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Abstract: - We study in this paper the presence of long memory of four Mediterranean stock markets namely 

Morocco, Turkey, Spain, and France, over the period 2000-2020. The presence of long memory propriety has 

tested by using the R/S analysis approach. Results show that the four processes have a long memory. 

furthermore, ARFIMA-FIGARCH, under different distribution assumptions as Normal, Student-t, and Skewed 

Student- t, was estimated in order to test the feature of long memory in the return and volatility of the stock 

markets simultaneously. Results show strong evidence of long memory in both returns and volatility for the 

Moroccan and French stock markets and only in volatility for The Spanish and Turkish ones. The long memory 

in returns indicates that their behavior is predictable implying the rejection of the efficient market hypothesis. 

The long memory in volatility shows that risk is an important parameter of the behavior of the future returns in 

the four stock markets. 
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1 Introduction 
Market efficiency has been a subject of much 

attention in financial literature. With the object of 

analyzing the presence of long memory, several 

previous studies were conducted. The first one to 

demonstrate the existence of long memory in 

financial markets was Mandelbrot (1971) [1] and he 

was a key figure in the development of this concept. 

Later, Greene and Fielitz (1977) [2]  study long-

term dependence in common stock returns and 

Granger and Joyeux (1980) [3] have modeled the 

stochasticity of long memory. The presence of long 

memory was also confirmed in financial markets by 

Aydogan and Booth (1988) [4] and later by Cheung 

and Lai (1995) [5]. There was continuous research 

indicating the presence of long memory in stock 

markets done by other authors like Peters (1991, 

1994) [6], Alvo and al. (2011) [7] and Lento (2013) 

[8]. 

    Nevertheless, proof of the fact that long memory 

might reflect many short memory components has 

been yield by Lo (1991) [9]. Some researchers show 

even the non-existence of long memory like Lo 

(1991) [9], Jacobsen (1995) [10], Berg and Lyhagen 

(1998) [11], Crato and Ray (2000) [12], Batten and 

al. (2005) [13] and Serletis and Rosenberg (2007) 

[14]. Whereas Corazza and Malliaris (2002) [15] 

and others have reported that it can change over 

time.  

    In addition, several works have examined the 

long memory processes for specific stock markets. 

First, Koong and al. (1997) [16] showed that long 

memory does not exist in the four Pacific Basin 

(Australia, Hong Kong, Singapore, and Japan) stock 

markets. Whereas Sadique and Silvapulle (2001) 

[17] prove the existence of long memory in stock 

market returns for Korea, Malaysia, New Zealand, 

and Singapore but not for Japan, the USA, and 

Australia. Kilic (2004) [18] shows, in turn, evidence 

for ISE 100 index volatility but not for the daily 

stock returns for Istanbul.  

Recently, in 2020, Bala, Anju & Gupta, Kapil. [19] 

examine the long memory in stock liquidity and 

returns in Indian equity market by using data for 

broad indices from January, 1997 to December, 

2019 by applying the hurst exponent (1951) rescaled 

range analysis. Results show that liquidity series 

show long memory in Nifty-100, Nifty-200 and 

Nifty MidCap-50.   

In 2021, Lahmiri, Salim & Bekiros, Stelios. [20] 

concluded that COVID-19 pandemic significantly 

influenced long memory in return and volatility of 

cryptocurrency and international stock markets. 

Additionally, results show that the model ARFIMA-

FIGARCH is significantly appropriate to represent 

returns and volatility of cryptocurrencies and stocks 

and to disclose differences before and during 

COVID-19 pandemic periods. 
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   Actually, various studies have analyzed the long 

memory characteristics of volatility using data from 

emerging markets. The general result is that 

financial returns are martingale with long memory 

in the conditional volatility process. In spite of the 

rich literature that investigates the long memory 

properties of mature stock markets, there is little 

research that has been provided on the time 

properties of developing markets. The results of 

these works indicate evidence of long memory in 

both stock returns and volatility. 

    As regards Morocco, even more, rare are the 

papers that have studied the dynamics of its equity 

market. For example, Assaf, Ata. (2006) [21]  uses 

the modified rescaled range statistic R/S to test for 

long memory in the returns and volatility of the 

MENA region including Morocco. Egypt and 

Morocco indicate the presence of long memory in 

the return series, but Jordan and Turkey show 

negative persistence. For the volatility, the long 

memory is proved for all series.  

  Boubaker & Makram (2012) [22] investigate heavy 

tails and double long memory for TUNINDEX 

(Tunisia), MASI (Morocco), and EGX30 (Egypt). 

The results display the existence of long memory in 

both returns and volatility. In fact, results reveal that 

long memory dynamics in the returns and volatility 

is better modeled by the ARIMA–FIGARCH model. 

