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Abstract: Building an effective classifier that could classify a target or class of instances in a dataset from 
historical data has played an important role in machine learning for a decade. The standard classification 
algorithm has difficulty generating an appropriate classifier when faced with an imbalanced  dataset. In 2019, 
the efficient splitting measure, minority condensation entropy (MCE) [1] is proposed that could build a decision 
tree to classify minority instances. The aim of this research is to extend the concept of a random forest to use 
both decision trees and minority condensation trees. The algorithm will build a minority condensation tree from 
a bootstrapped dataset maintaining all minorities while it will build a decision tree from a bootstrapped dataset 
of a balanced dataset. The experimental results on synthetic datasets apparent the results that confirm this 
proposed algorithm compared with the standard random forest are suitable for dealing with the binary-class 
imbalanced problem. Furthermore, the experiment on real-world datasets from the UCI repository shows that 
this proposed algorithm constructs a random forest that outperforms other existing random forest algorithms 
based on the recall, the precision, the F-measure, and the Geometric mean. 
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1 Introduction 
Classification is one of the machines learning 
supervised processes to predict the class instances 
from future data with a given historical dataset [2]. 
However, classification algorithms have difficulty 
generating an appropriate classifier when faced with 
real-world datasets having a small number of 
instances for some classes. This generally is called a 
class imbalanced problem. A class imbalanced 
problem deals with identifying a small proportion of 
instances in a class correctly among other instances 
of other classes in the same dataset. In binary 
classification, the majority class is normally 
represented by the negative class, while the minority 
class is represented by the positive class. In the real-
world problems, the minority class is frequently 
more important and receives much attention to 
correctly classify. For example, in credit card fraud 
detection, there is a small number of fraudulent 
transactions, but they are unusual and must be 
discovered. In the same way as disease diagnosis 
[3], the prediction of disease patients is more 
significant than normal people. 
 Many methods have been presented to deal with 
the class imbalanced problem where it can be 
categorized into four different approaches [4] there 
are 1) a data-level approach 2) an algorithmic-level 

approach 3) a cost-sensitive approach, and 4) an 
ensemble approach. This research interest is the 
study of an algorithm-level approach since it does 
not cause any shift in data distribution, and it is 
more adaptable to various characteristics of 
imbalanced datasets. In addition, the idea of 
developing the algorithm to build the random forest 
classifier that is suitable for classifying an 
imbalanced dataset is one of the methods that have 
received wide attention.  
 The random forest algorithm is a collection of 
small decision trees with sampling features to 
classify instances and has two important steps that 
are (1) a bootstrap on a training set and (2) building 
different decision trees from subsamples and 
randomized attributes. Nevertheless, when the 
bootstrap is used on an imbalanced dataset, there is 
a chance that most minorities will not be picked 
during the bootstrapping step. Thus, the 
development of a decision tree algorithm that can 
handle this problem from the bootstrapping step, 
will make the prediction of the random forest more 
efficient. Recently, MCE is proposed as the splitting 
measure in partitioning algorithms to build the 
decision tree for handling the binary-class 
imbalanced numeric dataset and the decision tree 
that is built based on MCE is called the minority 
condensation decision tree or MCDT. Hence, these 
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are motivated for enhancement of the random forest 
algorithm of this research that is extending MCDT 
to construct the random forest. 
        
 
2 Background 
2.1 Minority Condensation Decision Tree 
MCE is entropy that is modified from minority 
entropy (ME) [5], used to find the best attribute for 
constructing a decision tree. MCE is designed to 
handle a binary-class imbalanced dataset. Initially, 
in this research, we give a binary-class dataset that 
consists of instances from a positive class and 
negative class, i.e., given the dataset 𝐷, the attribute 
𝑎 ∈ {𝐴1, 𝐴2, … , 𝐴𝑀} represent the selected attribute. 𝐷 
consists of instances from a set of two classes 𝐶 =
{+, −}. In the standard decision tree, Shannon’s 
entropy (SE) [6], the splitting measure, is computed 
based on the impurity of each partition, denote by 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦, the formulation in Equation 1.  
 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = −
|𝐷+|

|𝐷|
𝑙𝑜𝑔2

|𝐷+|

|𝐷|
−

|𝐷−|

|𝐷|
𝑙𝑜𝑔2

|𝐷−|

|𝐷|
       (1) 

 

