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Abstract: - Memristors are a new area with various intriguing properties that make them useful for both storage 
and computing. We propose a semi-serial IMPLY-based adder that uses Memristor to design high speed and 
high throughput with minimal latency 64-bit Vedic multiplier and provide a detailed study of its benefits and 
proposed system focuses on the design of Content Addressable Memory. A fundamental property of the given 
adder, in comparison to state-of-the-art adders, is its simplicity. Based on a quality factor that gives the series of 
steps and the requisite die area equal weight researchers indicate that the suggested multiplier outperforms prior 
attempts. The proposed system is validated using key metrics including Figures of Merit, and detailed 
comparison analyses are carried out to better understand centered mathematical entities, their features, strategy 
aspects, and benefits and downsides when equated. This makes it easier for scientists in charge of layout and 
investigators in the field to create, or select, appropriate units. Domain-specific logic circuits based on 
memristors may conduct logic operations and store logic values, providing an attractive prospect for the 
creation of complex intellectual architectures. A novel stateful logic implementation based on memristors has 
been proposed in this paper. Single-input NOT and COPY operations and multi-input AND, OR, NAND, NOR, 
and CAM memory manipulations are all possible with the proposed technique. Non-volatile memristor 
resistances are employed as output and input states in each logic gate, allowing stateful logic operations to be 
performed. When compared to other methods, the suggested method can result in a multi-functional stateful 
logic circuit that can conduct many stateful logic operations at the same time. The effectiveness of the proposed 
design is illustrated using MATLAB to verify the basic characteristics of Memristor and synthesized in Vivado 
Design Suite 2018.1 platform and compared with theoretical calculations. Based on obtained outcomes in terms 
of hardware utilization and speed, throughput, and latency, 11% improvement in throughput, 31% improvement 
in speed, 9% in latency, and a 15% reduction in area. 
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1 Introduction 
Coefficients and Adder circuits are fundamental for 
constructing frames of ALU since almost each 
arithmetic operation on an Addition and 
multiplication is required by software systems. Due 
to the extensive use of computation-intensive 
machine learning applications like Neural Networks, 
the efficiency of these two units is now even more 
critical. As a result, we concentrate on efficient full 
adder design in this study, demonstrating that the 
suggested proficient adder can be employed directly 
in multipliers and provides enactment comparable to 
optimal multiplier implementations. We picked 
Material Implication logic [31] and [33] from a wide 
spectrum of memristor-based logic [21] and [30] 
because of their compatibility with Integrated 

marketing communications and crossbar structure 
[31] - [32]. Nevertheless, we should point out that 
INDICATE isn't the only logic having these 
characteristics; others, such as Memristor-Aided 
Logic [25] and Firm and Sense which requires less 
energy in Memory[21], also have them. In a _ b, the 
ASSUME operation leads to logic ‘zero’ High 
Resistance State or Roff, only if, a has a logical 
value of ‘one’ Low Resistance State or Ron and b 

have a rational worth of 'zero'. To accomplish this 
function in a Memristive circuit, connect memristors 
a and b as indicated in Figure one and apply 2 static 
powers to those Memristors, respectively VCOND 
and VSET. [31]– [33] provides thorough evidence 
on SUGGEST process and in what way to pick the 2 
static powers and resistor Gate resistance. 
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The power consumption of a Field Programmable 
Gate Array is made up together with stagnant and 
active modules. Even though stagnant control has 
increased with technological advancements, it still 
accounts for just 10% of the overall power 
consumed by Field Programmable Gate Arrays. 
Moreover, recognized strategies for lowering it have 
previously been applied to Field Programmable 
Gate Arrays, such as power supply that can be 
changed, different gate oxide stiffness, multiple 
threshold levels for transistors, and diversion of 
energy. Dynamical strength, alternatively, accounts 
for above 90% of the wattage used by FPGA and is 
the primary source of their power inadequacy. This 
inappropriate use of energy is due to the significant 
latency in computing of Field Programmable Gate 
Arrays, which includes the MOSFET circuits that 
allow data to flow, multiplexers, and delays, and in 
the programmable routing fabric, configuration 
memory is used, which takes up 50% to 80% of the 
silicon surface. In comparison to cell-based systems, 
this outcome in significantly destinations that are 
larger and, as just a consequence, significantly 
higher capacitive loading. As a consequence, the 
programmable routing fabric consumes 60 percent 
to 80 percent of the total FPGA power supply. As a 
result, the FPGA's configurable routing system 
consumes a lot of power. Because of the inclusion 
of programmable logical constructs and 
reconfigurable interrelate in the programmable 
routing structure, more power is consumed. The 
connectors that can be programmed in FPGAs 
account for around ninety percent of the overall 
size, about eighty percent of the entire latency, and 
about eighty-five percent of the total power 
consumption, according to research. Memory Static 
Random Access Memory, off-chip DRAM, or Flash 
memory access time, density, and power 
consumption have a direct impact on the Field 
Programmable Gate Array's performance. Because 
of the substantial use of Static Random Access 
Fragments of recollection coding, multiplexers or 
pass transistors, and buffers in interconnects, typical 
FPGAs suffer greatly from their programmable 
interconnects. SRAM cells can have up to seven 
transistors, however, they can only store one bit of 
data. As SRAM-based storage has a low density, it 
adds to the area overhead of FPGA 
programmability, resulting in longer routing paths 
and longer connection delays. Furthermore, because 
static random access memory is a sort of memory 
that is in constant flux, it adds to the high usage of 
energy in standby mode. Dynamic RAM has the 
drawback of storing data as an electric charge that 
must be refreshed regularly. 

