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Abstract: - In this study, a nonlinear deterministic mathematical model of Human Papillomavirus was 

formulated. The model is studied qualitatively using the stability theory of differential equations. The model is 

analyzed qualitatively for validating the existence and stability of disease free and endemic equilibrium points 

using a basic reproduction number that governs the disease transmission. It's observed that the model exhibits a 

backward bifurcation and the sensitivity analysis is performed. The optimal control problem is designed by 

applying Pontryagin maximum principle with three control strategies viz. prevention strategy, treatment 

strategy, and screening strategy. Numerical results of the optimal control model reveal that a combination of 

prevention, screening, and treatment is the most effective strategy to wipe out the disease in the community. 
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1 Introduction 
Human Papillomavirus (HPV) is the name of a 

group of viruses that includes more than 100 

different types and also further than 40 of these 

viruses are the most common and sexually 

transmitted in the world [1]. Most of the HPV 

infections are asymptomatic and can feed out 

without treatment over the course of a few times. 

For case, about 70 of HPV infections fed down 

within a time and 90 within two times. Still, in some 

people, the infection can persist for numerous times 

and can beget knobs or low risk genotype of HPV, 

while other types lead to different kinds of cancers 

or high risk genotype of HPV including cervical 

cancer [23].  

Statistics show that18.1 million new cases, 9.6 

million cancer related deaths, and43.8 million 

people living with cancer in 2018. The number of 

new cases is anticipated to rise from 18 million to 

22 million by 2030 and the number of global cancer 

deaths is projected to increase by 45 in the period 

from 2007 to 2030 [4]. Nearly 80 of cervical cancer 

cases and deaths do in poor countries.  

In Sub Saharan Africa, cervical cancer accounts for 

22.5 of all cancer cases in women and the majority 

of women who develop cervical cancer live in 

pastoral areas [5]. Eastern Africa is one of the most 

heavily affected areas with an prevalence of more 

than 30 cases per women per year [6]. In Ethiopia, 

cancer accounts for about5.8 of total national 

mortality. Although population based data doesn't 

live in the country except for Addis Ababa, it's 

estimated that the periodic prevalence of cancer is 

around cases and the periodic mortality over. The 

most current cancers in Ethiopia among the entire 

adult population are breast cancer [3, 2] cancer of 

the cervix [13, 4], and colorectal cancer [5, 7]. 

About two thirds of annual cancer deaths do among 

women [7].  

Numerous mathematical models have been 

developed to dissect the dynamics of transmission 

of HPV infection and its associated health problems, 

and as well as study the impact of some control 

strategies against the contagion. It's an essential and 

effective way to completely understand real world 

problems by establishing mathematical models and 

analyzing their dynamical behaviours. Old and 

recent studies similar as [8, 9] amongst others have 

shown that mathematical modelling is a extensively 

used tool for resolving questions on public health. 

Several SIR models [1012] have been developed to 

assess the implicit impact of vaccination against 

Human Papillomavirus. Also, [13, 14] formulated 

an SIS model for Human Papillomavirus 

transmission with vaccination as a control strategy, 

and [15] developed a dynamic model for the 

heterosexual transmission of Human Papillomavirus 

types 16 and 18, which are covered by available 
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vaccines. Also, some other recent studies by Akram 

et al [16] develop the mathematical model that 

describes the intercourse between uninfected tumour 

cells and infected tumour cells and modified with 

count treatment of cells by chemotherapy and 

recovery class.  

The aim of this work is to study the effect of 

incorporating optimal control strategies to the 

sensitivity analysis and modelling the impact of 

screening on the transmission dynamics of Human 

Papillomavirus [18]. But the findings of this paper 

differ from the work presented in [18] because the 

model incorporates optimal control strategies. 

 

 

2 Model Description and Formulation 
The model divides the total population into five sub-

classes according to their disease status as:  

Susceptible subclass denoted by  consists of 

individuals which are capable of becoming infected 

 Unaware infected subclass denoted by  

consists of individuals which are unaware infected 

with virus and are also infectious  Screened 

infected subclass denoted by  consists of 

individuals which are screened infected with virus 

and provide treatment for those who are found to 

have HPV infection  Recovered subclass 

denoted by  consists of recovered individuals  

and  Cervical Cancer subclass denoted by 

consists of cervical cancer individuals. 

