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1 Introduction
In this paper, we describe a system whose state, which
we will call the end effector position, is given by an el-
ement of a differential manifold η ∈ M. We suppose
that the end effector position is determined by the val-
ues of n actuators:

ℓ = (ℓ1, ℓ2, . . . , ℓn) ∈ Rn. (1)
We write L : M → Rn for the function which maps
the end effector position to the actuator values. Note
that we can allow the problem to be over-constrained,
that is, n can be bigger or equal to the dimension of
M. Note that the elements of M are generalized po-
sitions in the sense of the Euler-Lagrange formalism
[1].

Examples of these are cable-driven parallel robots,
consisting of a fixed rigid frame, and a floating rigid
body called the end effector. The end effector is ma-
nipulated via eight cables attached to actuators. Each
actuator is clamped to the fixed frame. The value,
ℓk, of the kth actuator is the length of cable issued
by the actuator. The manifold M is the six dimen-
sional space of poses, that is, positions with orienta-
tions. See [2, 3, 10] for an introduction to parallel
robots. See [8, 9] for information about cable-driven
parallel robots. The algorithm described in this paper
was tested upon a cable-driven parallel robot built by
the NASA Johnson Space Center, which we describe
in another paper [7].

We assume that the only measurements we can
take are the values of the actuators, and that the only
method of control is to command a force at each actu-
ator, which converts into a force on the end effector.
We assume that once the end effector force is known,
one can determine the trajectory of the end effector
via a frictionless, quadratic Hamiltonian system. The
force is a generalized force obeying the principle of
virtual work, and we will call it the end effector force.

The method of control is to calculate the end ef-
fector position using the actuator values. Then, from

the difference of the actual end effector position from
the requested end effector position, is calculated the
required acceleration of the end effector. From this is
calculated the required end effector force. Finally, we
find the actuator forces to effect this.

Our main contribution is to show that the control
constants for computing the required acceleration of
the end effector are the same as the control constants
used to control a single actuator, making it easier to
determine the control method. This result requires
two things. First that the actuator response is linear.
This would be violated if, for example, if there is sig-
nificant non-linear friction. Second, it requires that
the each actuator by itself can be controlled by the
same linear controller. For example, with the cable-
driven parallel robot, if there is significant flexing or
stretching of cables, this would require a different con-
trol method for each actuator because the orientations
and/or lengths of the cables aren’t necessarily identi-
cal.

Since the control constants can be found by con-
sidering a controller for a single actuator, then the
same control constants can be used irrespective of the
end effector position, that is, no gain scheduling is re-
quired. Thus the formula for resonant frequencies can
also be calculated from the resonant frequencies of a
single actuator.

We believe the methods and results in Sections 4
and 5, where we show that the control constants come
from those described in Section 3, are new. But it is
possible that these methods were developed in a com-
pletely different context, and that the author is simply
unaware of them.

2 Mathematical description of the
system

Denote by TηM the tangent space of M at η, by
TM =

∪
η∈M TηM the whole tangent space, and by

T ∗M =
∪

η∈M T ∗
ηM the cotangent space. See [6]
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for information on manifolds.
Given a position that is a function of time, η(t), we

have its velocity and acceleration which are functions
of time taking their values in TM given by

φ = η̇, α = φ̇. (2)

We define the linear operator Λη : TηM → Rn by the
directional derivative, which in local coordinates is

Ληθ = θ · dL(η)
dη

. (3)

Often we simply write Λ for Λη when there is no con-
fusion.

Then, from the velocityφ, we can calculate the rate
of change of the actuator values:

ℓ̇ = Ληφ. (4)

We suppose that there is a linear operator T = Tη :
Rn → T ∗M, which converts actuator forces f =
(f1, f2, . . . , fn) to the end effector force τ :

τ = Tηf . (5)

By the principle of virtual work, we have

φ · Tηf = ℓ̇ · f = Ληφ · f . (6)

Hence
Tη = ΛT

η . (7)

Next we describe the equations of motion. Sup-
pose that the system is given by a Lagrangian

l(η, φ) = 1
2Mη(φ,φ)− v(η), (8)

whereMη =M is a positive definite bilinear operator
onTηM. This includes kinetic energy of the actuators