2 Related Work 
SRAM-based Field Programmable Gate Array and 
CAM devices make up an existing technology. 
Static random-access memory is a type of electronic 
memory that uses bi-stable gate systems to record 
every value. It is distinguished from Dynamic 
RAM, which must be updated regularly [1]. Data 
remanence is present in SRAM; however, it is still 
fragile in the fact that when the memory is turned 
off, information is missing. Because Static Random 
Access Memory is more expensive and less dense 
than Dynamic RAM, it isn't employed in high-
capacity, low-cost applications like personal 
computers' system memory. Six MOSFETs make up 
a standard SRAM cell. SRAM stores each bit on 
two cross-coupled inverters made up of four 
transistors [2]. There are two stable states in this 
storage cell, which are denoted by the numbers 0 
and 1. In a six-transistor (6T) SRAM, two additional 
access transistors regulate access to a storage cell 
during reading and write operations. A Static 
Random Access Memory cell might be in one of 3 
states. It can be in one of three states: standby (when 
the circuit is not in use), reading (when data is 
required), or writing (updating the contents). 
Readability and write stability are required for the 
SRAM to function in both read and write 
operations. SRAM-based programmable 
interconnects and a fixed buffer pattern characterize 
typical FPGAs. As a result, the FPGA's configurable 
routing system comprised of SRAM consumes a lot 
of power. The existence of programmable logic 
blocks and programmable intersects in the 
programmable routing structure consumes a greater 
amount of electricity [3]. The adaptive connectors in 
FPGAs account for around ninety percent of the 
overall size, about eighty percent of the entire 
latency, and about eighty-five percent of the total 
usage of energy, according to research. Memory 
SRAM, off-chip DRAM, and Flash memory time 
complexity, compactness, and leakage current are 
all factors to consider all having an impact on the 
FPGA's actual quality. Conventional Field 
Programmable Gate Arrays suffer considerably 
from their programmable intersects due to the broad 
use of SRAM-based pieces of coding, multiplexers, 
and barriers in connections. One static random 
access cell can have up to seven transistors, but it 
can only store 1 bit of data. Because static random 
access-based storage has a low density, it adds to the 
area overhead of FPGA programmability, resulting 
in longer routing paths and longer connection 
delays. Furthermore, because static random access is 
a sort of unstable recollection, it adds to high 
standby energy usage [4]. 
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Energy Consumption in Conventional SRAM: The 
SRAM's energy consumption can be separated into 
two types: dynamic and stagnant dynamism 
ingestion. Stagnant dynamism expenditure owing to 
SRAM leakage current and active usage of power 
due to capacitance charging and de-charging during 
query processing. 
Dynamic Energy Consumption during reading 
Operation: When reading operations, there are four 
primary sources of energy dissipation: 1-energy 
dissipation during charging and draining data-line 
capacitance. 2- Dissipation of energy during word-
line capacitance charging and discharging 3- 
Dissipation of energy during word-line capacitance 
charging and discharging 4- When the row address 
is decoded and one word-line is asserted in a 
memory array row, all cells in that row are 
connected to a bit-line, causing the unselected bit-
line to discharge, resulting in energy being 
dissipated on these circuits. Associated with the four 
major causes of energy dissipation during reading 
activity stated above, dynamic energy consumption 
in SRAM for a normal read operation is calculated 
as follows: 
 
𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐶𝑤𝑡

𝑉𝑑𝑑
2 + 𝐶𝐷𝐿𝑉𝑑𝑑

2 +

𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2
𝑉𝐵𝐿

2 (𝐶𝐵𝐿 + 𝐶𝐷𝐿) + (2𝑐𝑜𝑙 −

1)𝑥[𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2

(𝐶𝐵𝐿𝑉𝐷𝐷−𝐼𝑃𝑇∆𝑇)2

𝐶𝐵𝐿
]   (1) 