  

Susceptible individuals are recruited into the 

population at a constant rate . Susceptible cells 

may acquire HPV infection at rate  when they 

come into effective contact with infectious 

individuals at the rate  that may lead to infection. 

The force of infection in the model is given 

as . The unaware infected cells are 

screened and join the screened infected class at a 

rate . Some of the unaware infected cells progress 

to cervical cancer at a rate  and others recover 

naturally through body immune system at a rate  

The screened infected cells are treated at a rate  

and move to recovery class or may progress to 

develop cervical cancer as a result of failure of the 

treatment used at a rate  thus moving to cervical 

cancer class. Recovered cells revert to the 

susceptible class after losing their immunity at a 

rate . All infectious individuals die of infection at a 

rate . All types of cells suffer natural mortality at a 

rate . All parameters in the model are positive. 

 

Upon including the basic assumptions together with 

the description of both model variables and 

parameters the schematic diagram of the modified 

model can be given as in Figure 1. 

 

 
Fig. 1: Schematic Diagram of the Model HPV 

model 

 

Based on the model assumptions, the notations of 

variables and parameters and the schematic 

diagram, the model equations are formulated and 

given as follows: 

                 

                 

                             (1)                    
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The non-negative initial conditions of the system of 

model equations (1) are denoted 

by

. 

 

 

3 Mathematical Analysis of the Model 
 

3.1 Invariant Region 
In this section, we obtain a region in which the 

solutions of model equation (1) are uniformly 

bounded in the proper subsets of . To obtain 

this, first we considered the total population , 

where . Then, after 

differentiating  both sides with respect to  and 

substituting the expression for  and 

 from equation (1) we obtained; 

          (2) 

In the absence of mortality due to disease , 

then equation (2) become 

                  (3) 

After solving equation (3) and equating it as time 

tends to infinity, we obtain . 

Hence, the feasible solution set of model equation 

(1) remains in the region: 

        

(4) 

 

 

 

3.2 Existence of the Solution 
 

Lemma 1: (Existence) Solutions of the model 

equations (1) together with the initial 

conditions

 exist in i.e., the model variables 

and     exist for all  

and will remain in . 

 

Proof: The right hand sides of the system of 

equations (1) can be expressed as follows: 

 
 

 

 

 

 
According to Derrick and Groosman theorem, 

let  denote the 

region

. Then equations (1) have a unique solution if 

 are 

continuous and bounded in . 

Here,  

and . The continuity and the 

boundedness are verified as follows: 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2021.16.66

Eshetu Dadi Gurmu, 
Boka Kumsa Bola, Purnachandra Rao Koya

E-ISSN: 2224-2856 737 Volume 16, 2021



, 

, 

 , 

 , 

. 

, 

, 

,  

 , 

 . 

,  

  

 

  

. 

,  

, 

 , 

  

. 

,  

  

      , 

  

      , 

 

      . 

Thus, all the partial derivatives 

 exist, continuous 

and bounded in . Hence, by Derrick and Groosman 

theorem, a solution for the model (1) exists and is 

unique. 

 

3.3 Positivity of the Solution 
In this section, we show all the solution of the 

model equation (1) remain positive for future time if 

their respective initial values are positive. 

 

Lemma 2: 
Let

; then the solutions of  are 

positive for all . 

 

Proof: Positivity is verified separately for each of 

the model and . 

Positivity of : From model equation (1) we 

have: 

,  

       ,  

      , 

        

       ,  

       , and 

,for all . 

Hence, it can be concluded that . 

Similarly, we obtained in [18] as 
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and ,for all . 

and 

,  for all . 

and 

,  for all . 

and ,  

for all . 

Therefore, the model variables 

 and are positive 

quantities and will remain in for all . 

3.4 The Disease Free Equilibrium (DFE) 
Disease free equilibrium points are steady state 

solutions where there is no disease in the 

population. Absence of disease implies that 

 and the 

equilibrium points require that the right hand sides 

of the model equations set equal to zero. These 

requirements reflect in reducing the model equations 

(1) as 

                      

                                    

                     giving    

              where .  

Thus, the disease-free equilibrium point of the 

model equation in (1) above is given by 

 

. 

