dt
= −Sd

R

L(R+Rc)
vC −

RL+Sd(RRL/(R+RL))

L
iL +

Vin

L
                                                                             

                                                                        (7) 
Here, Sd is the switching function of the diode. All 
variables and coefficients must be normalized to put 
the system into standard form. The nominal output 
voltage is V0, the nominal output current is I0 = V0/R, 
and the switching period is T. With these definitions, 
the other variables can be normalized on the basis 

ε =
L

CR2
  

w = 
Vin

Vo
 

δ =
RL

R

(R+RC)

R
  

Sd = 1 − d = u  

v̂C = VC

VO
 

iĈ = 
iL

iO 
 

p = T

C(RC+R)
 

t̂ =
T

C(RC+R)
                                                            (8)                         

The first two variables are the normalized states. 
Normalized input voltage w is a disturbance input. 
The moving average of Sd, shown as u, is used as the 
input in the following analysis; often, the actual input 
is d, the duty cycle of the controlled switch. Then, the 
switching period T must be transformed into p on the 
t̂ timescale. The last two variables accumulate the 
various parameters of the physical system. The 
normalized switched dynamical system is 
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d

dt
[
v̂C

iL̂
] =[

−1 Sd

−
Sd

ε
−

δ+Sd
RC
R

ε

] [
v̂c

iL̂
] + [

0
RC+R

εR

] w          (9)                               

Averaging can be applied to (9) to enable further 
analysis. Although singular perturbation theory may 
be applied to time-varying systems, the switching 
power converter results are more readily applied if 
the system is first converted to an equivalent time-
invariant system. Since Sd is a switching function, 
the model (9) is linear in the states but time-varying. 
State-space averaging [25], which removes all 
knowledge of switching frequency, is typically used 
to form a nonlinear time-invariant converter model. 
Other averaging methods retain switching 
information in time-invariant models. 

4. Sample Data Discrete Analysis 
      To study singular perturbation in digital controls, 
a sampled data model [23], [24] can be analyzed for 
timescale separation. Generic discrete-time systems 
have been analyzed with singular perturbation theory 
[17]. The boost converter of Fig. 1 demonstrates the 
basic problem of timescale separation with a digital 
control. First, the continuous-time model of (9) needs 
to be converted to discrete time. For notational 
convenience, rewrite the continuous-time model as 
ẋ(t) = Fx(t) + Gu(t)                                            (10)                                   
Where F and G are respectively m x m and m x p real 
constant matrices with initial time is t0 and sampling 
time is t. 
x(t) = eF(t−t0) x(t0) + ∫ eF(t−τ)t

t0
 Gu(τ )dτ          (11a)                            

In our case the input is sampled so we shall establish 
the solution going from one sampling instant t0=kT 
to the next sampling instant t= (k+1) T. 
 x(t) = eF(t−kT) x(kT) + ∫ eF(t−τ)t

kT
 Gu(τ )dτ;            

                kT≤ t < (𝑘 + 1)𝑇                              (11b) 
If we are interested in response at the sampling 
instants only, we set t= (k+1)T. In response to u(k), 
the state settles to the value x(k+1) prior to the 
application of input u(k+1). 
        x(k+1) = A [x(k)] + B u(k)                         (12)                                                

                       where A= eFT    
                                  B= ∫ eF((k+1)T−τ)(k+1)T

kT
 G dτ 

   B= ∫ eF((kT+T−τ)(k+1)T

kT
 G dτ                          (13a)                                      

Letting μ = (τ − kT) in (24a), we have  
   B= ∫ eF(T−μ)T

0
 G dμ with θ = T − μ 

We get  
   B= ∫ eFθT

0
 G dθ                                               (13b)                                 

If we are interested in the value of x(k) between 
sampling instants, we first solve for x(kT) any k 
using state above equation and then use (13) x(t) to 
determine x(t) for kT ≤ t < (k + 1)T. 