 
VBL is the voltage of the bit-line at the end of the 
read operation, VDD is the external stream power, 
ΔT is the interval time that the cell's access 
transistor is turned on, and IPT is the current of the 
cell's in the saturation zone of a transistor, and these 
values are obtained using the following equation: 
 
𝐼𝑃𝑇 =

𝜇𝑛𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑚)2   (2) 

 
Where n is the motion of electrons, Oxide 
capacitance is the gate capacitance per unit area, W 
is the width of the cell's access transistor, L is the 
length of the cell's access transistor, and VGS is the 
gate-source voltage of the cell's access transistor, 
and Vtn is the threshold voltage of the cell's access 
transistor. 
Dynamic Energy Consumption during Write 
Operations: For a regular write operation in 
conventional SRAM, the dynamic energy 
consumption is given by: 
 
𝐸𝑛𝑒𝑟𝑔𝑦𝑤𝑟𝑖𝑡𝑒 = 𝐶𝑤𝑡

𝑉𝑑𝑑
2 + 𝐶𝐷𝐿𝑉𝑑𝑑

2 + 𝐶𝐵𝐿𝑉𝑑𝑑
2 +

(2𝑐𝑜𝑙 − 1)𝑥[𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2

(𝐶𝐵𝐿𝑉𝐷𝐷−𝐼𝑃𝑇∆𝑇)2

𝐶𝐵𝐿
] (3) 

The formula is based on the fact that the voltage on 
the bit-line, word-line, and data-line changes during 
a write operation, resulting in energy consumption 
similar to a read operation. External SRAM has two 
major drawbacks in an FPGA-based embedded 
system: cost and board space. Other high-capacity 
memory formats, such as SDRAM, are more 
expensive per M Byte than SRAM systems. It also 
takes up more board space per M byte than SDRAM 
and FPGA on-chip memory, both of which take up 
none. In a Field Programmable Gate Arrays-based 
embedded system, information that is stored on the 
chip provides the best quantity and the shortest 
delay. It usually just has a one-clock-cycle lag. 
Recollection interactions able to be piped, resulting 
in a typical transaction rate of one per clock cycle. 
The dual-port mode can be used to access some 
types of on-chip memory, using distinct terminals 
for reading and writing dealings. Mode with two 
ports pairs the memory's wideband possibility by 
permitting it to be printed on one port and read on 
the other. On-chip memory can help developers save 
time and money. Moreover, several forms of on-
chip memory can be automatically initialized with 
customized information during FPGA construction. 
The storage can be used to store small amounts of 
wader code or Lookup Table data that must be 
retained at reset. 
The inclusion of static random access memory-
based interconnects in the field-programmable gate 
array construction leads to substantial usage of 
energy, which is one of the major disputes in the 
activities. Due to the bandwidth, complexity, and 
power supply, indulgence of memory SRAM, and 
off-chip Dynamic RAM, have a direct impact on the 
overall performance of the Field Programmable 
Gate Arrays, these linked works are mostly focused 
on reducing or replacing the transistor count in the 
static random access memory. Traditional Field 
Programmable Gate Arrays suffer greatly from their 
programmable interconnects due to the extensive 
use of SRAM-based programming bits, 
multiplexers, or passes transistors and shields. One 
static random access memory cell can have up to 
seven transistors, but it can only store one bit of 
data. Because SRAM-based storage has a low 
density, it adds to the area overhead of FPGA 
programmability, resulting in longer routing paths 
and longer connection delays. Furthermore, because 
Static Random Access Memory is a sort of unstable 
reminiscence, it adds to high power consumption in 
standby mode. To address the shortcomings of 
previous work, a novel approach is developed in 
which the programmable interconnect of memristor-
based FPGA architecture use only newly discovered 
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circuit elements, such as memristors and metal 
wires, rather than the static random access memory-
based interconnects used in the traditional field-
programmable gate array construction. When 
compared to previous ways, the key benefit of this 
strategy is that the complete FPGA architecture 
consumes less power. Because the memristor is a 
nanodevice, it does not take up more space than 
similar works. The use of Resistive RAM rather 
than Static RAM is the key benefit of this 
technology. 
 
 
3 Proposed Hybrid Techniques for 

Optimization of Power, Area, Latency, 

and Improvement of Throughput  
The proposed methodology aims to reduce the 
number of CLB in FPGA for area reduction by 
employing a Memristor-based FPGA design. 
 