 

 

 

3.5 The Basic Reproduction Number ( ) 

The basic reproduction number is denoted by and 

is defined as the expected number of people getting 

secondary infection among the whole susceptible 

population. It is computed using the next-generation 

matrix defined as in [17]. In this method is 

defined as the largest eigenvalue of the next 

generation matrix. Using the notation as in [17] for 

the model system (1) the associated matrices  and 

 for the new infectious terms and the remaining 

transition terms are respectively given by: 

 and  

 

The Jacobian matrices of   and    at the disease 

free equilibrium point   take the form respectively 

as 

and  

It can be verified that the matrix is non-singular as 

its determinant  is non-zero and after 

some algebraic computations its inverse matrix is 

constructed as 

 

The product of the matrices  and  can be 

computed as: 

 
Now it is possible to calculate the eigenvalue to 

determine the basic reproduction number  by 
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taking the spectral radius of the matrix . Thus, 

the eigenvalues are computed by evaluating 

 or equivalently solving 

 

It reduces to the cubic equation for as 

 giving the three 

eigenvalues 

as .  

However, the largest eigenvalue here is 

and is the spectral radius 

as the threshold value or the basic reproductive 

number. Thus, it can be concluded that the 

reproduction number of the model is 

                     . 

 

3.6 Local Stability of Disease Free 

Equilibrium 
In absence of the infectious disease, the model 

populations have a unique disease free steady 

state . To find the local stability of , the 

Jacobian of the model equations evaluated at DEF 

 is used. It is already shown that the DFE of 

model (1) is given by . 

Now, the stability analysis of DEF is conducted and 

the results are presented in the form of theorems and 

proofs as follows: 

 

Theorem 1: The DFE  of the system (1) is locally 

asymptotically stable if  and unstable 

if . 

 

Proof: Jacobian matrix of   

with respect to   is given by 

 

Therefore, the Jacobian matrix  of model at the 

disease free equilibrium  reduces to  

 

Now, the eigenvalues of  are required to be 

found. The characteristic equation 

 is expanded and simplified as 

follows: 

0 

 

 

 

 
Thus, the five eigenvalues of the matrix are 

determined as  

  

=  

  

It can be observed that the first three 

eigenvalues ,  and  are absolutely negative 

quantities. However, the remaining two  and  

are also negatives so long as the following 

restrictions on the parameters are valid: 

 and  
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   respectively, when 

. 

Therefore, it is concluded that the DFE  of the 

system of differential equations (1) is locally 

asymptotically stable if  and unstable 

if . 

 

3.7 Global Stability of Disease Free 

Equilibrium 
The global stability of disease free equilibrium was 

implemented by Castillo-Chavez and Song 

technique [19]. The model equation (1) can be re-

written as 

 

                           ,    

 

Where,  stands for the uninfected population, that 

is  and   also stands for the infected 

population, that is . The disease 

free equilibrium point of the model is denoted 

by . The point  to be 

globally asymptotically stable equilibrium for the 

model provided that  and the following 

conditions must be met: 

 For ,  is globally 

asymptotically stable. 

 

                                    for . 

 

Where  a Metzler matrix is i.e. the 

off diagonal elements of  are non-negative and  is 

the region where the model makes biologically 

sense.If the model (1) met the above two criteria 

then the following theorem holds. 

 

Theorem 2: The point  is globally 

asymptotically stable equilibrium provided that 

 and the condition  and  are 

satisfied. 

 

Proof: From system  we can get  

and ; 

 and 

 
Consider the reduced system 

                                     (6) 

From equation (6) above it is obvious that  

 is the global asymptotic point. This can 

be verified from the solution, namely, 

 As  the solution 

  implying that the global convergence of (6) 

in . From the equation for infected compartments 

in the model we have: 

 

Since  is Metzler matrix, i.e. all off diagonal 

elements are nonnegative. Then,  can be 

written as, , where 

     (7) 
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It follows that, in equation (7)   

and . Hence, . 

Therefore, condition  and  are satisfied 

and we conclude that  is globally asymptotically 

stable for . 

 

3.8 The Endemic Equilibrium 

Endemic equilibrium point   is a steady state 

solution where the disease persists in the population. 

For the existence and uniqueness of endemic 

equilibrium , its 

coordinates should satisfy the 

conditions , where 

  and . The 

endemic equilibrium point is obtained by setting left 

hand sides of equations of the system (1) to zero. 