Algorithm for evaluation of matrix series: 

We evaluate A by a series in the form 
A= eFT = I+FT (I+FT

2
{I +

FT

3
[I + ⋯ +

FT

N−1
(I +

                    
FT

N
)] … })                                             (14a) 

which has better numerical properties than the direct 
series of powers. The empirical relation giving the 
number of terms N is  
                  N=min{3 !! FT !! + 6, 100}              (14b)                                

This relation assures that no more than 100 terms are 
included. The B integral in (13b) can be evaluated 
term by term to give 

           B=∑
FiTi+1

(i+1)!
∞
N=0 G                                   (15a)                                          

              B= (I+FT

2!
+ F

2T2

3!
+…)TG 

              B= (eFT-1) F−1G                                  (15b)                                         
The transition (26) is possible only for a nonsingular 
matrix F. For a singular F, we may evaluate B from 
(15) by the approximation technique described 
above. 

5.  Application To A PFC Converter 
      PFC boost converters rely on timescale 
separation for effective operation. The boost 
converter parameter has 657uH of line inductance 
(L), 77uF of output capacitance (C), 584m ohm of 
line resistance (RL), 381m ohm of capacitor output 
resistance (RC), 100 ohm of output resistance (R) 
and switches at 25 kHz. Switching period (Sampling 
time) T=0.7msec [25]. The resulting system is given 
by 
[
x0(k + 1)

x1(k + 1)
]=[

0.9993 0.0002
−0.2471 0.0538

] [
x0(k)

x1(k)
]+[

0
3.9612

]u(k)

                                                           (16a) 
Here x0 slow state variable, x1 fast state variable and 
u(k) is unit step control function. The eigen spectrum 
of this system  

 (0.9992, 0.0539) 
clearly indicates two-time-scale nature with one slow 
mode and one fast mode. Hence it is represented as a 
one-parameter system as shown below.   
[
x0(k + 1)

x1(k + 1)
]=[

0.9993 0.002
−0.2471 0.538

] [
x0(k)

εx1(k)
]+[

0
3.9612

]u(k)                                                       

                                                                   (16b)  
where ε = 0.1.           
     
IVP: 

 

x0(0)=1, x1(0)=1, This is an IVP where all the 
conditions are specified at initial point (k=0). The 
solutions for zero, first, second-order approximations 
are obtained and compared with the exact solution as 
shown in the Graph. 1 and 2 for IVP. From these 
Graph’s we observe that 
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   The degenerate solution, obtained by 
making ε equal to zero in (16a), is unable to 
satisfy the initial conditions x1(0). 

 The zero-order solution, obtained from (6), 
incorporates BLCs and hence it recovers the 
initial conditions x1(0). Thereafter, i.e., k ≥ 1, 
it remains equal to the degenerate solution.   

 The first-order solution improves the zero-
order solution and is closer to the exact 
solution. 

 The second-order solution improves the first-
order solution and is much closer to the exact 
solution.  

 Boundary layer (region of rapid transition) is 
formed at k = 0 for x1 (the change from exact 
to degenerate solution is 1 to 3.6258 in IVP. 

 

 
Graph .1: Comparison of various series solutions 

with the exact solution for voltage (X1 or x0) for IVP 
 

 
Graph .2: Comparison of various series solutions 

with the exact solution for current (X2 or x1) for IVP 
 
BVP: 

 

x0(10)=2, x1(0)=1, This is TPBVP as x0 is specified 
at k =10 and x1 is specified at initial point (k=0). 
     The solutions for zero, first, second-order 
approximations are obtained and compared with the 
exact solution as shown in the Table I for BVP. From 
these tables we observe that 

 The degenerate solution, obtained by making 
ε equal to zero in (16a), is unable to satisfy 
the initial conditions x1(0). 

 The zero-order solution, obtained from (6), 
incorporates BLCs and hence it recovers the 
initial conditions x1(0). Thereafter, i.e., k ≥ 
1, it remains equal to the degenerate solution.   