3.1 Memristor Multiplier and CAM Memory 

Design 
The neoteric Memristor-based Field Programmable 
Gate Array architecture was employed in this 
project. Instead of programmable interrelates 
consisting of SRAM memory cells, Memristor-
based FPGAs use Memristor interconnects. The 
proposed technology uses a three-D memory 
architecture that relies on crossbars and a three-D 
technique for mounting sheets, as well as protecting 
inductance from unneeded routing paths. 
Memristor-based connectors are customizable field-
programmable gate array architecture use only the 
newly discovered trail component, namely 
Memristor and metal wires, rather than the static 
random access memory-based intersects used in 
conservative field-programmable gate array 
architecture, resulting in significant reductions in 
overall area power consumption, area, interconnect 
delay, and FPGA speed. Because Memristor is a 
Nano device, it does not take up more space than the 
existing system. The use of Resistive RAM rather 
than Static RAM is the key advantage of this 
method. The key benefits of using a Memristor and 
an IMPLY-based adder for memory design are as 
follows: 
 
 Exceptionally compact, negligible leakage, 

CMOS compatibility, and high power 
efficiency. 

 During read-write operations in the resistive 
crossbar avoids sneak-path. 

 For high speed, it employs an adaptive buffer 
insertion mechanism. 

 Eliminates the problem of increased area and 
interconnect delay, as well as increased power 
usage. 
 

In this paper, a separate device analysis of both the 
SRAM and the Memristor is performed first, 
followed by the design of a reliable FPGA with only 
one transistor using the HSPICE simulation tool. 
The project's main goal is then accomplished by 
using the Vivado Design Suite software tools to 
design both SRAM and Memristor-based 
application circuits in FPGA. Furthermore, a 
comparison of static random access memory and 
Memristor-based field-programmable gate array 
architectures is performed to demonstrate that the 
memristor-based FPGA architecture consumes less 
power. Content addressable memory is a type of 
solid-state memory in which data is accessible by its 
content rather than by its physical location. It takes 
search data in the form of a search term and 
provides the address of a comparable word stored in 
its data bank [1]. READ, WRITE, and COMPARE 
are the three basic operation modes of a CAM, with 
"COMPARE" being the most significant of the three 
because CAMs rarely read or write. 
 
3.2 Architectural Level Delay Reduction 

Techniques using Memristor 
We have numerous solutions for decreasing the 
critical route in the data path, as well as power 
gating, at the design level. This section discusses 
some of the delay reduction approaches that will 
help CAM overcome its overall searching speed. 
There are only three passive elements with two 
terminals each available in circuit theory: resistor, 
capacitor, and inductor. These elements are defined 
by the relationship between fundamental circuit 
variables such as current, voltage, charge, and flux. 
Prof. Leon Chua anticipated that a 4th essential 
component of a network would be needed to 
establish the relationship between charge and 
discharge of magnetism in 1971. The nano-machine 
memristor is a non-active component that 
remembers the previous state it was used in. The 
Memristor was a type of element of Memristive 
element that varied its resistance in response to the 
quantity of control flowing over it. The Memristor 
functions similarly to a linear resistor with memory, 
but it also has several fascinating nonlinear 
properties. The Memristive, memcapacitative, and 
meminductive subsystems make up the Memristive 
class. Such components are regarded as a single port 
element whose properties are determined by the 
charge and flux linkage's time differential. The 
relationship between fundamental circuit parts is 
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depicted in Fig.1, which also fills in the gap 
between charge and flux linkage. The Memristor's 
key characteristics are as follows: 
 Has Resistive Random Access Memory. 
 Memristors are tiny and scalable down to 5x5 
nm. 
 At 180nm, it can be programmed in 5ns and 
consumes less power. 
 It necessitates a very low biassing voltage and 
quick switching - up to six orders of magnitude - 
due to the very non-linear rate of switching. 
 Because of its nano size, it performs better than 
traditional Non-Volatile Memory (NVM) elements. 
 

 
Fig. 1: Relationships between Four Fundamental 
Circuit Elements 
 
The Memristor was projected using the regularity 
values of two of the four fundamental electrical 
measures: current I voltage, charge, and flux. A 
memristor is a semiconductor reedy picture inserted 
among two metallic associates with an entire 
distance of D of TiO2 film with doped low and un-
doped high resistance regions with a total length of 
D of TiO2 film. Symbol 2 depicts the fleshly 
assembly and its comparable track perfect. The 
memristor can raise resistance in one direction of 
current while decreasing resistance in the other. So 
when ambient energy that has been applied is 
removed, the memristor returns to its previous 
condition, indicating that it has resistive memory. 
To put it another way, a memristor is an analog 
resistor whose resistance may be altered by 
changing the direction of applied voltage or current. 
The basic geometrical structure of a memristor is 
shown in Figure 2. Figure 3 depicts the simulation 
findings. The wideness of the entire constituent is 
denoted by D, whereas the fatness of the nobbled 
coating is denoted by w. To adequately illustrate the 
essence of the models and simulations, a 
mathematical memristor model must be presented. 
As seen below, the memristor functioned as a 
recollection resistor by connecting the voltage 

across the component and the current flowing 
finished it, 
𝑣 =  𝑀(𝑤)𝑖 )     (4) 
 