Then solved for state variables in terms of the force 

of infection,   and obtain the following; 

 

 

 

 

 

Here , ,  

and   .         

On substituting the expression for  and  into the 

force of infection, that is, , 

characteristic polynomial of force of infection is 

obtained as  

 

Here  

and . 

Clearly,  and , 

when   and  

respectively and . From 

this, we see that, for, there is no endemic 

equilibrium for this model. Therefore, this condition 

shows that it is not possible for backward 

bifurcation in the model if . 

 

Lemma 3: A unique endemic equilibrium point  

exists and is positive if . 

 

3.9 Global Stability Of Endemic Equilibrium 
 

Theorem 3: The endemic equilibrium point of the 

model equation (1) is globally asymptotically stable 

whenever . 

 

Proof: To prove the global asymptotic stability of 

the endemic equilibrium we use the method of 

Lyapunov functions. Define 

 

By direct calculating the derivative of  along the 

solution (1) we have 

, 
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Thus collecting positive and negative terms together 

we obtain 

. Here, 

 
And 

 

Thus if , then . Noting that  if 

and only if 

 

Therefore, the largest compact invariant set in 

 is the 

singleton  is the endemic equilibrium of the 

system (1). By LaSalle’s invariant principle 

(LaSalle’s, 1976), it implies that  is globally 

asymptotically stable in  if . 

 

 

4 Sensitivity Analysis of Model 

Parameters 
We carried out sensitivity analysis in order to 

determine the relative significance of model 

parameters on disease transmission. The analysis 

will enable us to find out parameters that have high 

impact on the basic reproduction number and which 

should be targeted by intervention strategies. We 

perform sensitivity analysis by calculating the 

sensitivity indices of the basic reproduction number 

 in order to determine whether HPV can be 

spread in the population or not. These indices tell us 

how crucial each parameter is on the transmission of 

the HPV. To investigate which parameters in the 

model system (1) have high impact on the , we 

apply the approach presented by [20]. 

The explicit expression of  is given 

by . Since  depends only on 

seven 

parameters

 we derive an analytical expression for its sensitivity 

to each parameter using the normalized forward 

sensitivity index as by Chitnis [20] as follows: 

 

Table 1.  Sensitivity indices Table. 

The sensitivity indices of the basic reproductive 

number with respect to main parameters are 

arranged orderly in Table 1. Those parameters that 

have positive indices i.e. and show that they 

have great impact on expanding the disease in the 

community if their values are increasing. Due to the 

reason that the basic reproduction number increases 

as their values increase, it means that the average 

number of secondary cases of infection increases in 

the community. Furthermore, those parameters in 

which their sensitivity indices are negative i.e. 

 and  have an influence of minimizing the 

burden of the disease in the community as their 

values increase while the others are left constant. 

And also as their values increase, the basic 

reproduction number decreases, which leads to 

minimizing the endemicity of the disease in the 

community. 

 

Parameter 

Symbol 

Sensitivity index Sensitivity 

indices 

 
 

+1 

  

0.6979 

  

0.2020 

  

-0.3743 

  

-0.2972 

  

-0.0787 

 
 

 -0.0684 
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5  Extension of Model into an Optimal   

Control 
In this section, we apply optimal control strategies 

of the model equations (1). This helps to reduce the 

disease in the specified time. The optimal control 

model is an extension of HPV model (1) by 

including the following three controls defined as; 

 is the prevention efforts, that protect susceptible 

from contracting the disease. 

 is the screening for individuals which are 

unaware infected with virus. 

is the treatment for individuals which are screen 

infected with virus. 

After incorporating the controls into the model 

equations (1) we obtain the following equation; 

  

 

                                    (8)                         

  

  

Our main objective is to minimize the objective 

function  considering the cost of presentations and 

treatments. The goal of the adopted strategy is to 

reduce unawared infected individuals, screened 

infected individuals and individuals with cervical 

cancer. Mathematically, the optimal control problem 

consists of minimizing the objective functional  on 

a fixed time interval  takes the form; 

 

 

       (9) 

Subject to 

 

With initial condition, 

 and 

 

. 