Concerning the Moroccan stock market, the best 

model for capturing the dual long-memory property 

in the returns and volatility of MASI is the ARIMA 

(1,0.047,2)–FIGARCH (1,0.257,1) model. Thus, the 

double long-memory model can furnish a better 

explanation for long-memory dynamics in both 

returns and volatility. 

  Assaf (2015) [23] , in turn, studies the presence of 

long memory in returns and volatility of the MENA 

equity markets, including Morocco. The results 

indicate evidence of long memory for volatility 

series, while the returns show weak evidence of 

long memory. Nevertheless, the returns and 

volatility measures present less evidence of long 

memory in the after-crisis period as opposed to the 

before-crisis period. These findings are explained by 

the financial and economic conditions that took 

place in the MENA region after the crisis. 

  Finally, a recent study by Moulay Driss 

ELBOUSTY & Lahsen OUBDI (2020) [24] show 

also that volatility of Moroccan Stock Market 

captures the properties of volatility clustering and 

long memory.   

  In parallel, our choice of the other three 

Mediterranean countries (France, Spain, and 

Turkey) is justified by their strong economic 

relations with Morocco. France and Spain remain 

the primary European trade partners, as well as the 

primary creditors and foreign investors in Morocco. 

In addition, Turkey and Morocco also enjoy strong 

economic relations. Following the free trade 

agreement promulgated in 2006, bilateral trade 

relations between the two countries over the period 

2006-2019 almost tripled to reach US $ 2.9 billion.  

   In the case of Turkish stock market, Kasman, 

Adnan &Torun, Erdost. (2007) [25] examined the 

dual long memory property. The results of the 

ARFIMA-FIGARCH model show strong evidence 

of long memory in both returns and volatility. 

Moreover, DiSario, Robert & Saraoglu, Hakan & 

McCarthy, Joseph & Li, Hsi. (2008) [26] employ 

wavelets and aggregate series to test for long 

memory in the absolute value, squared, and log 

squared daily returns of the Istanbul Index. The 

three-volatility series are characterized by long 

memory, indicating that shocks to the stock index 

volatility decrease slowly and those distant 

observations are related to each other.   

   Furthermore, Viviani, Jean-Laurent (2001) [27] 

analyze the dependence structure of individual 

stocks returns composing the CAC 40 index using 

the R/S and modified R/S methods, the Hurst 

coefficient and the Geweke and Porter-Hudak 

approach. The results obtained suggest that the 

hypothesis of a long-term dependence structure 

cannot be validated.  

  Mensi, Walid & Tiwari, Aviral & Al-Yahyaee, 

Khamis. (2018) [28] examined the time-varying 

efficiency of five European GIPSI stock markets 

(Greece, Ireland, Portugal, Spain, and Italy), 

compared to global and regional U.S. markets. 

Results display evidence of long memory in both 

short and long term for all markets. Additionally, 

the long memory is more pronounced in the long 

term than in the short term.  

 

 

2 Problem Formulation 
The availability of high-frequency financial data has 

favored the study of short-term and long-term 

impacts of a given fluctuation in Financial time 

series dynamics. These studies made it possible to 

highlight the concept of long memory often present 

in economic and financial series.  

Thanks to several studies it has been shown that 

the notion of long memory or long-term dependency 

exists in the financial market. As a matter of fact, 

the presence of long memory means that auto-

correlations remain significant over a fairly large 

period of time.  On the other hand, this phenomenon 

contradicts the basics of market efficiency. Lo 

(1991) [9] thus studied the implications of long 
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memory processes in financial theory, and Mignon 

(1996) [29] studied the impact of this behavior on 

market efficiency. We recall that the market 

efficiency hypothesis is associated with the random 

walk model. The stock market prices follow a 

random course, and the profitability processes are 

white noises then: the price observed on the market 

fluctuates randomly around its fundamental value. 

Given that the absence of memory is a very 

restrictive hypothesis empirically, Samuelson 

suggested in 1965 to replace the random walk model 

with a martingale model: this model is less 

restrictive since no condition is then compulsory on 

the autocorrelations of residues. 

Moreover, Fama (1970 and 1991) [30] has 

shown that short memory does not question the 

efficiency hypothesis, since the fact that some 

autocorrelations are significant in the short term 

cannot be used to speculate. On the other hand, the 

presence of long memory represents more problems. 

Poterba and Summers (1989) [31] have studied in 

detail the phenomenon of return to average prices: 

after a shock, the price deviates from its 

fundamental value but always ends up returning to 

the initial value. This phenomenon implies the 

possible existence of a difference between the price 

and the fundamental value. However, if the gap is 

durable, it can be translated as the presence of long 

memory. 