 
Fig. 1: Applying the IQR rule to detect outliers 
before determining the minority instances 

 
 The computation of MCE is based on the 
interquartile range (IQR) rule that is employed to 
the set of minority instance values for detecting the 
outlines. It defines the boundary that represents the 
range of acceptable values for the minority instances 
based on Tukey’s boxplot [7]. The lower inner fence 
is defined by the first quartile minus 1.5 times of 
IQR, while the upper inner fence is defined by the 
third quartile plus 1.5 times of IQR. For example, 
Figure 1 demonstrates the use of the IQR rule. The 
set of instances within that range is considered, in 
which the minority class is more condensed. 
Accordingly, SE from Eq.1 computed with that set 
is called MCE, and then the decision tree is built 
based on MC is called minority condensation 
decision tree (MCDT). 
 
2.2 Random Forest  
Random forest [8] is classified as a supervised 
machine learning algorithm that has come into the 

limelight recently. The decision tree forms the base 
classifier in a random forest. This classifier 
combines the predictions made by multiple decision 
trees. As the named randomization is done in two 
ways in constructing random forests. One is using 
random sampling or bootstrapping for drawing 
subsamples and the second is randomly selecting 
attributes or features for generating decision trees.  
 The steps in constructing the decision tree in 
the forest are 1) Take 𝐷 as the number of training 
data instances in the samples, then let 𝑀 be the 
number of attributes in the input dataset, and 𝑚 
represent the number of attributes to choose at each 
tree node. 2) The training samples are gathered, and 
for each subsample, a replacement tree is 
constructed.  3) For each tree node, choose 𝑚 
attributes at random. 4) The optimal split is 
computed based on the 𝑚 input attributes of the 
subsampled dataset, and 5) Each tree is allowed to 
grow without being pruned. Then, the most 
predictions from these trees will then be used to 
determine the final. 
 

 

3 Motivation and Methodology 
The motivation of this research comes from the 
success of using the decision tree classifier based on 
MCE to handle the class imbalanced problem. It 
fixed the problem of the ME that sometimes it 
unnecessarily widens the minority range, which 
covers more majority instances because of having 
minority instance values extremely deviate from 
others within datasets. These reasons make MCDT 
highly successful in handling the class imbalanced 
problem and from this performance can be 
improved with the ensemble learning method, in 
which multiple decision trees are combined as a 
random forest classifier. However, from 
bootstrapping of random forest, when the algorithm 
is faced with an imbalanced dataset, it has a chance 
to make minority instances disappear and the 
prediction performances of the classifier are 
decreasing. As the result, the idea of keeping all 
minorities for bootstrapping comes from these 
reasons. However, the standard decision tree still 
outperforms for prediction a balanced dataset. 
Therefore, this research proposes a random forest 
that uses a mixed decision tree and MCDT, and then 
we will call this enhanced random forest is RMDT, 
which has 2 construction parts that are  
 1. It will bootstrap only majority instances and 
keep all minority instances in a training dataset’s 
bootstrapping phase, ignoring the balance of these 
two classes, therefore subsamples from this part are 
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imbalanced datasets, and MCE should be used to 
discover the best attribute to split in each decision 
tree.  
 2. Bootstrapping also maintains all minority 
instances and bootstraps just majority instances, 
however in this section, we bootstrap until the 
number of majority instances and minority instances 
are equal, resulting in a dataset with balanced 
subsamples. The decision tree will then be built 
using SE. 

 

Fig. 2: A framework of the enhancing random forest 
algorithm 

 
 Visualization representation of these two parts is 
explained in the following Figure 2 and the 
algorithm construction is described in Algorithm 1. 
The following parameters are required by the 
algorithm: N (number of standard trees trained in the 
forest) and n (number of minority condensation 
decision trees trained in the forest). Subsample 
computing is performed in Line 6 of Algorithm 1 
for use in Line 8 and Line 11 which are balanced 
subsamples, and imbalanced subsamples, 
respectively. 