The memristance functions similarly to resistance, 
with the exception that it is dependent on a 
parameter, which in Chua's sources was either the 
charge. Because charge and current are connected in 
the following way, 
                𝑑𝑞

𝑑𝑡
= 𝑖     (5) 

 

 
Fig. 2: HP Laboratory's Memristor Structure and Its 
Corresponding Ideal 
 
The memristor acts like a resistor with memory 
since M is dependent on the whole history of the 
current going finished component. The nonlinear 
memristance M is a function of charge q, and no 
RLC element combination mimics or copies such a 
feature, making it a fundamental circuit element. 
Chua later demonstrated that memristors are part of 
a larger class of systems known as memristive 
systems, as defined by, 
 
𝑣 =  𝑀(𝑤, 𝑖)𝑖     𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑖)                                 (6)       

                                       
Equations will be used to express the hysteresis loop 
of the memristor (6). Equations (7) and (8) define 
the optimal mathematical model of a memristor (8). 
 

𝑉(𝑡) = [(
𝑅𝑜𝑛 𝑊(𝑡)

𝐷
) + 𝑅𝑜𝑓𝑓 (1 −

 
𝑊(𝑡)

𝐷
)]  𝑖(𝑡)                                   (7) 

            
𝑑𝑤(𝑡)

𝑑𝑡
=   

µ𝑣 𝑅𝑜𝑛

𝐷
 𝑖(𝑡)                                    (8) 
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Fig. 3: Simulative Flux V/S Charge and Simulative 
Current V/S Voltage Plots 
 
3.3 Mathematical Modeling of a Memristor 
The fourth Memristor along with RLC components 
is two pins circuit and it can be defined in terms of 
two variable charges, voltage and current is given 
by 

𝑞(𝑡) = ∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞

 

𝜑(𝑡) = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞

 

 
It's worth noting that "q" and "are mathematically 
defined and don't need any physical meanings. 
Nonetheless, we refer to the charge and flux of the 
memristor as q and f, respectively, because these 
correspond to the formulas connecting charge to 
current and flux to voltage. Charge-controlled or 
flux-controlled memristors are described as such. 
 

𝜑 = 𝜑(𝑞)̅̅ ̅̅ ̅̅ ̅ 

𝑣 =
𝑑𝜑

𝑑𝑡
= 𝑅(𝑞)𝑖 

 
Where 𝑖 = 𝐺(𝜑)𝑣 
 
Here ϕˆ (q) & qˆ (ϕ) represents the unremitting and 
piecewise-differentiable purposes with restricted 
grades is entitled the inductance at ϕ, and have the 
unit of Siemens (S). It's worth noting that it's 
comparable to Ohm's law, but the resistance is 
different R (q) at a given time t = t0 is determined 
by the full functionality of i(t) from t = t −∞ t = t0. 
Similarly, in eqn, the conductance G (ϕ)  is 
determined by the full history of v (t) from t =−∞ to 
t = t0. The charge-controlled memristor is thus 
characterized as analogous to the charge reliant on 
Ohm's law. It is important to note that if a memristor 
with a resistance R0 is opened or short-circuited for 
t=t0 to bring the Memristor to equilibrium condition 
and at this condition, the values of V and I are zero 
therefore Memristor device does not lose its data. 
Whenever power is turned off then V and I go to 
non-zero values but minimum i.e negligible, but 
rather retains the value at q0 and ϕ0. As a result, the 
passive memristor has nonvolatile memory.  At the 
three-phase, the charge and memristance are 
identical and its state map with the state equation 
dq/dt = I are corresponding to a Memristor in the 
sense that given applied current source input signal 
i(t) for all times from t =−∞, or equivalently, for 
positive times from t = 0, plus the initial charge q(0) 

which represents the time integral of i(t) from t 
=−∞to t = 0, one can calculate the (t). Inversely, if R 
> 0, the inverse constitutive relation q = ˆq (ϕ) is a 
continuous function, and given any v (t), the 
corresponding i (t) may be calculated. Most of the 
waveforms and hysteresis loops, on the other hand, 
are just memristor manifestations and cannot be 
used to predict the voltage response given any 
excitation waveforms other than I = Ascent, with A 
= 1 and ω = 1. Changing the parameter A, or the 
waveforms of I (t), or both, would produce radically 
different reactions. For example, as the hysteresis 
loop reduces until it collapses into a unit-slope 
straight line through the origin, we will see that q (t) 
tends to zero, v (t) tends to sin t, and R (t) goes to 1. 
Indeed, the charge q (t) and flux (t) would both 
trend to the origin and remain immobile thereafter, 
as they always do. In this special case, the 
memristor degenerates into a linear resistor, where 
R is simply the slope of the –q curve at the origin, 
i.e. R = 1. 
 

