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Abstract: - Two most commonly used sensors on nanosatellites are magnetometer and sun sensor. In this paper, 
magnetometer and sun sensor measurements are combined gyro measurements to produce enhanced attitude 
estimation. Tri-Axial Attitude Determination (TRIAD) algorithm is used with Kalman filter to form a complete 
attitude filter. Sun sensor and magnetometer measurements are selected as inputs to TRIAD algorithm and 
output is fed to Kalman filter as a measurement. Two different Kalman filters, extended and unscented, are 
used with TRIAD algorithm. A comparison is given between performances of both Kalman filter. 
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1 Introduction 

 
Increasing demand for the space operations, 

space industry turns its face to cost effective 
solutions. Small satellites, due to their size and cost, 
are receiving interest from many organizations. The 
amount of attitude determination and control 
equipment that can be placed in small satellites are 
considerably lower than the regular size satellite. 

Kalman filter has been the backbone of the 
space industry since the publication of the Dr. 
Kalman’s work [1]. Many different versions of the 
Kalman filter have been derived. Harold Black 
published an algorithm called Tri-Axial Attitude 
Determination (TRIAD) in 1964 [2]. It is the earliest 
algorithm that was published to find satellite attitude 
with two measurements. In 1965, Grace Wahba 
suggested her famous problem [3]. Solution 
methods such as q-method [4] and Quest algorithm 
have been widely used [5]. A computationally 
expensive method, SVD, is also published [6]. 
Many of the mentioned methods are coupled with 
Kalman filters for higher accuracy [7], [8]. In this 
work algebraic method is used with sun sensor and 
magnetometer measurements. 

EKF is probably the most used version of 
the Kalman filter [9]. One of the earliest work of 
Kalman filter for attitude determination used Euler 
angle rotations [10]. It is known that all three-
parameter representations of the special orthogonal 
group suffer from singularity and discontinuity 
problems. To overcome this challenge new 
representation methods have been studied [11]. 
Quaternions have become the most used form of the 
attitude representations. Euler angles, Rodrigues and 
modified Rodrigues parameters are avoided for most 
of the agile missions due to their singularity 
problems. In the last two decades new approaches 
have been suggested for replacing EKF. Unscented 
Kalman filter is one of them [12]. UKF uses the 
unscented transformation to achieve high-order 
approximations of the nonlinear functions in order 
to estimate mean and covariance of the state vector. 
Filter uses predefined number of sigma points to 
approximate Gaussian distribution. Each of the 
sigma points are propagated through the propagation 
functions [12, 13]. 

In this work, using common sensors, couple 
of filters are design to overcome to attitude 
determination problem. Two of most common 
sensors that are being used in nanosatellites are 
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magnetometers and sun sensors. Magnetic dipole 
model is selected for magnetic field model. VSOP87 
theory is used for sun direction vector [14]. Using 
these two models, sensor measurement models have 
been established. For attitude representation of the 
spacecraft Euler angles are selected. TRIAD 
algorithm is used for combining sun sensor and 
magnetometer measurements. Body angles that are 
produced by TRIAD are used as linear 
measurements to the Kalman filter. Algorithm is 
constructed for both Extended and Unscented 
Kalman filters for comparison. 
 

2 Mathematical Model 
 

Satellite kinematic, dynamic and sensor 
models are derived in this section. 

 
2.1 Satellite Kinematic and Dynamic Model 

 
Firstly, for kinematic model, rate equations 

are given below 
 
u vcos sin     (1) 

u v( sin cos )sec       (2) 

u v wtan ( sin cos )         (3) 

where   is the roll angle about x  axis,   is the 
pitch angle about y axis,   is the yaw angle about 
z axis, u , v and w  are the components of BRω
vector in body frame with respect to the reference 
frame.  
           Rotations need to be defined with respect to 
inertial frame. 

u x

v y 0

w z

w 0

w A

w 0



   



     
     
     
          

 (4) 

where xw , yw  and zw are the components of vector 
w  in body frame with respect to the inertial frame,  
A is the attitude transformation matrix composed of 

Euler angles, 0 3r


   defines the orbital angular 

velocity with respect to the inertial frame,  is the 
gravitational constant of the Earth and r is the 
distance between center of mass of the satellite and 
the Earth, r r . 
          Attitude dynamics is related with time 
derivative of the angular momentum vector. If the 

origin of the body frame is selected as the center of 
mass, then 

ch Jw  (5) 

where h is the angular momentum vector, J is the 
moment of inertia matrix.  
         Relation between time derivative of the 
angular momentum and the angular velocity is 

c b ch h w (h )    (6) 

where hb is the time derivative of angular 
momentum in body-fixed frame.  
         Rewriting derivative equations for discrete 
time we have, 

  
k 1 kx x z y y z m

x

t
w w w w J J T

J


     (7) 

  
k 1 ky y x z z x m

y

t
w w w w J J T

J


     (8) 

  
k 1 kz z x y x y m

z

t
w w w w J J T

J


     (9) 

where Tm is the external torque and t is the 
sampling time interval. 
          Equations above describe the satellite attitude 
motion. 
 