In fact, Long memory is an important element of 

financial time series modelling since it is giving 

interesting insights like the impact of high volatility 

that might affect market efficiency. Therefore, we 

can avoid market losses by considering how 

yesterday’s event impacts today’s parameters, 

thanks to the analysis of long memory. This stylized 

fact can improve returns and volatility forecasting. 

This implies that we can have better asset valuation 

and risk management.  

The layout of the paper is as follows: A brief 

literature review is presented in section 2 before 

describing the methodology used for the analysis in 

section 3 and then we present the empirical results 

in the next section. While section 5 contains the 

concluding comments. 

 

 
 

3 Problem Solution 
 

3.1 Methodology 

Diebold and Nason (1990) [32] have shown that the 

study of financial series reveals a time dependence 

on risk which often disappears gradually. However, 

the GARCH type model only models the short-term 

time dependence which implies an exponential 

decrease in the effect of shocks over time. The 

GARCH model is thus a short memory model. 

In order to extend the memory of the GARCH 

model, Engle and Bollerslev (1986) [33] developed 

an extension of the integrated GARCH model 

(IGARCH) which represents an explosive memory. 

This means that the effects of shocks are endlessly 

persistent. However, since this class of model is not 

realistic, a third and flexible model was developed 

by Baillie, Bollerslev and Mikkelsen (1996) [34]. 

The latter suggested an adjusted version of the two 

models: The Integrated Fractional GARCH 

(FIGARCH) Process. 

We will first define the concept of long memory 

mathematically before introducing the FIGARCH 

model capturing this stochastic property. It is worth 

remembering that the long memory process is 

characterized by an autocorrelation function which 

decreases hyperbolically when the delay increases 

against short memory processes whose 

autocorrelation function decreases exponentially. 

A stationary process  is a long memory 

process if there is a real number  

 and a constant c, c>0 satisfying: 

 

Where  is the autocorrelation function and k the 

delay. Consequently, the autocorrelations of a long 

memory process verify the following asymptotic 

relationship: 

 , The autocorrelations 

 decrease in a hyperbolic way.  

The presence of long memory in financial series 

implies the existence of significant long-term 

autocorrelations. Consequently, the usual 

assumption of random walk is questioned, also for 

the white noise property of the profitability series. 

Long memory notably implies a link between past 

values and future values of profitability. Past values 

of returns have lasting consequences on future 

returns. With that in mind, we can say that past 

values help shape future returns, which implies the 

existence of some form of predictability of future 

returns. This finding is inconsistent with the 

hypothesis of market efficiency. 

 

3.1.1 ARFIMA-FIGARCH Model 

The FIGARCH model is presented as follows. 

At first glance, we assume that the average is 

described by the following equation: 

 (1). 

In order to simplify, we assume that  is equal 

to a constant   ,   represents the information 
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reviewed until the date t-1 and  iid (0, ). 

The conditional residues  are independent 

and identically distributed with zero mean and 

heteroscedastic such as:    . 

 follows a GARCH process (p,q) if it checks 

the following three properties: 

 . 

 , 

 , 

and  checks   . 

where L refers to the delay operator 

and  and  are two 

polynomials of L of respective degrees q and p. In 

order to ensure the stability and stationarity of the 

process , we assume that the roots of the two 

polynomials  and  are 

outside the unit disc. This condition is satisfied if 

. The GARCH model (p, q) can be 

written in the form of an infinite ARCH model, such 

as: 

 . 

(2) 

Given  . 

 Where 

decreases 

exponentially when j tends towards . 

The GARCH model (p, q) can be rewritten as an 

ARMA model (m, p) such that m = max (p, q)  

Given  the residuals in the 

conditional variance equation. Using the definition 

of the model GARCH (p, q) and by replacing  par 

 we have: 

 . (3) 

If  admits a unit root, in this 

case, our process is not stationary in the sense of 

GARCH. To overcome these limitations, Engle and 

Bollerslev (1986) [33] define the integrated 

IGARCH model. It is written as follows: 

 where 

. (4) 

However, this model has an explosive 

persistence of volatility shocks on the dynamics of 

the series. Based on the IGARCH model, Baillie, 

Bollerslev and Mikkelsen (1996) [34] was inspired 

by the analogy between the ARMA model and the 

ARFIMA model, to define the FIGARCH model 

from the GARCH model. The idea is to allow the 

integration parameter d, which is belonging to [0,1] 

in the GARCH / IGARCH model, to vary on [0,1]. 

