
 
 

 

Abstract: We consider the three-dimensional gene regulatory network (GRN in short). This model 
consists of ordinary differential equations of a special kind, where the nonlinearity is represented by a 
sigmoidal function and the linear part is present also. The evolution of GRN is described by the solution 
vector X(t), depending on time. We describe the changes that system undergoes if the entries of the 
regulatory matrix are perturbed in some way.  
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1 Introduction 
Under chaos in ancient Greek 
mythologyunderstood the pre-life mess.Greek 
“chaos” is the infinite firsteveryday mass, 
whichsubsequently gave rise to allthe 
existing.Physicists call this science - “nonlinear 
dynamics”, mathematicians – “chaos theory”, all 
the rest – “nonlinear science”. 
The book [14, p.310] containsone of the most 
popular and accepted definitions of chaos in 
which such systems must exhibit sensitive 
dependence to initial conditions, topological 
transitivity, and dense periodic orbits.[13] 
Research on chaotic systems had a practical effect 
since Edward Norton Lorenz established chaos 
theory in 1963. 
Chaos should be expected to be a very common 
basic dynamical state in a variety of systems. 
Chaotic dynamics is very important in different 
fields such fluids, circuits, lasers, mechanical 
devices, chemistry, medicine (studying epilepsy 
to predict seizures, taking into account the initial 
state of the organism) and biology (in the study of 

uneven heart rate and unevennumber 
ofdiseases).[12] 
Consider the general form of writing the n-
dimensional dynamical system, that is expected to 
model a genetic regulatory network,  
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where 𝜇௜ > 0,𝜃௜ and 𝑣௜ > 0 are parameters, and 
𝑤௜௝ are elements of the 𝑛 ×  𝑛 regulatory matrix 

𝑊. The parameters of the GRN have the 
following biological interpretations: 
𝑣௜ − the rate of degradation of the i-th gene 
expression product;  
𝑤௜௝ − the connection weight or strength of 

control of gene j on gene i. Positive values of 
𝑤௜௝indicate activating influences while negative 

values define repressing influences; 
𝜃௜ −theinfluence of external input on gene i, 
which modulates the gene’s sensitivity of 
response to activating or repressing 
influences.[10]The sigmoidal function 𝑓(𝑧) =
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ଵ

ଵା௘షഋ
 is used in (1). Sigmoidal functions are 

monotonically increasing from zero to unity and 
have a single inflection point. They are many, but 
the above function suits well for the analysis and 
visualizations. A set of coefficients 𝑤௜௝ form the 

so called regulatory matrix 

𝑊 =  ൭

𝑤ଵଵ … 𝑤ଵ௡

… … …
𝑤௡ଵ … 𝑤௡௡

൱(2) 

2 Three-element GRN 
Consider the three-dimensionalsystem 

⎩
⎪
⎨

⎪
⎧𝑥ᇱ

ଵ =
1

1 +  𝑒ିఓభ(௪భభ௫భ ା ௪భమ௫మ ା ௪భయ௫యିఏభ)
− 𝑣ଵ𝑥ଵ,

𝑥ᇱ
ଶ =

1

1 +  𝑒ିఓమ(௪మభ௫భ ା ௪మమ௫మ ା ௪మయ௫యିఏమ)
− 𝑣ଶ𝑥ଶ,

𝑥ᇱ
ଷ =

1

1 +  𝑒ିఓయ(௪యభ௫భ ା ௪యమ௫మ ା ௪యయ௫యିఏయ)
− 𝑣ଷ𝑥ଷ.

   (3) 

The nullclines for the system (3) are defined by 
the relations 
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The first nullcline is in the set  

ቄ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ): 0 <  𝑥ଵ <  
ଵ

௩భ
, (𝑥ଶ, 𝑥ଷ) ∈ 𝑅ଶቅ,  

the second nullcline is in the set  

ቄ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ): 0 <  𝑥ଶ <  
ଵ

௩మ
, (𝑥ଵ, 𝑥ଷ) ∈ 𝑅ଶቅ,  

and the third one is in the set  

ቄ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ): 0 <  𝑥ଷ <  
ଵ

௩య
, (𝑥ଵ, 𝑥ଶ) ∈ 𝑅ଶቅ.  