Where  and  are positive 

weights that balance the size of the integrand terms 

to reduce the dominance of any of the term in the 

integral. The constants  and  measures the 

cost or effort required for the implementation of 

each of the three control measures adopted while 

 and  measures the relative importance of 

reducing the associated classes on the spread of the 

disease. The parameter  is the duration of time, in 

years of protection (presentations) and treatment 

progress. 

We assumed that  since protecting the 

contact between the entire susceptible and infectious 

individuals are impossible in reality. In practice, 

protecting the entire society is impossible due to 

many factors such as financial and human resource 

constraint. Similarly,  because efficient 

implementation of screening may not be in a proper 

ways and  because due to the failure of 

treatment. Thus, the control takes values in the 

set . 

If  then no control measure is 

taken and the model equation (8) is equivalent to 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2021.16.66

Eshetu Dadi Gurmu, 
Boka Kumsa Bola, Purnachandra Rao Koya

E-ISSN: 2224-2856 744 Volume 16, 2021



(1). On the other hand, if   implies 

our control is 100% success. In reality this case is 

not possible.  

Hence, we seek the optimal controls  such 

that 

 

Where  is the set of admissible controls defined by 

. 

5.1 Existence of an Optimal Control 

 

Theorem 4: Consider the objective function  as 

(9) with the set of admissible control  subject to 

the system (8), then there exist an optimal control 

 such that 

 the 

following conditions are satisfied. 

The set of controls and corresponding state variables 

is nonempty. 

The admissible control set  is convex and closed. 

All the right hand sides of equations of system (1) 

are continuous, bounded above by a sum of bounded 

control and state, and can be written as a linear 

function of u, v and w with coefficients depending 

on time and state. 

The integrand of the objective functional  

 is 

convex. 

The integrand of the objective functional is bounded 

below by 

 where  and . 

 

Proof: The non trivial requirement on the set of 

admissible controls and the set of end conditions are 

followed by Fleming and Rishel’s [21] theorem. 

 

Condition 1:  Using theorem 3.2 of Picard-

Lindelof, if  is bounded, continuous and 

Lipschitz in the state variables, then there exists a 

unique solution corresponding to every admissible 

control . Hence, for every  and the state 

variables, we have 

                                                   (10) 

and non empty by model assumption. Furthermore, 

with the bounded done in (10) it implies that the 

state variable is continuous and bounded. 

Additionally, the partial derivative of the state 

variables  exist and finite (i.e. are all continuous). 

Therefore, there exists a unique 

solution  that satisfies the initial 

conditions. Hence, the set of controls and the 

corresponding state variables is nonempty and 

condition 1 is satisfied. 

 

Condition 2: Assume that  such that 

 and . Now, let us 

take any controls  and , then 

. Additionally, we observe 

that  

            and 

              

Since,  

Then for any , 
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Hence,  for all 

 and . 

Therefore, the control space 

  

is convex and closed by definition. 

 

Condition 3: The right hand side of the model 

equation (1) satisfies condition 3 as the state 

solutions are a priori bounded. 

 

Condition 4: The integrand in the objective 

functional, which is a cost functional, 

 is an affine function. Recall that any affine function 

is a convex and the sum of a convex function is a 

convex. Therefore,  is convex on . 

 

Condition 5: Assume that there exists 

constants  and  such 

that   

satisfies 

. 

Thus, the state variables are being bounded let 

 and  then it follows that; 

 
Hence, conditions (1-5) are satisfied. Therefore, by 

Fleming and Rishel [21] we conclude that there 

exists an optimal control  that minimizes the 

cost functional over the set of admissible control  . 

 

5.2 Characterization of an Optimal Control 

In order to derive the necessary conditions for the 

optimal control the Pontryagin’s Maximum 

Principle [22] is used. According to the Pontryagin’s 

Maximum Principle, if  with fixed final 

time , then there exists a non-trivial absolutely 

continuous mapping;  

 
are called the adjoint vector, such that 

 
Subject to  

 
Then, the Hamiltonian of the given system is 

defined as follows 

 
Where 

 and  stands 

for the right hand side of the constraints (8) for 

. 

The optimality condition of the system, 

               . 

Hamiltonian system 
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. 

Adjoint system 

. 

Minimality condition  

 

holds for almost all . 

Moreover, the transversality condition 

 also holds time. 

 

Theorem 5: The optimal control problem (8) with 

fixed final time  admits a unique optimal solution 

 associated with an optimal control 

 for all . Moreover, there 

exist adjoint functions  such that  

, 

, 

 

 

 
With transiversality 

conditions . 