 

4 IMPLY Based 64-Bit Adder with 

Memristor  
The most common IMPLY-based adder designs are 
either serial or parallel. Parallel techniques are faster 
but require a large number of work Memristors, 
whereas serial systems require a minimum group of 
Memristors and hence compromise velocity. The 
purpose of our semi-serial adder design is to 
incorporate the benefits of both serial and parallel 
approaches to produce a more efficient design with 
an advanced Figure of Merit. In contrast to serial or 
parallel designs, the input variables ai and bi is 
separated into two sections in our semi-serial adder, 
while the five work memristors w1 to w4 and c and 
the carry-in memristor cin are separated into a third 
section. Our approach requires 2n + 6 Memristors: 
2n for input and output variables, 4 work 
Memristors, and two carry Memristors. Each input 
section has its own work resistor RG, as shown in 
Figure 5, and each memristor in the independent 
third section can be linked to any of the two input 
sections, a and b. To store the resultant sum and 
carry, the input section a and the carry-in memristor 
cin are recycled. The formulations of summation 
and carry in SUGGEST logic, which we utilize to 
create the quasi adder, are shown in Equations (1) 
and (2). 
 

𝑆𝑢𝑚 = [(�̅� → 𝑏) → ((𝑎 → �̅�))] → (𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ )

→ 𝑐̅                                               (9) 
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𝐶𝑎𝑟𝑟𝑦𝑜𝑢𝑡 = [((𝑎 → �̅�) → 𝑐) → �̅� → 𝑎̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]           (10) 

 
Because each bit is calculated serially, we call this 
structure semi-serial. Work memristors, on the other 
hand, are included in a distinct third segment, 
allowing for parallelism beyond what is feasible in 
serial design. Table I lays out the algorithm in 
detail. C is employed and transmitted throughout the 
main body of the program. The supposition is 
accurate in the intermediate phases because the 
algorithm creates and propagates c, although cin is 
normally provided at the beginning (not c). 
Furthermore, cout is usually preferred over cout at 
the end of the day. As a result, we propose one more 
step for the inversion of cin at the start of the 
algorithm and one additional inversion step at the 
end of the algorithm to comply with this. These 
phases, which are only performed once at the start 
and end of the algorithm execution, are underlined 
in bold blue in Table I. As a result, the total number 
of steps equals 10n + 2. For each step in the 
algorithm, Table II shows the connection status of 
memristors in the work memristors section (c, cin, 
w14). The letter "U" indicates that the memristor is 
connected to the top segment (a memristor), 
implying that the higher switch is closed while the 
lower switch is open. Similarly, an "L" indicates 
that the respective memristor is connected to the 
bottom portion, indicating that the top switch is 
open and the lower switch is closed. A dash ("-") 
signifies a "don't care" state, suggesting that the 
memristor could be attached to either of the sections 
because it is not used in that phase. 
 
 
5 64-Bit Vedic Multiplier using Imply 

Adder and Memristor 
The article's fourth addition is a novel multiplier 
design based on our semi-serial adder, which is 
shown there. A 2n 1 bit semi-serial adder circuit is 
reproduced 2n – 1 time for a and b, where a and b 
are binary values of size n, to form an nn-multiplier. 
The I -th adder starts with a2i and a2i+1 in its work 
memristors wi,0 and wi,2. Every adder has b moved 
to the left (one bit) in both summand registers 4 
where b is the second input of the product a b. 
Initially, each adder calculates the relevant set of 
partial products, i.e., the partial products a2ib j and 
a2i+1b j are calculated simultaneously in the I -th 
adder, where j is a natural number in the range [0, 
n1]. As a result, the operation akxb j = ak_b j, which 
represents the calculation of one partial product, is 
executed. The statement has been rephrased as 
Three IMPLY steps are required for this logic 

process. The adders calculate the overall product by 
summing all partial products step by step after 
computing the component products. This means that 
each adder's sets of partial products are totaled first, 
and then two by two adders are connected to 
calculate intermediate sums until all sets of partial 
products are totaled. The output or calculated 
product of a b is represented by this total sum. The 
result of the multiplication and how it was done will 
be stored in the cin & memristors of the system's 
initial adder (cin as the most significant bit or carry-
out, and an as the rest of the output value). Table 
VII shows a two-bit example of the algorithm that is 
used to calculate partial products. The adders 
resume their semi-serial adding procedure once 
partial products have been determined. Figure 8 
depicts a 44-bit multiplier made up of two semi-
serial adders and one additional switch used to 
connect the adders during the summing phase. The 
semi-serial adder circuit does not need to be 
changed except for the additional switch. In other 
words, for an n n-bit multiplier, the adder is only 
repeated n/2 times. The total number of additional 
switches required is n-1/2. 
 