Proposition 1. System (3) has at least one 
equilibrium (critical point). All equilibria are 
located in the open box 

ቄ(𝑥ଵ, 𝑥ଶ, 𝑥ଷ): 0 <  𝑥ଵ <  
ଵ

௩భ
, 0 <  𝑥ଶ <  

ଵ

௩మ
, 0 <

 𝑥ଷ <  
ଵ

௩య
ቅ  =  : 𝐺. 

Due to the structure of the system and properties 
of sigmoidal functions, the vector field, defined 
by the system of ODE, is directed inward on the 

border of G. Therefore, it is invariant with respect 
to the system. [11] 

3.1. Stable equilibria 

The standard analysis of critical points can help to 
find stable equilibria. If the real parts of all three 
characteristic numbers are negative, this is the 
case. The system (3) with the regulatory matrix  

𝑊 =  ൭
0 1 1
1 0 1
1 1 0

൱(5) 

can have one or two attractive critical points, 
depending on the choice of parameters 𝜇 and 
𝜃.Generally,𝑛-dimensional systems with the 
regulatory matrices of the form (5) can have up to 
two attractive critical points, as was initially 
proved for two-dimensional systems in [15] and 
then generalized to 𝑛-dimensional ones in [16].  
The system (3) with the matrix 

𝑊 =  ൭
0 2 0
2 0 0
0 0 1

൱ (6) 

and 𝜇ଵ = 𝜇ଶ = 7,  𝜇ଷ = 5; 𝑣ଵ = 𝑣ଶ = 𝑣ଷ = 1; 

𝜃ଵ = 0.8,  𝜃ଶ = 1.0, 𝜃ଷ = 0.5, has six attractive 
critical points, which can be observed in Figure 1 
(six intersections of red and greenwithblue, at the 
corners of a cube). To see this, it is helpful to 
observe that the three-dimensional system with 
the matrix (6) consists of a two-dimensional 
system and a single the first order equation. The 
two-dimensional system can be analyzed easily 
both by visual inspection of the plane vector field, 
or by standard analysis of three critical points. 
The side critical points are stable nodes and the 
middle one is a saddle. The first order equation is 
constructed in the way, that guarantees that the 
third nullcline of a three-dimensional system 
decomposes into three parallel planes, which can 
be seen in Figure 1 (in blue). The three pairs of 
stable critical points arise during this process. The 
same technique is used below for the 
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constructionof three periodic solutions.

 
Figure 1 

3.2. Periodic attractors 

Stable limit cycles can exist in systems of the 
form (3). The numerically studied examples 
where provided in the papers [17], [18].Consider 
the system (3) with the matrix 

𝑊 =  ൭
1 0 2
0 1 0

−2 0 1
൱ (7) 

and𝜇ଵ = 𝜇ଷ = 5,  𝜇ଶ = 15; 𝑣ଵ = 𝑣ଶ = 𝑣ଷ = 1; 
𝜃ଵ = 1.2,  𝜃ଶ = 0.5, 𝜃ଷ = −0.6.  Three nullclines 
are located as shown in Figure 2. 

 
Figure 2 

There are exactly three critical points 𝑝ଵ, 𝑝ଶ and 
𝑝ଷ: ( 0.5367;  0.0006;   0.3464),
( 0.5367;  0.5;   0.3464) and 
( 0.5367;   0.9994;   0.3464), 
respectively.Linearization around these points 
provides us with the characteristic numbers 𝜆 
given in Table 1. 

Table 1 

- λ1 λ2 λ3 
p1 -0.9916 0.1876 -2.372𝑖 0.1876 + 2.372 𝑖 
p2 2.75 0.1876 -2.372𝑖 0.1876 + 2.372 𝑖 
p3 -0.9916 0.1876 -2.372𝑖 0.1876 + 2.372 𝑖 
 