Similarly, we follow the approach of Pontryagin to 

get control.  We solved the equation,  at 

 for  and we obtain the control set 

 characterized by; 

 

 

 
Where,  

 

 

 
 

Proof: The Hamiltonian function associated with 

the system is defined as follows: 

 

 
are the adjoint functions to be determined suitably. 

The form of the adjoint equations and transversality 

conditions are standard results from Pontryagin’s 

Maximum Principle. We differentiate the 

Hamiltonian with respect to states  and 

 respectively and then the adjoint system can be 

obtained as follows: 
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Hence, following Lenhart, S. [23] the transversality 

conditions becomes  for . 

By the optimality condition, we have:  at 

 for  we get 

 then  

then  

 then  

When we write by using standard control arguments 

involving the bounds on the controls, we conclude; 

,  

, 

. 

In compact notation; 

 

 

 
Where,  

 ,     

  , 

   . 

The optimality system is formed from the optimal 

control system (the state system) and the adjoint 

variable system by incorporating the characterized 

control set and initial and transversal condition, we 

obtained; 

 

 

 

  

 

 

 

 

 
 With initial condition:  

and 

. 

 

 

6 Numerical Simulation 
In this section, the result obtained by numerically 

solving the optimality system was presented. In our 

control problem, we have initial conditions for the 

state variables and terminal conditions for the 

adjoints. That is, the optimality system is a two-

point boundary value problem with separated 

boundary conditions at times step  and . 

The numerical simulation was carried out using the 

software MATLAB 2015b. To conduct the study, a 

set of meaningful values are assigned to the model 

parameters. These values are either taken from 

literature or assumed. Using the parameter values 

given in Table 2 and the initial conditions 
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and  the simulation study is 

conducted and the results are given below in 

Figures. 

 

Table 2. Parameter values used in Numerical 

Simulations 
Parameter Value Reference 

 

0.004 Assumed 

 

0.02 [17] 

 

0.3 [18] 

 

0.2 [18] 

 

1.6 [18] 

 

0.0001 assumed 

 

0.3 [18] 

 

0.15 [18] 

 

0.6 [18] 

 

0.04 [18] 

 

a) Control strategy with prevention only 
We simulated the optimality control system by 

incorporating prevention intervention only. Figures 

2(a), 2(b) and 2(c) shows that the decrease of all 

infectious individuals in the specified time but they 

did not go to zero over the period of implementation 

of this intervention strategy. The reason is that due 

to lack of prevention susceptible individuals still get 

infected. Therefore, we conclude that applying 

optimized prevention only as control intervention 

decreases the burden of the disease but it is not 

eradicate HPV totally from the community.  

 

 
Fig. 2(a):, Simulations of unawared individuals with 

prevention only 

 
Fig. 2(b): Simulations of Screened individuals 

with prevention only 

 
Fig. 2(c): Simulations of Cervical Cancer 

individuals with prevention only 

 

b) Control strategy with Screening only 
As we know screening helps unawared individuals 

to identify their status as they are leaving with the 

virus or not. Therefore, Figures 3(a), 3(b) and 3(c) 

shows that all infectious individuals go down by 

screening effort but their number cannot be zero. 

New infection always appears in the community 

because the diseases are not prevented and 

individuals who develop the symptom of the disease 

are not getting treatment. Therefore, control with 

screening only reduces the burden in some extent 

but it is not eradicate HPV totally from the 

community. 
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Fig. 3(a): Simulations of unawared individuals 

with screening only 

 
Fig. 3(b): Simulations of screened individuals 

with screening only 

 
Fig. 3(c): Simulations of Cervical Cancer 

individuals with screening only 

 

c. Control strategy with treatment 

only 
We applied treatment only as intervention that is 

treating individuals who develop disease symptom.  

Figures 4(a), 4(b) and 4(c) clearly show that all 

infectious individuals have gone to zero at the end 

of the implementation period. Therefore, we 

conclude that this strategy is effective in eradicating 

the HPV from the community in a specified period 

of time.  
 