Algorithm 1: RMDT (D, N, n) 
Input:  
1: Learning data 𝐷  
2: User specified values of the number of DT,  
3: the number of MCDT 
Learning Phase:  
4: procedure RMDT(D, N, n)  
5:     Let 𝑇  = 𝑛 + 𝑁 
6:     for each 𝑡𝑖 in T do 
7:      s = compute for balanced/ imbalanced subsamples  
8:         if 𝑡𝑖 ≤ 𝑛  then 
9:      F1 = built forest base on subsamples for  
10:                standard decision trees 
11:        else  
12:      F2 = built forest base on subsamples for    
13:               MCDT 
14:    end for 

15:    RMDT = F1∪F2{combined two forests to main  
16:                  forest} 
17: end procedure 

 

 

4 Experiment and Results 
4.1 Performance Measure and Evaluation 
The efficiency of a classifier in a class imbalanced 
problem is evaluated quantitatively based on the 
precision and recall, which are derived from the 
confusion matrix (Table 1). In this table, true 
positive (TP) denotes the number of positive 
instances that are correctly predicted as positive 
instances, true negative (TN) denotes the number of 
negative instances that are correctly predicted as 
negative instances, false positive (FP) denotes the 
number of negative instances that are inaccurately 
predicted as positive instances and false negative 
(FN) denotes the number of positive instances that 
are inaccurately predicted as negative instances. 
 

Table 1. Confusion Metric 
 Actual positive Actual negative 

Predicted 

positive 
True positive 

(TP) 
False positive 

(FP) 

Predicted 

negative 
False negative 

(FN) 
True negative 

(TN) 

  

 Recall exhibits how many relevant items are 
selected and precision exhibits how many selected 
items are relevant. According to [9], F-measure and 
Geometric mean are the performance measures that 
are suitable for a class imbalanced problem, which 
harmonizes recall in Eq.3 and precision in Eq.4. 𝛽 is 
the weight of importance between recall and 
precision, it is set to 1 which means they are equally 
important. The formulae for the F-measure are 
provided in Eq.5. 

     𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (2) 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (3) 

  𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝛽 2) ×
𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽×𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  (4) 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛         (5) 

 

4.2 Datasets 
The experiments were performed on 20 imbalanced 
binary datasets. Ten of these datasets are from 
synthetic binary-class imbalanced numeric datasets 
consisting of 500 instances having 50 attributes. 
Each class is formed as a gaussian cluster which is 
located around a centroid in two dimensions. For 
each cluster, informative attributes are drawn 
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independently from 𝑁(0,1). The clusters are then 
placed on the centroids. There are ten groups of 
experiments having different percentages of 
minority instances from 5% to 50%, then repeating 
20 times for each experiment.  
 Furthermore, ten real-world application datasets 
from the UCI repository [10] are used. In Table 2, 
they are sorted in descending order by the 
percentage of instances in the minority class 
(%Min.). The first two columns indicate the number 
and the name of each dataset. For the number of 
instances (#Inst.) and  
the number of attributes (#Att.), they are shown in 
the 
 

Table 2. The characteristics of real-world binary-
class datasets used in the experiments 

No Datasets #Inst #Att Min/Maj %Min I.R. 

1 Pima 768 8 ‘1’/ ‘0’ 34.9 1.87 
2 StakotlogVeh

-icle 
846 18 ‘bus’/The rest 25.77 2.88 

3 BeastTissue 106 9 ‘fad’/The rest 14.15 6.07 
4 NewThyroid 215 5 ‘3’/The rest 13.95 6.17 
5 Fertility 100 9 ‘O’/ ‘N’ 12 7.33 
6 Ecoli 336 7 ‘imU’/The rest 10.42 8.6 
7 OpticDigits 1108 641 ‘8’/ The rest 9.86 9.14 
8 Glass 214 9 ‘5’/The rest 6.07 15.46 
9 winequality-

red 
1599 11 ‘3’/The rest 3.94 24.38 

10 Yeast 1484 8 ‘VAC’/The rest 2.02 48.47 
 
 

third column and the fourth column, respectively. 
Particularly, the minority class and the majority 
class are presented in the fifth column. In order to 
evaluate the performance of each method, the 
experiments are repeated 50 times. See Table 2 for 
their descriptions, including the number of 
instances, the number of features, the percentage of 
minorities, and the imbalanced ratio. 
 