1
2m0|ℓ̇|2, (9)

where m0 is the effective mass of the each actuator
(the notion of ‘effective’ is explained in Section 3 be-
low). In local coordinates we can describe Λ and M
as matrices, then the kinetic energy of the actuators is
given by

1
2m0φ

TΛTΛφ, (10)

and so we must have that the matrix

M −m0Λ
TΛ (11)

is positive semi-definite.
Solving the Euler-Lagrange equations [1], we ob-

tain the equations of motion

τ =Mα+ µ(η), (12)

where in local coordinates

µ(η) = φ · ∂Mη

∂η
(φ, ·)− ∂

∂η
v(η). (13)

We define the no-load forces to be the actuator
forces if the actuators are not attached to the system,
that is, the Lagrangian is given simply by equation (9):

f0 = m0ℓ̈. (14)

Thus differentiating equation (4), we obtain (in local
coordinates)

f0 = m0Ληα+m0φ · dΛη

dη
φ. (15)

For the example of the cable-driven parallel robot, the
cable tensions are given by

cable tensions = f0 − f . (16)

Next, we need inverse functions to L and T , which
we call Y and F . We define the set of admissible ac-
tuator values, L ⊂ Rn, to be the range of the func-
tion L. We suppose that we have a forward kinemat-
ics function, Y : L → M, which is a left inverse to
L. Because of possible measurement errors, Y should
produce decent answers even if the actuator values are
merely close to L. For example, this could be imple-
mented using the Newton-Raphson Method.

For the inverse function of T , we need some more
definitions. Given fb,f0 ∈ Rn, we suppose that we
have a predefined set Cfb,f0

⊂ Rn. Here fb is the
command force required to overcome actuator resis-
tance such as back-EMF, f0 is the no-load actuator
forces, and Cfb,f0

is the set of those f such that it is
permissible to command forces f + fb to the actua-
tors.

Typically this is a convex set defined by a finite
number of linear constraints. For the example of
cable-driven parallel robots, we might say f ∈ Cfb,f0

if and only if the tensions in the cables, f0 − f , is
never below a given predefined value, and the com-
mand forces±(f+fb) don’t exceed the actuator hard-
ware limits.

Then we define the wrench set to be the set of
achievable forces:

W = {(τ,fb,f0) ∈ T ∗M× Rn × Rn :

∃f ∈ Cfb,f0
such that Tf = τ}. (17)

We suppose that we have a function F : W × Rn ×
Rn → Rn that provides a right inverse to the map
defined by T in the following manner:

T (F (τ,fb,f0)) = τ, (18)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2022.17.24 Stephen Montgomery-Smith

E-ISSN: 2224-2856 208 Volume 17, 2022



such that
F (τ,fb,f0) ∈ Cfb,f0

. (19)
Because there are more actuators than the number
of degrees of freedom (that is, the dimension of M,
computing the actuator forces in the last step is an
over-constrained problem. For the example of cable-
driven cable robots, there are many approaches in the
literature [4, 5, 8].

Finally we need a way to approximate the differ-
ence between two end effector positions by an ele-
ment of the tangent space. That is, there is a function
△ : M×M → TM such that △(η1, η2) is in Tη1

M,
so that with respect to a ‘reasonable’ coordinate sys-
tem about η1 that

η2 ≈ η1 +△(η1, η2). (20)

For example, if M is a Riemannian manifold, we
could define it as the direction of a geodesic from η1
to η2. If M is a Lie group, we could define it as the
direction of a one parameter subgroup from η1 to η2.

3 Control of a single actuator
Let ℓ denote actuator value, let fc be the command
force given to a single actuator, and f be the actual
force supplied by this actuator.

Each actuator has an effective no-load mass m0,
which is the ratio f/ℓ̈ when there is no load placed
upon the actuator.

For the remainder of this section, we suppose that
the actuator is carrying a passive load. We denote
by m to be the effective mass of the actuator with
this load. Thus no load corresponds to m = m0,
and we always have m ≥ m0. If the actuator is
clamped so that it cannot move, this corresponds to
m = ∞, which is a mathematical idealization repre-
senting when the passive load is very large.