The resulting model is much more flexible: 

volatility shocks decrease exponentially but are 

more persistent than the GARCH model and less 

persistent than the IGARCH model. The FIGARCH 

model is obtained by replacing the delay operator 

(1-L) in the last equation with the fractional delay 

operator . The FIGARCH model (p; d; q) is 

then written as follows:   

.  (5) 

where the polynomials  and  have 

roots outside the unit circle. The FIGARCH process 

(p; d; q), just as for GARCH (p; q), admits an ARCH 

representation. By replacing  with its expression 

and by reorganizing the terms of the above equation, 

we obtain 

 . (6) 

or as well 

 . (7) 

If we note  the polynomial of infinite order 

such as 

 . 

FIGARCH model is written then: 

 . (8) 

Breidt, Crato and De Lima (1998) [35] have 

adopted another formula for the model. They 

consider the following GARCH model: 

 . (9) 

Where , is the unconditional variance of  in 

the GARCH model. Then they show that the 

FIGARCH model can be specified as follows: 

 . (10) 

Chung (2001) [36] shows that FIGARCH as 

defined by Baillie, Bollerslev and Mikkelsen (1996) 

[34] is "inconsistent". He considers  in the 

equation as:  

 . 

Chung analyzes the basic analogy between the 

ARFIMA model and the FIGARCH model and 

shows that there are structural differences between 

the two specifications. 

The ARFIMA model was introduced by Granger 

and Joyeux (1980) [3] and Hosking (1981) [37] to 

study long memory in the mean equation. A 

stochastic process  follows an ARFIMA process 

(a; ; m) if it checks: 

 . (11) 

Where   is the unconditional mean of  ,   

  and  

are two polynomials of L with respective orders of a 

and m and  is a white noise with a mean . 
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In order to ensure the stationarity and the 

invertibility of the process  we assume that 

varies from -0.5 to 0.5. This parameter describes 

the long memory of the   process; The fractional 

difference operator is defined from its development 

on the basis of Maclaurin series, such as: 

 . (12) 

Other developments were done for this formula, 

in order to represent the previous development as an 

infinite order polynomial of order L such as:  

 . (13) 

Where    and     is the 

standard gamma function. 

The constant  of the FIGARCH model is 

structurally different from  in the ARFIMA model. 

In the latter, the fractional delay operator is applied 

to the constant. In addition, the long memory 

structure is different in both models: the memory 

parameter  varies between -0.5 and 0.5 while d 

belongs to the interval [0.1] 

 I

f , ARFIMA model is a 

stationary long memory model. The 

autocorrelations are positive, decrease 

hyperbolically and tend towards 0 when the 

delay increases. Spectral density is 

concentrated around low frequencies and 

tends to infinity when frequencies tend to 0. 

 I

f ,  ARFIMA model is reduced to the 

standard ARMA model. 

 I

f  , the model is anti-

persistent, the autocorrelations decrease 

hyperbolically and tend towards 0 and the 

spectral density is dominated by the 

components of the high frequencies. 
 

According to the value of the parameter d in 

[0.1], the profile and the speed of propagation of the 

volatility shocks will be determined. If we refer to 

the analysis of the response functions to derived 

impulses, we can evaluate the long-term impact of 

past shocks , s <t, on the series according to the 

limit of the cumulative weights of the impulse 

response function given by: 

 

 .(14) 

Where  is the 

coefficient of the impulse function,  conditional 

expectation on date t and . 

 I

f 0<d<1 then F (d-1, 1,1 ; 1)=0. Hence 

and the volatility shocks decrease 

hyperbolically unlike the GARCH model 

where these shocks decrease exponentially; 

 I

f d=1 then F (d-1, 1,1; 1) =1. Hence 

 and the shocks are 

infinitely persistent; 

 I

f d>1 then the conditional variance is 

explosive and . 

The memory parameter  is applied directly to 

the square of the error in contrast to the parameter d 

applied to  in FIGARCH. Furthermore, an 

ARFIMA model (a; 0; m) can be reduced to an 

ARMA model (a; m) while a FIGARCH model (p;0 ; 

q) cannot be reduced to a GARCH (p; q). 

In addition to these structural differences, we can 

find others technical ones: the parameters of the 

ARFIMA model are less constrained than those of 

the FIGARCH model. The latter must satisfy some 

conditions to ensure the positivity of the conditional 

variance. While Bollerslev and Mikkelsen (1996) 

[34] have suggested to add some conditions, while 

other papers have studied the issue and found other 

conditions. 

There are several methods to study long-term 

dependence on financial series. Some aim to 

estimate the exponent of Hurt H as the R/S and 

modified R/S methods, others like the GPH method 

(Greweke-Poter-Hudak, 1983) [38] estimate the 

fractional differentiation parameter d. 