 
6 Results and Discussion 
The proposed multiplier design was simulated at 
two different levels of abstraction. A Matlab 
simulation was used to test the behavioral accuracy 
of the multiplier method, assuming optimal 
memristor behavior. Because the multiplier 
approach is split down into partial product 
calculation and subsequent addition, we confirmed 
the accuracy of partial product computation on the 
circuit level by simulating it in Vivado platform 
using the Modelsim software, using the same 
configuration as in Section 4. Our semi-serial adder 
algorithm, which was verified in Section 5, is used 
to do the succeeding addition. The LT Spice 
simulation of the calculation of one partial product a 
b, where a = 1 and b = 1, is shown in Figure 9. The 
work memristors w1 and w2 are expected to be 
initialized to HRS (logic '0') in this example. In w2, 
the result of a b is saved. For all input combinations 
of a and b, Figure 10 shows the proper calculation 
of w2 = a b. In both simulations, an IMPLY step 
takes 30 seconds. The technique was carried out 
using a SPICE implementation of the VTEAM 
model, as in Section III-B. The same variables were 
used as in the previous example. 
Table VIII compares based on multiplier 
architecture to others in the literature for a 32-bit 
multiplier in terms of features and performance 
metrics. We couldn't determine the number of 
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required memristors, steps, or switches for n = 32 
because  didn't supply any equations. The FoMs in 
Table X are calculated using n = 32, but the FoMs in 
Table XI are generated using n = 8, because, as 
previously stated, the source for the Dadda 
multiplier only offers efficiency and characteristic 
figures for an 8-bit multiplier. In both tables, the 
best design according to each Figure of Merit is 
boldfaced to make it easier to spot. The equation 
was used to determine the improvements (8). As 
shown in Table X, our multiplier design 
outperforms array- and Dadda-type multipliers by a 
factor of 50, owing to significant reductions in the 
number of memristors and switches used. A Shift & 
Add multiplier with a 32-bit implementation 
surpasses all other multiplier designs in 4 out of 5 
Figure of Merit, while its 8-bit version outperforms 
others in 3 out of 5 Figure of Merit. This is caused 
by a few factors; 
 The original performance of the Shift & 
Add coefficients, 
 The design's basic components, for an 
example multiplexers and transferal records, have a 
high level of optimization built-in, and 
 Multiplexers and shift registers are common 
examples of external CMOS circuitry. 
The final component, in particular, makes a 
comparison with our suggested multiplier 
problematic, as our design makes far less use of 
external Complementary metal–oxide–
semiconductor motherboard. Furthermore, we have 
not considered, and will not examine, the 
Complementary metal–oxide–semiconductor tracks 
that are required to create the state machine that 
controls the Shift&Add, Array, and Dadda 
multiplier. It can tip the scales even further in our 
favor, particularly in the case of FoMA. Even when 
the aforementioned parameters are ignored, our 
suggested multiplier beats all previous designs in 
terms of FoMA in both 8-bit and 32-bit versions. 
When compared to the Shift&Add multiplier [40], 
for example, according to the majority of Figure of 
Merit is the best design, our approach is 532 percent 
superior in terms of FoMA. In other terms, our 
proposed solution saves over 5 times the amount of 
space as the Shift&Add multiplier. The Area-
centered Diagram, we believe, is correct Merit from 
Equation (7) delivers the furthermost truthful 
estimate of worth when it comes to the die area 
because it not only considers Complementary 
metal–oxide–semiconductor circuitry but also the 
fact that additional Complementary metal–oxide–
semiconductor motherboard is buried beneath the 
memristor crossbar due to the most common 
practice of using memristors in BEOL. Apart from 

that, we designed our multiplier by just duplicating 
our serial adder without adding any additional 
building blocks, keeping CMOS circuitry basic. The 
contrast of our concept with Array Multiplier is 
another example of one parameter's lack of 
representativeness in the worth of a design. Our 
approach is 58 percent slower than Array Multiplier, 
but because we use 70 percent fewer memristors, we 
exceed it in four out of five Figures of Merit. These 
two examples demonstrate that existence improved 
or worse in one aspect does not provide us with a 
whole picture of architecture’s worth. As a result, a 
designer must select a Figure of Merit that best 
represents the design constraints, evaluate any 
design using the proper Figure of Merit, and make 
design choices that assist the system in achieving 
the criteria. 
 

 
Fig. 4: RTL schematic diagram of Memristor-based 
gates. 
 
Fig.4 shows the RTL diagram of Memristor-based 
gates and each gate consumed two Memristors for 
two inputs. The resistor values vary from 100 Ohm's 
40KOhm to perform the exact logic of gates. The 
simulated results of all gates are shown in Fig.5. 
 