 
Fig. 4(a): Simulations of unawared individuals 

with treatment only 

 
Fig. 4(b): Simulations of screened individuals 

with treatment only  

 
Fig. 4(c): Simulations of Cervical Cancer 

individuals with treatment only 

 

d. Control strategy with prevention 

and Screening only 
In this strategy, we applied prevention and screening 

as intervention to control HPV. Figures 5(a), 5(b) 

and 5(c) shows that infectious individuals did not 

goes to zero over the period of implementation of 

this intervention strategy. The reason is that due to 

lack of prevention susceptible individuals still get 

infected and due to lack of screening unawared 

individuals. Therefore, control with prevention and 

screening reduces the burden to some extent but it is 

not eradicate HPV totally from the community. 
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Fig. 5(a): Simulations of unawared individuals 

with prevention and screening only 

 

 
Fig. 5(b): Simulations of unawared individuals 

with prevention and screening only 

 
Fig. 5(c): Simulations of Cervical Cancer 

individuals with prevention and screening only 

 

e) Control strategy with prevention 

and treatment only 
We simulate the model using a combination of 

prevention and treatment as intervention strategy for 

control of HPV in the community. Figures 6(a), 6(b) 

and 6(c) shows that infectious individuals did not go 

to zero over the period of implementation of this 

intervention strategy. The reason is that due to lack 

of prevention susceptible individuals still get 

infected and due to lack of treatment individuals 

develop disease symptom. Therefore, this strategy is 

not 100% effective in eradicating the HPV in the 

specified period of time. 

 

 
Fig. 6(a): Simulations of unawared individuals 

with prevention and treatment only 

 

 
Fig. 6(b): Simulations of screened individuals 

with prevention and treatment only 

 
Fig. 6(c): Simulations of Cervical Cancer 

individuals with prevention and treatment only 

 

f) Control strategy with screening and 

treatment only 

We simulate the model using a combination of 

screening and treatment as intervention strategy for 

control of HPV in the community. Figures 7(a), 7(b) 

and 7(c) clearly show that infectious individuals 

have gone to zero at the end of the implementation 

period. Therefore, we conclude that this strategy is 

effective in eradicating HPV from the community in 

a specified period of time. 
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Fig. 7(a): Simulations of unawared individuals 

with screening and treatment only 

 
Fig. 7(b): Simulations of screened individuals 

with screening and treatment only 

 
Fig. 7(c): Simulations of Cervical Cancer 

individuals with screening and treatment only 

g. Control strategy with prevention, 

screening and treatment 

In this strategy, we implemented all the three 

controls (prevention, screening and treatment) 

as intervention to eradicate HPV from the 

community. Figures 8(a), 8(b) and 8(c) shows 

that an infectious individual goes to zero at 

the end of the implementation period. 

Therefore, applying this strategy is effective 

in eradicating HPV form the community in a 

specified period of time. 

 
Fig. 8(a): Simulations of unawared individuals 

with all controls 

 
Fig. 8(b): Simulations of screened individuals 

with all controls 

 
Fig. 8(c): Simulations of Cervical Cancer 

individuals with all controls 
 

 

7 Discussions and Conclusions 

In this study, a mathematical model formulated in 

[18]is modified by adding optimal control strategy. 

a. The wellpossedness of the modified model are 

performed. The study also obtained the basic 

reproduction number that governs the disease 

transmission from the largest eigenvalue of the next-

generation matrix. The equilibria points of the 

model are obtained and their local as well as global 

stability condition is established. The model exhibits 

a backward bifurcation and the sensitivity analysis 

is performed. The optimal control problem is 

designed by applying Pontryagin maximum 

principle with three control strategies, namely, 

prevention strategy, treatment strategy and 
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screening strategy. Numerical results for the human 

papillomavirus outbreak dynamics and its optimal 

control revealed that a combination of prevention, 

screening and treatment are the most effective 

strategy to eradicate the disease from the 

community. 

Although eradication of HPV infection remain a 

challenge especially in developing countries, but 

from results of this study we recommend that, the 

government should introduce education 

programmers on the importance of voluntary and 

routinely screening on HPV infection. Also, there is 

need to increase the number of hospitals to deal with 

HPV infection as well as cancers to ensure that, 

many people have access to the facilities, because 

HPV infection in long run results into different 

types of human cancers which pose serious health 

problem. Moreover, the future work should 

consider; incorporating asymptomatic and treatment 

against HPV transmission dynamics in the model. 
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