 The first-order solution improves the zero-
order solution and is closer to the exact 
solution. 

 The second-order solution improves the first-
order solution and is much closer to the exact 
solution.  

 Boundary layer (region of rapid transition) is 
formed at k = 0 for x1 (the change from 
exact to degenerate solution is 1 to -0.4980. 
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Table I: Comparison of various series solutions with the exact solution for BVP 

x(k) Degenerate  
Solution 

Zero 
Order 

Solution 

First 
Order 

Solution 

Second 
Order 

Solution 

Exact 
Solution 

x1(0) 

x2(0) 

2.0141 

-0.4980 

2.0141 

1.0000 

2.0134 

1.0000 

2.0104 

1.0000 

2.0073 

1.0000 

x1(1) 

x2(1) 

2.0126 

3.4635 

2.0126 

3.4635 

2.0120 

3.4691 

2.0097 

3.4936 

2.0061 

3.5190 

x1(2) 

x2(2) 

2.0112 

3.4639 

2.0112 

3.4639 

2.0107 

3.4827 

2.0082 

3.5927 

2.0054 

3.6548 

x1(3) 

x2(3) 

2.0098 

3.4642 

2.0098 

3.4642 

2.0093 

3.4830 

2.0075 

3.5931 

2.0047 

3.6623 

x1(4) 

x2(4) 

2.0084 

3.4646 

2.0084 

3.4646 

2.0080 

3.4833 

2.0063 

3.5934 

2.0040 

3.6629 

x1(5) 

x2(5) 

2.0070 

3.4649 

2.0070 

3.4649 

2.0067 

3.4837 

2.0051 

3.5938 

2.0033 

3.6631 

x1(6) 

x2(6) 

2.0056 

3.4653 

2.0056 

3.4653 

2.0053 

3.4840 

2.0047 

3.5941 

2.0027 

3.6632 

x1(7) 

x2(7) 

2.0042 

3.4656 

2.0042 

3.4656 

2.0040 

3.4843 

2.0034 

3.5944 

2.0020 

3.6634 

x1(8) 

x2(8) 

2.0028 

3.4660 

2.0028 

3.4660 

2.0027 

3.4847 

2.0021 

3.5948 

2.0013 

3.6636 

x1(9) 

x2(9) 

2.0014 

3.4663 

2.0014 

3.4663 

2.0013 

3.4850 

2.0009 

3.5951 

2.0007 

3.6638 

x1(10) 

x2(10) 

2.0000 

3.4667 

2.0000 

3.4667 

2.0000 

3.4853 

2.0000 

3.5954 

2.0000 

3.6639 
 

6.  Conclusion  
        Time-scale separation is important in many 
applications, from PFC to low-voltage dc–dc 

converters. Separation criteria were derived for buck 
converter in both continuous-time and discrete-time 
formulations. The relationship among inductance, 
capacitance, and the inductor’s parasitic resistance 
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dominated the small parameters. An experimental 
boost converter, with both resistive and constant-
power loads, demonstrated the effects of various  
design choices. A simulated PFC converter showed 
that extremely simple controllers can produce good  
line current waveforms if there is timescale 
separation. Designers may use these results in 
several ways. If a particular converter is already 
designed, then the control designer may check the 
criteria before choosing a particular control 
methodology. Alternatively, if a particular control 
scheme is desired, the power designer can make 
component choices that ensure separation. The 
separation criteria can also be used as constraints to 
improve a converter optimization problem. Future 
work will explore similar concepts for other 
converter topologies and closed-loop systems. 
Depending on component selection, there may be 
two timescale. In a closed-loop system, the input u 
is no longer exogenous, but instead is a function of 
the states x0 and x1, and the disturbance input u. 
The feedback system may itself contain extra states, 
and may either enhance or detract from timescale 
separation. As shown in the example PFC 
controller, though, a controller built entirely on the 
slow timescale will usually be effective if there is 
timescale separation and further to applications in 
Electric Motors. 
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