 
Fig. 5: Simulated results of Memristor based Gates  
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The analysis of proposed Memristor-based gates and 
multiplier and CAM memory is analyzed with three 
main metrics such as latency, throughput, and area 
utilization. The throughput is given and their 
calculated values are shown in Table 1 
 
Throughput =  

Frequency of operation 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝑥𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 

 
Table 1. Comparison between Existing and 

Proposed Gates and 64-bit Vedic multiplier and 
Memristors with IMPLY based adder 

Paramet
er 

Vedic 
with 
PPA 
based 
adder 
[12,9,2
4] 

Vedic 
with 
IMPLY 
based 
adder 
and 
Memris
tor 

Conventio
nal  Gates 
without 
Memristo
r 

Memris
tor 
based 
Gates  

Slice 
Register
s (Area) 

7809 7818 204 192 

Slice 
LUT’s 

16472 14491 409 398 

Flip-
Flops 

7940 7808 215 206 

Delay in 
ns 

17.313
ns 

17.208 7.3 6.175 

Power in 
Watts 

0.491 0.491 0.88 0.450 

Frequen
cy in 
MHz 

185.4 250.627 185.8 291.886 

Through
put in 
Mbps 

205.6 227.8 34.5 47.2 

Latency 19.4 17.6 6.4 6.4 
 
 
 
 
Table 2. Comparison between existing floating and 

proposed floating-point multiplier. 
Parameter Floating-point 

Vedic 
multiplier with 
PPA based 
adder [6,10,16] 

Double 
precision 
floating point 
Vedic 
multiplier with 
IMPLY based 
adder and 
Memristor 

Slice Registers 
(Area) 

4816 3819 

Slice LUT’s 5002 4951 
Flip-Flops 2451 2100 
Delay in ns 4.6 3.841 
Power in Watts 0.89 0.881 
Frequency in 
MHz 

217.5 261.4 

Throughput in 
Gbps 

3.2 4.3 

Latency 5.61 4.651 
 
The Memristor with Vedic multiplier is applied for 
the design of a double-precision floating-point 
multiplier and validated with a different floating 
number in both MATLAB environment and Vivado 
Design Suite 2018.1 software. As per Table.2, there 
is a 6% improvement in the area, a 4% improvement 
in LUT, and a 13% reduction in latency. 
 

 
Fig. 5: Comparison of area, LUT, and flip-flops. 
 
Figure 5 shows the suggested system's performance 
in terms of area, LUT, and flip-flops. 
 

 
Fig. 6: Performance analysis of the planned system 
in positions of control, deferral, throughput, and 
latency. 
 
 
6Conclusion  
The paper presents a stateful Boolean logic 
implementation method for AND, OR, NAND, 
NOR, COPY, and NOT, as well as a Vedic 
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Multiplier built with Memristor and IMPLY-based 
adders. Each recommended logic gate uses a simple 
memristor connection, with the output memristor's 
logic state changing in reaction to the input 
memristor’s logic states. Not only can the suggested 
logic gates conduct logic functions, but they can 
also store sense standards. Multi-input state 
complete logic gates are available in addition to 1-
input and 2-input logic gates. Previous memristor-
based logic designs are compared to the suggested 
approach. According to the results of the 
comparison, the provided approach can execute 6 
simple stateful Boolean sense processes with 
compact circuit topologies. Furthermore, the future 
enterprise can be used to create a multi-functional 
journey, reducing the number of memristors 
required. The suggested product's validity is 
demonstrated by computer simulation results. The 
whole scheme presents a novel way for creating 
memristor-based stateful logic that combines logic 
value storage with logic operation to build an 
unconventional cognitive framework. The 
assessment of our semi-serial 3 out of 5 Figures of 
Merit for the SUGGEST-created Memristive full-
adder design, which outperforms extra enterprises in 
the research, is enhanced in this study.  The 
complete design is synthesized using Vivado Design 
suite platform, based on obtained results, the area is 
reduced by 13%, latency is decreased by 31% and 
power is minimized by 15%.. Proposed four new 
Figures of merit to improve the parallel of 
memristive systems in terms of efficiency. 
Regarding the design aim, a designer might select 
the most appropriate FoM. Furthermore, they can be 
inspired by the proposed FoMs to create a new FoM 
that more accurately depicts the particular of their 
architectural restrictions and trade-offs. We also 
reviewed the literature on SUGGEST-based 
multiplier designs and planned a new multiplier 
founded on our semi-sequential full-adder 
architecture. This repeater concept outperforms 
other approaches in the field when the area slide 
created by supplementary obligatory 
Complementary metal–oxide–semiconductor 
switches is taken into consideration. Calculations of 
power consumption and die area should be carried 
out in the future helps improve replicability and 
quality of work. 
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