 

3.1.2 R/S Analysis 

From his study on the Nile, Hurst in 1951 [39], 

introduced R/S statistics making it possible to detect 

the presence of long memory. This statistic is 

defined as the extent R of the partial sums of the 

deviations of a time series from its mean divided by 

its standard deviation S. 
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We consider the time series   with the 

average . The R/S statistic is written then: 

 

 . (14) 

Hurst has shown that R/S statistic is proportional 

to   where H is called Hurst exponent. We thus 

obtain an estimate of the latter through the following 

relation:  . 

As we previously mentioned, the Hurst exponent 

allows a classification of series according to their 

level of dependence. Besides, note that we can also 

determine a long-term correlation measure  

linked to the Hurst exponent: 

 . 

 measures the correlation between the average 

of past observations and the average of future 

observations in a past and future that can be both 

described as fairly long. Depending on the value of 

H, we can have a negative, positive or zero 

correlation. 

 I

f,  , the process has no 

long-term dependencies; 

 I

f  , the process has a 

long memory. It is worth noting that the 

closer H is to 1, the stronger the dependence 

is; 

 I

f  , the process 

represents anti-persistence. 

From the R/S analysis, we have an estimate for 

the persistence of series. However, we do not have a 

test for the significance of the estimated values. 

Thus, it is impossible to know if a Hurst exponent 

estimated to the order of H = 0.51 for example, is 

statistically different from 0.5 or not. Therefore, we 

can conclude that it is difficult to detect a weak long 

memory. 

 

3.1.3 Distributions 

It has been shown theoretically and practically that 

in many cases of normal life and mainly in finance, 

normality is not always realistic, given the difficulty 

to understand the dynamism of some economic 

variables. Consequently, many researchers used 

different methods, like Ma and Genton (2004) [40] 

or Bollerslev and Wooldridge (1988) [41] to find 

other appropriate distributions.  

 

3.2 Data and empirical Results 

Before estimating the essential Hurst parameter to 

detect the existence of long memory, we will start 

with a preliminary analysis of the autocorrelations 

of the four Mediterranean indexes. The main 

indexes that constitute the subject of our study are 

the following: 

 T

he MASI index (Moroccan All Shares 

Index) is a stock market index that gives the 

performance of all the shares of the 

Casablanca Stock Exchange, Morocco. It is 

the main stock market index of the 

Casablanca market in addition to the 

MADEX index (Moroccan Most Active 

Shares Index). 

 T

he IBEX 35 is the stock market index for 

Madrid, Spain. It was created in 1992 and 

its calculation is based on a weighting by 

market capitalization comprising the 35 

most liquid Spanish stocks.  

 T

he CAC 40 is a benchmark French stock 

market index calculated with a weighting of 

the 40 most important stocks among the 100 

largest Parisian market capitalizations. 

 T

he BIST 100 index is a stock market index 

of the Borsa Istanbul stock exchange, the 

main stock exchange in Turkey. He follows 

the activities of the Istanbul Stock 

Exchange, the Istanbul Gold Exchange and 

the Derivatives Exchange of Turkey. 

In this study, we are interested in the daily 

returns of the four Mediterranean indexes which are 

computed as the first differences of the natural 

logarithm multiplied by 100, of the stock indexes. 

Our data start from January 3, 2000, and end on 

June 5, 2020. We have deleted the data of those 

dates when any series has a missing value. Thereby 

we have data for the same dates through the stock 

markets and there are 4385 observations.   

We present summary statistics in Table 1. The 

return series displays the usual propriety of a small 

mean and a large standard deviation indicating that 

it is inconsistent with the normal distribution. 

Moreover, results show a higher peak and fatter-tail 

distribution than a normal distribution. This result is 

confirmed by the Jarque-Bera (JB) test for 
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normality. The Ljung-Box test for serial correlation 

of the 10th order applied to raw and squared returns 

reject the null hypothesis of no autocorrelation, 

demonstrating the presence of autoregressive 

parameters in the return generating processes and 

heteroscedastic variance for all the markets. In the 

end, the Augmented Dickey-Fuller (ADF) test 

supports the hypothesis of stationarity for all return 

series at the 1% level. 