For the purpose of making the analogue of these
equations and the system controller equations clearer,
we shall replace the actuator actual and command
forces by actual and command accelerations

a =
f

m
= ℓ̈, (21)

ac =
fc
m
. (22)

We look for a controller such that, given an actua-
tor value ℓr, attempts to create a command accelera-
tion ac such that the actual actuator value, ℓ, is close
to ℓr.

First we describe an open-loop controller:

fc = mℓ̈r + k0ℓ̇r, (23)

or
ac = ℓ̈r +

k0
m
ℓ̇r. (24)

We call k0 the back-EMF constant, since for electric
motors this is a likely source of this term. This con-
troller fails badly if there is any drift or noise in the
system, because it makes no attempt to correct for er-
ror.

Next, suppose we also have a good homogeneous
closed-loop controller. Denote the vector containing
all time derivatives of order less than l of ℓ by

ℓ = [ℓ, ℓ̇, ℓ̈, . . . , ℓ(l−1)]T . (25)
The controller is defined by appropriately sized con-
stant matrices A, B, C, and D as:

ẋ = Ax+Bℓ (26)
ac = Cx+Dℓ. (27)

By a good homogeneous closed-loop controller, we
mean that if this is used to control the passively loaded
actuator, then ℓ converges to 0 in a manner that is ex-
peditious enough for our application.

An example is a PID controller

ac = −(ki
∫
ℓ+ kpℓ+ kdℓ̇), (28)

But it could be something more complex, such as a
cascaded controller, or a linear quadratic Gaussian
controller.

Note that if cable stretching or sagging plays a sig-
nificant role in the cable-driven parallel robot, then
this should be able to control a single actuator with
a cable with similar stretching or sagging characteris-
tics attached.

The results of this paper don’t depend upon what
definition of ‘good’ we use. Our assertion is that the
parallel actuator driven robot controller behaves as
well as the single actuator controller.

We combine the open-loop and homogeneous
closed-loop controller to obtain a good closed-loop
feed-forward controller, that is, given a requested ac-
tuator value ℓr, and its vector of derivatives

ℓr = [ℓr, ℓ̇r, ℓ̈r, . . . , ℓ
(l−1)
r ]T , (29)

we find the command acceleration ac such that ℓ con-
verges to ℓr in an expeditious manner. This can be cre-
ated by applying the homogeneous closed-loop con-
troller to

ℓd = ℓ− ℓr (30)
ℓd = ℓ− ℓr (31)

to obtain
ẋ = Ax+Bℓd (32)

ac = ℓ̈r +
k0
m
ℓ̇r + Cx+Dℓd. (33)

For example, with the PID controller it is

ac = ℓ̈r +
k0
m
ℓ̇r − (ki

∫
ℓd + kpℓd + kdℓ̇d). (34)
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4 The controller for the system by
parallel actuators

For the controller, we introduce the state vector ξ,
which is a vector of elements from the tangent space,
with the same number of components as the state vec-
tor x described in equation (26). We denote a matrix
multiplied by a vector of elements from the tangent
space as giving another vector of elements of the tan-
gent space as follows:

(Aξ)i :=
∑
j

Ai,jξj , (35)

where ξj means the jth component of ξ.
The control loop is as follows.

1. Obtain the requested end effector position ηr, and
compute the requested acceleration

αr = η̈r. (36)

2. Measure actuator values ℓ.

3. Calculate the actual end effector position:

η = Y (ℓ). (37)

4. Find the △ difference between the actual end ef-
fector position and the requested end effector po-
sition:

θd = △(η, ηr) (38)
and compute the vector of derivatives

θd = [θd, θ̇d, θ̈d, . . . , θ
(l−1)
d ]T . (39)

5. Calculate the command end effector acceleration:

ξ̇ = Aξ +Bθd (40)
αc = αr + Cξ +Dθd. (41)

For example, the PID controller would be:

αc = αr − (ki
∫
θd + kpθd + kdθ̇d). (42)

6. Determine the command end effector force to be
applied to the end effector:

τc = µ+Mαc. (43)

7. Calculate the requested rate of change of the
lengths of the cables

ℓ̇r = Λ(ηr)φr, (44)

and find the resistance overcoming part of the
command force for the actuators

fb = k0ℓ̇r. (45)