The characteristic numbers differ only in λଵ. This 
is because the system with the regulatory matrix 
(7) in fact is an uncoupled system, where the two-
dimensional system corresponds to the first and 
the third rows of the matrix  (7), and the second 
row defines one the first order equation with 
respect to 𝑥ଶ.  Consequently, the second nullcline 
of the three-dimensional system is just a union of 
three planes (in green), which can be observed in 
Figure 2. The phase portrait for the two-
dimensional system is repeated three times in 
these 𝑥ଶ-nullclines. Since any time the 𝑥ଶ 
coordinate of nullclines is changed, but other 
parameters no, λଵ changes. Since the two-
dimensional system had a stable periodic 
solutions, all of them are in the three-dimensional 
phase space, depicted in Figure 3. Under the 
small change of parameters two side periodic 
trajectories become attractors, and stay attractive, 
while the locations of nullclines do not change 
significantly, but the periodic trajectory in the 
middle is destroyed. 
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Figure 3: Three periodic solutions and some other 
solutions tending to the side periodic trajectories 

 
Figure 4: The graphs of 𝑥௜(𝑡), 𝑖 = 1,2,3 

Assume now that 𝑤ଶଵ = 1 in the matrix (7). Then 
there is only one critical 
point( 0.5367;  0.9999998;   0.3464). The 
standard linearization analysis provides the 
characteristic numbers 

𝜆ଵ =   −0.999997; λଶ,ଷ =   0.18762 ±  2.37198 𝑖 

The nullclines and one periodic solutionare 
depicted consequentlyin Figure 5 and Figure 6. 

 
Figure 5 

 
Figure 6: One periodic solution and some 

trajectories tending to the periodic one 
 
3.3. Chaotic attractors 

Chaotic attractor for the system (3) was 
constructed in the works [1], [2]. We consider 
below some modification of it.  

Consider the 3-dimensional system (3) with the 
regulatory matrix  

𝑊 =  ൭
0 1 −5.65
1 0 0.135
1 0.02 0.03

൱(8) 

and other parameters 𝜇ଵ = 𝜇ଶ = 7,  𝜇ଷ = 13; 
𝑣ଵ = 0.65, 𝑣ଶ = 0.42, 𝑣ଷ = 0.1; 𝜃ଵ = 0.5,  𝜃ଶ =

0.3, 𝜃ଷ = 0.7. 
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The initial conditions are 

𝑥ଵ(1) = 0.68; 𝑥ଶ(1) = 0.45; 𝑥ଷ(1) = 0.15. 

For this set of data, the three nullclines are 
located as shown in Figure 7. 

 

Figure 7 

Thereis one critical point 
(0.370457;  1.59272;  0.222436). Standard 
linearization analysis provides the characteristic 
numbers 

𝜆ଵ =  −1.2558; λଶ,ଷ =  0.0471391 ± 0.739161 𝑖 

The system (3) is chaotic in the sense that 
solutions exhibit non-regular behavior. The 
attractor is depicted in the figure below. 

 

Figure 8: 3D chaotic attractor 

 
Figure 9: The graphs of𝑥௜(𝑡), 𝑖 = 1,2,3 

 

Numerical results 
 
Now we change the parameter 𝑤ଶଷ (that is, the 
third element in the second row) in the regulatory 
matrix (8). The coordinates of a single critical 
point, values of the characteristic numbers for this 
point, are provided. Computations are performed 
using Wolfram Mathematica. 
 
 

Table 2 

𝑤ଶଷ 𝑥∗ 𝑦∗ 𝑧∗ Real 𝜆 Complex 𝜆 

Real 
part 

Imaginary 
part 

0.0 0.3651 1.4571 0.1989 -1.4269 0.1322 0.6634 
0.05 0.3671 1.5057 0.2073 -1.3714 0.1047 0.6886 
0.10 0.3691 1.5562 0.2161 -1.3069 0.0726 0.71698 
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0.12 0.3699 1.57699 0.2197 -1.2783 0.0583 0.7294 
0.13 0.3703 1.5875 0.2215 -1.2634 0.0519 0.7359 
0.132 0.3703 1.5895 0.2219 -1.2604 0.0494 0.7371 
0.133 0.3704 1.5906 0.2221 -1.2589 0.0487 0.7378 
0.134 0.3704 1.5917 0.2223 -1.2573 0.0479 0.7385 
0.136 0.3705 1.5938 0.2226 -1.2589 0.0487 0.7378 
0.137 0.3705 1.5948 0.2228 -1.2527 0.0456 0.7405 
0.138 0.3706 1.5959 0.22299 -1.2512 0.0448 0.7412 
0.139 0.3706 1.5969 0.2232 -1.2494 0.0441 0.7418 
0.14 0.3706 1.59799 0.2234 -1.2481 0.0433 0.7425 
0.145 0.3708 1.6033 0.2243 -1.2403 0.0394 0.7459 
0.15 0.3710 1.6087 0.2252 -1.2324 0.0354 0.7493 
0.16 0.3714 1.6192 0.2270 -1.2162 0.0274 0.7564 
0.18 0.3721 1.6406 0.2308 -1.1826 0.0107 0.7711 
0.19 0.3725 1.6514 0.2326 -1.1652 0.002 0.7787 
0.20 0.3729 1.6622 0.2345 -1.1473 -0.0069 0.7867 