2.2 Sensor Models 

  
 Magnetometer is the most commonly used 
sensor particularly in nanosatellite applications. For 
magnetic field vector, dipole model is used. Sensor 
model is given below, 

x 1

y 2 m m

z 3

B ( , , , t) B (t)

B ( , , , t) A B (t) b

B ( , , , t) B (t)

  

      

  

   
   
   
      

 (10) 

where B1(t), B2(t) and B3(t) indicates Earth magnetic 
field vector components in orbit frame,                 
Bx( , , , t   ), By( , , , t   ) and Bz( , , , t   ) show 
the Earth magnetic field vector components in body 
frame as a function of body angles and time. The 
magnetometer bias vector is given as 

 
T

m x y zb b b b . Bias vector is modeled via the 
expression below:  

mb 0 . (11) 
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The noise term, m ,  is added linearly to the model 
and modeled as zero mean Gaussian white noise 
with the characteristic of 

 T 2

1k 1 j 3 x 3 m kj
E       (12) 

where I3x3 is the identity matrix, m is the standard 
deviation of magnetometer errors and kj is the 
Kronecker symbol. 
 In order to construct a sun sensor model, 
sun direction vector is used. Using VSOP87 theory, 
a direction cosine matrix is calculated which shows 
the sun’s position relative to Earth in ECI frame 
[14]. 

x 1

y 2

3z

B E

B E s

EB

s s

s A s

ss

 

   
   
   
   

  

 (13) 

Construction of sun direction vector, sE, requires 
two assumptions. Comparing the distance between 
Sun-Earth, 1 AU, and Earth-satellite, satellite 
altitude is negligible. Therefore, satellite’s sun 
direction vector is always parallel to Earth’s sun 
direction vector. The other assumption is taking the 
right ascension node of Sun’s orbit as zero. The sun 
direction vector, 

ecliptic

E ecliptic

ecliptic

cos

s sin cos

sin sin



 

 



 
 
 
  

 (14) 

The noise term, s , is added linearly to the model 
and modeled as zero mean Gaussian white noise 
with the characteristic of 

T 2

1k 1j 3x3 s kjE         (15) 

where I3x3 is the identity matrix, s  is the standard 
deviation of sun sensor errors.  
 The gyro model is constructed with satellite 
dynamic equations. A commonly used model for 
gyro measurements given by 

BI BI g gb      (16) 

where gb  is the gyro bias vector and the g  
modeled as zero mean Gaussian white noise with 
the characteristic of 

T 2

1k 1j 3x3 g kjE         (17) 

where I3x3 is the identity matrix, g  is the standard 
deviation of gyro errors. Gyro bias vector is 
modeled as, 

gb 0 . (18) 

3 Filter Design 

 
3.1 TRIAD 

 
 A rotation matrix describes the attitude of a 
spacecraft with respect to a known reference frame. 
It takes at least two measured vectors to determine 
the orientation of the vehicle. The algebraic method 
constructs two triads of orthonormal vectors, two 
triads are expressed by sun sensor and 
magnetometer unit vectors in body and reference 
frames. Let magnetometer measurement vector is 
denoted by B and sun sensor vector is denoted by S. 
For initial base vector, sun sensor is selected. 

u S
v S B / S B
r u v



  

 

 (19) 

It is important to note that two vectors, S and B 
cannot be parallel, S.B 1 . Constructing the 
direction cosine matrix, 

  
T

r r r b b brbA u v w u v w  (20) 

Final step of the TRIAD is to find error covariance 
of the algorithm 

2 T 2 T
2 Tm b b s b b
s b b

S S B B
P v v

S B

 



 


 (21) 

Body angles and error covariances that are obtained 
from TRIAD algorithm are used as measurement 
inputs to the Kalman filter. These results are 
combined with gyro measurements in order to 
achieve better accuracy. 
 