ηr

△

Controller

θd

+

αc

End effector
force

calculator
µ+M×

Actuator
command
calculator

F

τ

+

fp

Actuators

fc
Forward

kinematics
Y

ℓ

d2

dt2

αr

Compute
no-load
actuator

force
f0

η

Rate of change
of actuator values
from end effector

position

fb

Figure 1: Block diagram of the controller for the robot
driven by parallel actuators.
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8. Use equation (15) to calculate the no-load actua-
tor forces.

f0 = m0Ληα+m0φ · dΛη

dη
φ. (46)

9. Determine whether (τc,fb,f0) ∈ W . If it is, cal-
culate part of the actuator forces using

fp = F (τc,fb,f0), (47)

and command the actuators with

fc = fp + fb. (48)

Otherwise, declare that the end effector is out of
its workspace, command the actuators to brake,
and quit.

10. Go back to Step 1.

Note that in Steps 6, 8, and 9, the quantities M , µ,
Λ, W , and F are calculated from η and φ, but they
could just as well be calculated from ηr and φr, the
only change required being to equation (38) to

θd = −△ (ηr, η) (49)

The algorithm is shown as a block diagram in Fig-
ure 1.

5 Theoretical justification for the
controller

Assumption 1 The interaction between the command
force fc, the actual force f , and the actuator value ℓ
of a single actuator, is given by the linear system

f + c2ḟ + · · ·+ cnf
(n−1)

+ k0ℓ̇+ k1ℓ̈+ · · ·+ knℓ
(n+1)

= fc + c̃2ḟc + · · ·+ c̃pf
(p−1)
c . (50)

Note this linearity can be difficult to achieve if fric-
tion is significant in the actuators. Friction is highly
non-linear, especially when ℓ̇ and f switch between
having the same sign and having different signs, as
could happen with an active load.

If the actuator has a passive loadm as described in
Section 3, then equation (50) becomes

ℓ̈+ c2ℓ
(3) + · · ·+ cnℓ

(n+1)

+ k0

m ℓ̇+
k1

m ℓ̈+ · · ·+ kn

m ℓ
(n+1)

= ac + c̃2ȧc + · · ·+ c̃pa
(p−1)
c . (51)

The original open-loop controller was derived from
the assumption that equation (50) is a perfect descrip-
tion of the passively loaded actuator:

fc + c̃2ḟc + · · ·+ c̃pf
(p−1)
c

= m(ℓ̈r + c2ℓ
(3)
r + · · ·+ cnℓ

(n+1)
r )

+ k0ℓ̇r + k1ℓ̈r + · · ·+ knℓ
(n+1)
r , (52)

which in Section 3 was approximated with equa-
tion (23).

Assumption 2 For every m ∈ [m0,∞], equa-
tions (30), (31), (32) and (33) provide a good closed-
loop feed-forward controller for system (51).

This assumption can either be tested theoretically
using eigenvalue analysis, or experimentally by load-
ing various passive loads onto a single actuator. The
latter approach doesn’t require any knowledge of the
coefficients in equation (50). We simply need to be-
lieve that such an equation exists.

Assumption 3 The time scale of the corrections θd
is much smaller than the time change of ηr, and the
magnitude of θd and its derivatives are much smaller
than that of η and its corresponding derivatives. This
means we can assume that the time derivatives of η
are negligible compared to η, and hence we can as-
sume the matrices M , F , and the covector µ, and
their derivatives, are constant in the time scales in
which the controller operates. We also assume that
equation (20) holds for time derivatives of both sides,
and that the constants are uniformly controlled in the
ranges achieved.

The main result of this paper, which we state be-
low, is described as an ‘assertion’ rather than a ‘theo-
rem,’ as the proofs are not very rigorous.

Assertion 1 Given Assumptions 1, 2, and 3, the algo-
rithm described in Section 4 is a good controller for
the parallel actuator driven robot.