 
Calculations showed the following: 
0 ≤ 𝑤ଶଷ < 0.132 the system (3) has a periodic 
solution; 
0.133 < 𝑤ଶଷ ≤ 0.137 the system (3) is a chaotic; 

0.138 < 𝑤ଶଷ ≤ 0.19 the system (3) has a 
periodic solution; 
𝑤ଶଷ ≥ 0.2 the system (3) is in region of 
asymptotic stability. 

 

 
Figure 10: 𝑤ଶଷ = 0.05 

 
Figure 11: Solutions𝑥ଵ(𝑡); 𝑥ଶ(𝑡); 𝑥ଷ(𝑡). 

(𝑤ଶଷ = 0.05) 
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Figure 12: 𝑤ଶଷ = 0.19 

 
Figure13: Solutions𝑥ଵ(𝑡);  𝑥ଶ(𝑡); 𝑥ଷ(𝑡). 

(𝑤ଶଷ = 0.19) 

Now we change 𝑤ଷଶvalues in the regulatory 
matrix (8). 

Table 3 
 

𝑤ଷଶ 𝑥∗ 𝑦∗ 𝑧∗ Real 𝜆 Complex𝜆 
Real 
part 

Imaginary 
part 

0.0 0.4092 1.7387 0.2449 -1.036 -0.0623 0.8666 
0.01 0.3892 1.6656 0.2337 -1.1554 -0.0029 0.7966 
0.03 0.3530 1.5213 0.2114 -1.3366 0.0873 0.6912 
0.04 0.3368 1.4523 0.2007 -1.3996 0.1186 0.6507 

 
From Table 3 we see, that 
0 ≤ 𝑤ଷଶ < 0.01the system (3) is in region of 
asymptotic stability; 
0.03 ≤ 𝑤ଷଶ ≤ 0.04 the system (3) has a periodic 
solution. 
From Table 2 and Table 3 we see that small 
changes in parameter values change the behavior 
of the system.The authors in the works [1] and [2] 
claim that the chaotic behavior was discovered in  
the system with the regulatory matrix [8] and 
other data given in [2]. Small variation of these 
data, as is shown above, keep the irregular 
behavior of solutions. 
 
 

4 Conclusion 
The tree-dimensional system (3) can have 
attractors of various kinds. It can have a single 

attracting point, multiple stable equilibria, but not 
infinite. It can have several stable periodic 
solutions, which serve as attractors.  The irregular 
behavior of solutions near the chaotic attractor is 
possible also. It can appear in a very small 
diapason of parameters. The method of finding 
chaotic attractors is not yet developed. It is still a 
matter of fortune.  
Сhaos theory is used to explain many complex 
biological and natural processes. That is why, it is 
very important to understand at what values chaos 
appears. Our aim is to investigate the considered 
system, to find patterns of chaos. 
From the practical point of view, big genomic 
network are responsible for reactions of living 
organisms to diseases like leukemia. (see [4]. 
[11]). The solution vector 
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𝑋(𝑡) = (𝑥ଵ(𝑡), … , 𝑥௡(𝑡)) is treated as the current 
state of a network, the disease is interpreted as 
𝑋(𝑡) going to the “wrong” attractor. Treatment 
(in a model) is understood as the redirecting of a 
trajectory (𝑡, 𝑋(𝑡)) to a “normal“ attractor. These 
considerations determine the future direction of 
research.The study of dynamical systems and 

networks of various kinds is an urgent and timely 
task [19], [20]. 
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