3.2 Extended Kalman Filter 

 
      In 1960, Dr. Kalman published his famous 
paper “A new Approach to Linear Filtering and 
Prediction”. It represented a sequential solution to 
the time-varying filtering problem. The filter is 
particularly good for dynamical systems and also 
removed the non-dynamical requirements of Weiner 
filter [1]. The extended Kalman filter uses the first 
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order Taylor series linearization for non-linear 
systems. This process requires two assumptions. 
Propagation and measurement functions must be 
differentiable. Filter algorithm is given below. 
Propagation of state vector is conducted with 
equation, 

 k k 1
ˆ ˆx f x 


  (22) 

Equation of state estimation, 

  k k k k
ˆ ˆx x K z h x  

    (23) 

Here, h is the measurement function and K is the 
Kalman gain, 

1T T
k kK P H HP H R


 

     (24) 

where R is the covariance matrix of measurement 
error, H is the measurement matrix of system, kP  is 
the covariance matrix of extrapolation error. 
     Covariances of both extrapolation and filtering 
errors are given below. For error equations, 
Jacobian matrix F  is needed. Jacobian matrix can 
be constructed by taking partial derivatives of 
propagation function with respect to state variables 
  

   T
k k 1FP F QP 


                                    (25) 

 k kP I KH P 
   (26) 

where F is the Jacobian matrix and Q is the 
covariance matrix of process noise. 
 

3.3 Unscented Kalman Filter 

 
         EKF, due to nature of the first-degree 
linearization, is not as accurate for highly linear 
systems. Jacobians are hard to derive and the 
linearization needs very short time intervals 
otherwise filter becomes unstable. But this comes 
with the computational power gets higher. The main 
idea behind the UKF is distributions are easier to 
approximate from nonlinear functions [13]. 
Therefore, it introduces “sigma points”. With these 
points, filter removes need for derivation of 
Jacobian matrix and it is more robust to the initial 
estimation errors [15]. Sigma point can be obtained 
by [16] 

0 x   (27) 

  i k
i

x L P     i 1,....L      (28) 

  i k
i L

x L P     i L 1,....2L 


      (29) 

 is denotation for the sigma vector. In order to 
capture the true nature of the reflection, sigma 
points are weighted 

 
( m)

0W
L







 (30) 

 
 (c ) 2

0W 1
L


 


   


 (31) 

(m) (c)
i iW W  (32) 

where  2 L L     is the scaling parameter, 
  is the secondary scaling parameter,   
determines how spread the sigma points are and is 
used to incorporate prior knowledge for x. Using the 
weights, propagated state matrix can be determined 
by, 

2L
(m)

k i i
i 0

x̂ W Y



  (33) 

And propagated covariance 
2L

T(c)

k i i k i k
i 0

ˆ ˆP W Y x Y x Q  



           (34) 

where Q is the process noise. Obtaining the Kalman 
gain is similar to EKF. Hence, 

1
xy yyK P P

  (35) 

where Pxy and Pyy are, 

2L T(c)
yy i i k i k

i 0

ˆ ˆP W Z z Z z R 



           (36) 

2L T(c)
xy i i k i k

i 0

ˆ ˆP W Y z Z z 



          (37) 

The last part is to update both state and covariance 
matrix with measurements 

 k k k kˆ ˆ ˆx x K z z 
    (38) 

T
k k yyP P KP K
   (39) 

where zk is the measurement vector. 
 

4 Simulation 

 
Simulations are performed with a 

hypothetical nanosatellite with principal moment of 
inertia J = diag(2.1x10e-3 2x10e-3 1.9x10e-3). 
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Simulations are conducted with a sampling time of 1 
second. Orbit of the satellite is a circular orbit with 
an altitude of 400 km. Argument of perigee of the 
orbit is 207.4 degrees and inclination of the orbit is 
97.65 degrees. 

Figures below give attitude estimations in 
terms of Euler angles. First figure shows estimation 
with only TRIAD algorithm. Figure 1 and 2 show 
attitude estimations combining TRIAD and two 
different Kalman filters  

 

 
  Fig. 1: TRIAD-EKF attitude estimation 

 
               Fig. 2: TRIAD - UKF attitude estimation 

Mean square errors of each method are 
given in Table 1. 

 
 

Table 1: RMSE values 

 Roll (deg) Pitch (deg) Yaw (deg) 
TRIAD 6.2395 7.2175 11.4611 
EKF 4.5339 5.4990 10.5363 
UKF 3.4718 6.1306 10.7370 

 
RMSE results clearly show that Kalman 

filters increase quality of estimation compared to 
TRIAD-only algorithm. Both extended and 
unscented Kalman filters estimated similarly. The 
only significant difference in RMSE values is at roll 
estimation. 

 
 

5 Conclusion 

 
 Algebraic method, even though it is an aging 
algorithm, can estimate satellite attitude well. The 
sun sensor and magnetometer are selected for inputs 
to algebraic method because of their wide usage in 
space industry. Many different filtering algorithms 
are presented to this day but proven algorithms are 
still getting attention from engineers. Extended 
Kalman filter proves itself on many missions. 
Therefore, selecting the EKF for this work was a 
must. As expected, it performs really well on 
simulations especially in low initial angular velocity 
cases. UKF is known for its superiority to EKF 
when dealing with nonlinear functions. In many 
simulations attempts, UKF performed relatively 
same as EKF. 
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