 

Table 1. Descriptive statistics of returns. 
 Morocco  Turkey France Spain  

 Mean  0.010137  0.020208  0.001035 -0.001150 

 Std. Dev.  0.351727  0.800350  0.640836  0.655922 

 Skewness -0.831564 -0.313793 -0.238838 -0.313567 

 Kurtosis  15.98476  8.212622  10.30712  12.41000 

 Jarque-Bera  31303.58  5028.370  9794.974  16239.22 

 Probability  0.000000  0.000000  0.000000  0.000000 

 ADF -50.85320* -65.03001* -67.21441* -66.09320* 

LB (10) 317.91 

 

1094.4 
 

 

29.724 
 

12.012 

LB2 (10) 1727.5 711.14 2004.6 1077.6 

 

*  denote significance at the 1% for all return 

series. 
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Figure 1: Close price of Moroccan index (Masi)
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Figure 5: Returns of Moroccan index (Masi)
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Figure 3: Close price of Spanish index (Ibex 35)
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Figure 6: Returns of Spanish index (Ibex 35)
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Figure 7: Returns of French index (Cac 40)
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Figure 8: Returns of Turkish index (Bist 100)

 
 

Table 2. Correlogram of returns for the MASI index 

Dela

y 

Simple 

autocorrel

ation 

Partial 

autocorrelat

ion 

Q-Stat Prob 

1 0.258 0.258 291.00 0.000 

2 0.066 -0.000 310.18 0.000 

3 -0.006 -0.025 310.33 0.000 

4 0.007 0.015 310.53 0.000 

5 -0.010 -0.015 310.96 0.000 

6 -0.036 -0.033 316.59 0.000 

7 -0.003 0.016 316.64 0.000 

8 -0.003 -0.004 316.68 0.000 

9 0.015 0.015 317.61 0.000 

10 0.008 0.002 317.91 0.000 

11 0.023 0.020 320.27 0.000 

12 0.042 0.033 328.09 0.000 

13 0.057 0.039 342.18 0.000 

14 0.038 0.013 348.60 0.000 

15 0.029 0.016 352.19 0.000 

16 0.001 -0.011 352.20 0.000 

17 -0.004 -0.001 352.27 0.000 

18 0.001 0.006 352.27 0.000 

19 -0.022 -0.023 354.49 0.000 

20 -0.008 0.004 354.79 0.000 

 

Table 3. Correlogram of the IBEX 35 returns 

Dela

y  

Simple 

autocorr

elation  

Partial 

autocorrel

ation 

Q-Stat Prob 

1 -0.486 -0.486 1035.6 0.000 

2 -0.017 -0.331 1036.9 0.000 

3 -0.008 -0.264 1037.2 0.000 

4 0.026 -0.185 1040.1 0.000 

5 -0.024 -0.172 1042.5 0.000 

6 -0.005 -0.168 1042.6 0.000 

7 0.031 -0.113 1046.8 0.000 

8 -0.019 -0.106 1048.3 0.000 

9 0.001 -0.095 1048.3 0.000 

10 -0.005 -0.095 1048.4 0.000 

11 -0.002 -0.102 1048.5 0.000 

12 0.001 -0.102 1048.5 0.000 

13 0.023 -0.061 1050.9 0.000 

14 -0.023 -0.070 1053.1 0.000 

15 0.014 -0.048 1053.9 0.000 

16 0.005 -0.021 1054.1 0.000 

17 -0.026 -0.046 1057.1 0.000 

18 0.008 -0.049 1057.4 0.000 

19 0.028 -0.003 1060.8 0.000 

20 -0.032 -0.026 1065.4 0.000 

 

Table 4. Correlogram of Bist 100 Returns 

Del

ay  

Simple 

autocorrel

ation  

Partial 

autocorr

elation 

Q-Stat Prob 

1 -0.495 -0.495 1076.7 0.000 

2 0.004 -0.320 1076.8 0.000 

3 -0.009 -0.243 1077.1 0.000 

4 -0.001 -0.198 1077.1 0.000 

5 0.026 -0.125 1080.1 0.000 

6 -0.051 -0.158 1091.4 0.000 

7 0.031 -0.127 1095.7 0.000 

8 -0.017 -0.133 1097.0 0.000 

9 0.012 -0.117 1097.7 0.000 

10 0.006 -0.095 1097.8 0.000 

11 -0.004 -0.082 1097.9 0.000 

12 -0.008 -0.090 1098.2 0.000 

13 0.006 -0.080 1098.3 0.000 

14 0.006 -0.064 1098.5 0.000 
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15 -0.005 -0.057 1098.6 0.000 

16 0.002 -0.046 1098.6 0.000 

17 0.005 -0.027 1098.7 0.000 

18 -0.010 -0.029 1099.1 0.000 

19 -0.004 -0.037 1099.2 0.000 

20 0.009 -0.025 1099.6 0.000 

 