4.3 Experimental results and discussion 
An enhancement of the standard random forest (RF) 
to classify minority instances in the binary-class 
imbalanced datasets dealing with numeric attributes 
using SE and MCE is exhibited in the experiments 
on collections of synthetics dataset according to 
section 4.2. Accordingly, the average results of RF 
and RMDT are compared via the F-measure (4) and 
the Geometric mean (5) with respect to the minority 
class and the majority class displaying in Figures 
3(a) and 3(b) respectively.  
 For the results, the F-measure and the Geometric 
mean values of both RMDT (Red line) and RF 
(Green line) increase when the percentage of 
minority instances increases. Evidently, RMDT 
significantly outperforms RF when the number of 
minority instances is tiny, while their values will 

approach 1 when a dataset is more balanced. It is 
because RF tends to focus on the class having a 
large number of instances, while RMDT tries to 
make them balanced before considering. Therefore, 
these results confirm that RF is ineffective in 
dealing with binary-class imbalanced problems.  
 Moreover, to demonstrate the effectiveness of 
RMDT on a general dataset, the random forest built 
based on MCE and SE is evaluated with 
experiments on real-world datasets. The results are 
compared to those of three other classifiers. The 
first is RF.   Additionally, the decision tree built 
based on MCE is used as well. Lastly, the popular 
boosting algorithm that works by weighting the 
instances, like AdaBoost [11, 12] is also used in the 
comparison. It increases the weight of instances that 
are difficult to classify and lowers the weight of 
instances that are easy to classify. 
 

 
(a) 

 
(b) 

Fig.3: The experimental results on synthetic datasets 
varying percentage of minority instances comparing 
with Standard random forest (RF) via F-measure (a) 
and Geometric mean (b) 

 

 In order to evaluate the dataset into the training 
set and the testing set, they are repeated 10 times. 
Accordingly, the average results of each classifier 
are compared via the recall (2), the precision (3), the 
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F-measure (4), and the Geometric mean (5). 
Graphically, the bar chart representing the 
comparison of the average performance 
corresponding to each performance measure is 
shown in Figure 4, in which the higher value 
indicates the better performance, the green bar 
denotes RMDT performances values, orange 
denotes RF values, blue bar and pink bar denote 
MCDT and AdaBoost performance values, 
respectively. Comparing the precision of all 
classifiers, RMDT yields the highest average 
performance at 0.723, which is much different from 
AdaBoost, MCDT, and RF. They yield the fourth-
highest, thirst-highest, and second-highest average 
performance at 0.473, 0.445, and 0.412, 
respectively. It means that the number of they 
predicted majority instances to be the minority class 
has more than RMDT.  
 

 
Fig.4: The experimental results on real-world 
datasets comparing by the average performance 

 

 Furthermore, for comparison by the recall, 
RMDT yields a similar average performance at 
0.602 to RF, and AdaBoost but higher than MCDT. 
It means that the number of RMDT predicted 
minority instances to be the majority class is lower 
than MCDT but similar to RF, and AdaBoost. For 
comparison by the F-measure and the Geometric 
mean, they are not exhibiting the different results. 
RMDT yields the highest average performance at 
0.620 and 0.638, which is better than other 
classifiers respectively.  
 

 

5 Conclusion and Future Works 
 This paper proposed an enhanced random forest 
called RMDT which is a random forest that used 
both of the standard decision trees and the MCDT 
that successfully handles the class imbalanced 
problem, which arises from extending the ME 
concept. The improved performance to classify an 

imbalanced dataset of RMDT is shown by two 
collections of experiments which are experiments on 
synthetic binary-class imbalanced numeric datasets 
and real-world binary-class datasets from UCI, 
respectively. In the first experiment, RMDT 
outperforms RF when the number of minority 
instances decreases, and then their values will 
approach the same values when the dataset is more 
balanced. These apparently confirm that RF is not 
suitable for dealing with the binary-class 
imbalanced problem. Additionally, in the second 
experiment, RMDT performs better than RF, 
MCDT, and AdaBoost on the precision, the recall, 
the F-measure, and the Geometric mean. Especially, 
the precision of it shows the highest value which 
indicates that RMDT has high accuracy prediction.  
 Finally, although RMDT is successful in handling 
the class imbalanced problem, there is considerable 
room for future work. The proposed algorithm still 
has to be extended in order to function on more 
complex datasets, such as multi-class imbalanced 
datasets, and multi-class with categorical attributes 
imbalanced datasets. Additionally, the application of 
the proposed algorithm on EEG signals for Epilepsy 
Detection [13] is interesting for continued work. 
Including research recently [14], present a new 
multi-criteria decision making method that is 
intriguing to apply in the decision tree for the 
construction of RMDT.  
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