Pick a time t0 which is in the range of times in
which the controller performs the required correc-
tions. Let η0 = η(t0). Define

θ = △(η, η0) (53)
θr = △(ηr, η0). (54)

Thus

η ≈ η0 + θ (55)
ηr ≈ η0 + θr, (56)

and if we set
φr = η̇ (57)
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then

φ ≈ θ̇ (58)
φr ≈ θ̇r, (59)

and we have
θd ≈ θ − θr. (60)

Let nM be the dimension of M, and define the
(nM × nM) matrix

N =M−1ΛTΛ. (61)

Assertion 2 With the same assumptions as Asser-
tion 1, if the end effector is controlled by the algorithm
given in Section 4, then we have

θ̈ + c2θ
(3) + · · ·+ cnθ

(n+1)

+N(k0θ̇ + k1θ̈ + · · ·+ knθ
(n+1))

≈ αc + c̃2α̇c + · · ·+ c̃pα
(p−1)
c (62)

where
αc ≈ α̂c + k0Nθ̇r (63)

and α̂c is calculated thus:

θd = [θd, θ̇d, θ̈d, . . . , θ
(l−1)
d ]T (64)

ξ̇ = Aξ +Bθd (65)
α̂c = αr + Cξ +Dθd. (66)

Proof: Rewrite equation (50) for the jth actuator:

fj + c2ḟj + · · ·+ cnf
(n−1)
j

+ k0ℓ̇j + k1ℓ̈j + · · ·+ knℓ
(n+1)
j

= fc,j + c̃2ḟc,j + · · ·+ c̃pf
(p−1)
c,j . (67)

From equations (4), (45), (47), (48), and (59), we ob-
tain

fc,j = Fj(τc, f̄c) + k0Λθ̇, (68)

and applying T = ΛT we obtain

Tfc = τc + k0Λ
TΛθ̇r. (69)

Similarly, from equations (4) and (58), we have

Tf = τ, (70)

where τ is the actual end effector force, and

T ℓ̇ = ΛTΛθ̇. (71)

Hence from Assumption 3, we obtain

τ + c2τ̇ + · · ·+ cnτ
(n−1)

+ ΛTΛ(k0θ̇ + k1θ̈ + · · ·+ knθ
(n+1))

≈ τc + k0Λ
TΛθ̇r + c̃2(τ̇c + k0Λ

TΛθ̈r)+

· · ·+ c̃p(τ
(p−1)
c + k0Λ

TΛθ(p)r ). (72)
Next, subtracting µ, and then left multiplying by
M−1, and using Assumption 3 again, we obtain equa-
tion (62). The rest of the assertion follows by equa-
tion (60). Q.E.D.
Lemma 1 The matrix N has a basis of eigenvectors,
with eigenvalues in [0,m−1

0 ].

Proof: Let

Ñ =M−1/2ΛTΛM−1/2. (73)

Clearly Ñ is symmetric and positive semi-definite,
and since M −m0Λ

TΛ is positive definite, we have

m−1
0 I − Ñ = m−1

0 M−1/2(M −m0Λ
TΛ)M−1/2

(74)
is positive definite. (Here I denotes the (nM × nM)

identity matrix.) Hence Ñ has a basis of eigenvectors,
with eigenvalues in [0,m−1

0 ]. Also,

N =M−1/2ÑM1/2, (75)

and hence N and Ñ are similar matrices. Q.E.D.

Proof of Assertion 1: We use Lemma 1 to obtain σ1,
σ2, . . . , σnM a basis of eigenvectors of N , with cor-
responding eigenvalues m−1

1 , m−1
2 , . . . ,m−1

nM
, where

m1, m2, . . . ,mnM ∈ [m0,∞]. We also form a dual
basis π1, π2, . . . , πnM that satisfies

σi · πj =
®
1 if i = j

0 if i ̸= j, (76)

so that for any ψ ∈ RnM we have

ψ =

nM∑
i=1

(ψ · πi)σi (77)

πi ·Nβ = m−1
i (πi · β). (78)

By Assumption 3, we can assume that all these vectors
and eigenvalues are constant. For each 1 ≤ i ≤ nM,
dot product the equations in Assertion 2 by πi. Then
it may be seen that the resulting equations satisfy the
hypotheses of Assumption 2, with y replaced by θ ·πi,
with yr replaced by θr ·πi, and withm replaced bymi.
Thus θ · πi is well controlled by θr · πi.

Then it follows by equation (77) that θ is well con-
trolled by θr. Therefore by equations (55) and (56),
we have that η is well controlled by ηr. Q.E.D.
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