Table 5. Correlogram of CAC 40 Returns 

Del

ay  

Simple 

autocorr

elation  

Partial 

autocorrel

ation 

Q-Stat Prob 

1 -0.495 -0.495 1075.9 0.000 

2 -0.000 -0.326 1075.9 0.000 

3 -0.023 -0.274 1078.3 0.000 

4 0.046 -0.173 1087.5 0.000 

5 -0.043 -0.176 1095.8 0.000 

6 -0.006 -0.189 1095.9 0.000 

7 0.053 -0.108 1108.1 0.000 

8 -0.042 -0.123 1115.8 0.000 

9 0.025 -0.086 1118.5 0.000 

10 -0.023 -0.096 1120.8 0.000 

11 0.011 -0.093 1121.3 0.000 

12 -0.016 -0.110 1122.5 0.000 

13 0.021 -0.093 1124.4 0.000 

14 -0.004 -0.086 1124.5 0.000 

15 0.012 -0.056 1125.2 0.000 

16 0.002 -0.026 1125.2 0.000 

17 -0.024 -0.043 1127.8 0.000 

18 0.000 -0.058 1127.8 0.000 
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Table 6. Estimation of the double long memory model ARFIMA (1.d.1) -FIGARCH 

 Masi Ibex 35 BIST 100 CAC 40 

 Normal Student t.skewed Normal Student t.skewed Normal Student t.skewed Normal Student t.skewed 

 

0.008422   

(0.3447) 

0.008797   

(0.1832) 

0.005468   

(0.4609)  

0.022316   

(0.0034) 

0.026845   

(0.0001)  

0.030449   

(0.0000) 

0.039461    

(0.0001) 

0.049649   

(0.0000)  

0.047161    

(0.0000) 

0.023279   

(0.0002)  

0.023374   

(0.0001) 

0.026162   

(0.0000)  

 

0.036792    

(0.7490) 

0.226612    

(0.0226) 

0.229526    

(0.0205) 

-0.092537     

(0.8495) 

-0.367855    

(0.5103) 

-0.316169     

(0.5219) 

0.515750     

(0.0051) 

-0.737852    

 (0.0003) 

-0.732252    

(0.0004) 

0.348691     

(0.3550) 

-0.314122      

(0.8753) 

-0.131846     

(0.8677) 

 

0.050550      

(0.6829) 

-0.13365    

(0.1550) 

-0.136252    

(0.1461) 

0.133911     

(0.7738) 

0.388533     

(0.4744) 

0.340376     

(0.4773) 

-0.474075     

(0.0090) 

0.745369     

(0.0003) 

0.739515    

(0.0004) 

-0.312779     

(0.4107) 

0.331414      

(0.8670) 

0.159449     

(0.8380) 

 

0.076444    

(0.0000) 

0.072435    

(0.0000) 

0.072077    

(0.0000) 

-0.024175    

(0.3575) 

-0.009075    

(0.6077) 

-0.015326    

(0.3980) 

-0.024845    

(0.4863) 

0.011209    

(0.3773) 

0.012380    

(0.3334) 

-0.053652    

(0.0370) 

-0.042200    

(0.0844) 

-0.056444   

 (0.0058) 

 

0.199110     

(0.1980) 

0.458831     

(0.0009) 

0.454737     

(0.0008) 

0.931295     

(0.0219) 

0.769019    

 (0.0126) 

0.811554     

(0.0117) 

0.636818     

(0.0002) 

0.516521     

(0.0000) 

0.511513    

(0.0000) 

0.796874     

(0.0287) 

0.700275     

(0.0390) 

0.723823     

(0.0316) 

 

0.150962      

(0.8953) 

-0.14221     

(0.6655) 

-0.152831     

(0.6469) 

0.080517     

 (0.1503) 

0.080285    

(0.0592) 

0.074873    

(0.0750) 

0.140991    

 (0.1587) 

0.114249    

(0.2092) 

0.114911    

(0.2092) 

0.012900    

(0.7751) 

0.007392    

(0.8529) 

0.002667    

(0.9451) 

 

0.263878      

(0.8432) 

-0.03687       

(0.9177) 

-0.049952     

(0.8902) 

0.557540    

(0.0000) 

0.570848    

(0.0000) 

0.570072    

(0.0000) 

0.429282    

 (0.0014) 

0.375085     

(0.0006) 

0.374571     

(0.0006) 

0.542165    

(0.0000) 

0.557156    

(0.0000) 

0.560168    

(0.0000) 

 

0.371385     

(0.0365) 

0.423790   

 (0.0000) 

0.421946    

(0.0000) 

0.553313      

(0.0000) 

0.549544    

(0.0000) 

0.556902     

(0.0000) 

0.373918    

(0.0000) 

0.325055   

(0.0000) 

0.321846    

(0.0000) 

0.567677    

(0.0000) 

0.583851    

(0.0000) 

0.597212    

(0.0000) 

 

 3.953150     

(0.0000) 

3.946355    

(0.0000) 

 6.110309    

 (0.0000) 

6.168599     

(0.0000) 

 7.158359     

(0.0000) 

7.164263     

(0.0000) 

 6.486706     

(0.0000) 

6.646736    

 (0.0000) 

S*   -0.019458    

(0.2767) 

  0.046115    

(0.0221) 

  -0.019639    

(0.3472) 

  0.072823    

(0.0001) 

LL -798.856 -501.481 -500.956 -3577.653 -3457.137 -3454.641 -4771.546 -4682.571 -4682.13 -3386.817 -3274.949 -3268.611 

Aic 0.368091 0.232884 0.233101 1.635791 1.581267 1.580584 2.180450 2.140315 2.140571 1.548730 1.498152 1.495717 
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From the results of ARFIMA-FIGARCH model in 

Table 7, we conclude that the long memory 

parameter  in returns is statistically significant for 

return series of MASI and CAC 40 and not 

significant for IBEX 35 and BIST 100. The long 

memory in returns implies that stock prices follow a 

predictable behavior, which is inconsistent with the 

efficient market hypothesis. 

However, the parameter d which is the long memory 

parameter in volatility was found statistically 

significant for all of distributions and all series. 

Therefore, a long-term dependence is clearly 

existent in the variance equation, apart from the type 

of distribution of residuals. The presence of long 

memory in volatility indicates that risk is an 

essential factor of the behavior of daily stock data in 

the four-stock market. 

The finding of long-memory in the volatility of the 

financial time series suggests the development of 

new methods of forecasting, portfolio optimization, 

risk assessing and aggregation. 

Given the maximum likelihood estimation function, 

we can maintain the ARFIMA-FIGARCH model 

with t skewed distributions. 

 

 

4 Conclusion 
In this study, the presence of a long memory process 

for four Mediterranean stock market (Morocco, 

Spain, France, and Turkey) have been examined by 

estimating the Hurst parameter using the R/S 

methods and by using ARFIMA-FIGARCH model 

for the period of 2000-2020. 

  Firstly, the return series have significant 

autocorrelations between distant observations which 

indicate long memory property. Thus, returns are 

not independent over time and future returns can be 

predicted by using past prices. 

  Secondly, the Hurst exponent or Hurst coefficient, 

the classical parameter characterizing long memory, 

was estimated. The statistic used is the rescaled 

range (R/S) statistic introduced by Hurst (1951) 

[39]. Results of estimation show clearly that the four 

financial series have a long-term dependence. 

  Finally, ARFIMA-FIGARCH model was estimated 

for different distributions to test long memory 

property in the return and volatility of the stock 

markets simultaneously. From results we conclude 

that the long memory parameter in returns is 

statistically significant for the Moroccan and the 

French stock markets but not significant for the 

Spanish and Turkish ones.  

  However, the long memory parameter in volatility 

was found statistically significant for all 

distributions and all markets. Therefore, a long-term 

dependence is clearly existent in the variance 

equation, apart from the type of distribution of 

residuals. 

  Therefore, price movements on the Moroccan and 

French stock markets are significantly affected by 

current and historical returns unlike Spanish and 

Turkish ones. The investment strategies containing 

equity portfolios must take into consideration all the 

characterizations of returns in these markets. Our 

results indicate that the long memory dynamics in 

volatility is an essential component of the 

characterization of returns. Indeed, investors must 

include the dynamics of the financial market in their 

prediction models. 

For the Moroccan market, our results confirm, first, 

the work of Elbousty, Moulay Driss &Lahsen, 

Oubdi [24] showing that volatility of the Moroccan 

Stock Market captures the properties of volatility 

clustering and long memory. Second Assaf, Ata. 

[21] fined also that Morocco shows evidenceof long 

memory in the return series, while Turkey displays 

negative persistence. For the volatility series, the 

long memory is conclusively demonstrated for all 

MENA markets. In parallel, Natividad Blasco IV & 

Rafael Santamaria [4] demonstrate the existence of 

strong memory processes in the Spanish returns 

contrary to our results. For the French market, our 

results confirm also the work of Caporale, 

Guglielmo Maria& Gil-Alana, Luis & Poza, Carlos. 

[42]  

  This article confronts two schools of thought in the 

available literature. The first contains researchers 

who believe that long memory exists and should be 

investigated to find the degree of its existence and 

the second involves those who believe that long 

memory is an illusion.  

  To conclude, the theory of efficiency in the 

financial literature is not always verified. Thus, it is 

possible to forecast future stock prices and 

significant gains could be obtained by trading on the 

four Mediterranean stock markets, contrary to what 

the efficient markets theory suggests. in this context, 

the study is an important contribution to applied 

finance literature in these markets. 
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