
Design and Performance analysis of Memristor and IMPLY Adder

based 64-bit Vedic Multiplier and CAM Memory with Gbps throughput

on FPGA

SHRUTHI K. N., R. BHAGYALAKSHMI, ROOPASHREE D.
Department of Electronics and Communication,

Government Engineering College, Hassan, Karnataka,
INDIA

Abstract: - Memristors are a new area with various intriguing properties that make them useful for both storage
and computing. We propose a semi-serial IMPLY-based adder that uses Memristor to design high speed and
high throughput with minimal latency 64-bit Vedic multiplier and provide a detailed study of its benefits and
proposed system focuses on the design of Content Addressable Memory. A fundamental property of the given
adder, in comparison to state-of-the-art adders, is its simplicity. Based on a quality factor that gives the series of
steps and the requisite die area equal weight researchers indicate that the suggested multiplier outperforms prior
attempts. The proposed system is validated using key metrics including Figures of Merit, and detailed
comparison analyses are carried out to better understand centered mathematical entities, their features, strategy
aspects, and benefits and downsides when equated. This makes it easier for scientists in charge of layout and
investigators in the field to create, or select, appropriate units. Domain-specific logic circuits based on
memristors may conduct logic operations and store logic values, providing an attractive prospect for the
creation of complex intellectual architectures. A novel stateful logic implementation based on memristors has
been proposed in this paper. Single-input NOT and COPY operations and multi-input AND, OR, NAND, NOR,
and CAM memory manipulations are all possible with the proposed technique. Non-volatile memristor
resistances are employed as output and input states in each logic gate, allowing stateful logic operations to be
performed. When compared to other methods, the suggested method can result in a multi-functional stateful
logic circuit that can conduct many stateful logic operations at the same time. The effectiveness of the proposed
design is illustrated using MATLAB to verify the basic characteristics of Memristor and synthesized in Vivado
Design Suite 2018.1 platform and compared with theoretical calculations. Based on obtained outcomes in terms
of hardware utilization and speed, throughput, and latency, 11% improvement in throughput, 31% improvement
in speed, 9% in latency, and a 15% reduction in area.

Key-Words: - Gates IMPLY based Adder, 64-bit Vedic Multiplier, CAM, FoM, Memristor, FPGA, and Clock
gated techniques

Received: July 21, 2021. Revised: June 15, 2022. Accepted: July 21, 2022. Published: September 1, 2022.

1 Introduction
Coefficients and Adder circuits are fundamental for
constructing frames of ALU since almost each
arithmetic operation on an Addition and
multiplication is required by software systems. Due
to the extensive use of computation-intensive
machine learning applications like Neural Networks,
the efficiency of these two units is now even more
critical. As a result, we concentrate on efficient full
adder design in this study, demonstrating that the
suggested proficient adder can be employed directly
in multipliers and provides enactment comparable to
optimal multiplier implementations. We picked
Material Implication logic [31] and [33] from a wide
spectrum of memristor-based logic [21] and [30]
because of their compatibility with Integrated

marketing communications and crossbar structure
[31] - [32]. Nevertheless, we should point out that
INDICATE isn't the only logic having these
characteristics; others, such as Memristor-Aided
Logic [25] and Firm and Sense which requires less
energy in Memory[21], also have them. In a _ b, the
ASSUME operation leads to logic ‘zero’ High
Resistance State or Roff, only if, a has a logical
value of ‘one’ Low Resistance State or Ron and b

have a rational worth of 'zero'. To accomplish this
function in a Memristive circuit, connect memristors
a and b as indicated in Figure one and apply 2 static
powers to those Memristors, respectively VCOND
and VSET. [31]– [33] provides thorough evidence
on SUGGEST process and in what way to pick the 2
static powers and resistor Gate resistance.

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 368 Volume 17, 2022

The power consumption of a Field Programmable
Gate Array is made up together with stagnant and
active modules. Even though stagnant control has
increased with technological advancements, it still
accounts for just 10% of the overall power
consumed by Field Programmable Gate Arrays.
Moreover, recognized strategies for lowering it have
previously been applied to Field Programmable
Gate Arrays, such as power supply that can be
changed, different gate oxide stiffness, multiple
threshold levels for transistors, and diversion of
energy. Dynamical strength, alternatively, accounts
for above 90% of the wattage used by FPGA and is
the primary source of their power inadequacy. This
inappropriate use of energy is due to the significant
latency in computing of Field Programmable Gate
Arrays, which includes the MOSFET circuits that
allow data to flow, multiplexers, and delays, and in
the programmable routing fabric, configuration
memory is used, which takes up 50% to 80% of the
silicon surface. In comparison to cell-based systems,
this outcome in significantly destinations that are
larger and, as just a consequence, significantly
higher capacitive loading. As a consequence, the
programmable routing fabric consumes 60 percent
to 80 percent of the total FPGA power supply. As a
result, the FPGA's configurable routing system
consumes a lot of power. Because of the inclusion
of programmable logical constructs and
reconfigurable interrelate in the programmable
routing structure, more power is consumed. The
connectors that can be programmed in FPGAs
account for around ninety percent of the overall
size, about eighty percent of the entire latency, and
about eighty-five percent of the total power
consumption, according to research. Memory Static
Random Access Memory, off-chip DRAM, or Flash
memory access time, density, and power
consumption have a direct impact on the Field
Programmable Gate Array's performance. Because
of the substantial use of Static Random Access
Fragments of recollection coding, multiplexers or
pass transistors, and buffers in interconnects, typical
FPGAs suffer greatly from their programmable
interconnects. SRAM cells can have up to seven
transistors, however, they can only store one bit of
data. As SRAM-based storage has a low density, it
adds to the area overhead of FPGA
programmability, resulting in longer routing paths
and longer connection delays. Furthermore, because
static random access memory is a sort of memory
that is in constant flux, it adds to the high usage of
energy in standby mode. Dynamic RAM has the
drawback of storing data as an electric charge that
must be refreshed regularly.

2 Related Work
SRAM-based Field Programmable Gate Array and
CAM devices make up an existing technology.
Static random-access memory is a type of electronic
memory that uses bi-stable gate systems to record
every value. It is distinguished from Dynamic
RAM, which must be updated regularly [1]. Data
remanence is present in SRAM; however, it is still
fragile in the fact that when the memory is turned
off, information is missing. Because Static Random
Access Memory is more expensive and less dense
than Dynamic RAM, it isn't employed in high-
capacity, low-cost applications like personal
computers' system memory. Six MOSFETs make up
a standard SRAM cell. SRAM stores each bit on
two cross-coupled inverters made up of four
transistors [2]. There are two stable states in this
storage cell, which are denoted by the numbers 0
and 1. In a six-transistor (6T) SRAM, two additional
access transistors regulate access to a storage cell
during reading and write operations. A Static
Random Access Memory cell might be in one of 3
states. It can be in one of three states: standby (when
the circuit is not in use), reading (when data is
required), or writing (updating the contents).
Readability and write stability are required for the
SRAM to function in both read and write
operations. SRAM-based programmable
interconnects and a fixed buffer pattern characterize
typical FPGAs. As a result, the FPGA's configurable
routing system comprised of SRAM consumes a lot
of power. The existence of programmable logic
blocks and programmable intersects in the
programmable routing structure consumes a greater
amount of electricity [3]. The adaptive connectors in
FPGAs account for around ninety percent of the
overall size, about eighty percent of the entire
latency, and about eighty-five percent of the total
usage of energy, according to research. Memory
SRAM, off-chip DRAM, and Flash memory time
complexity, compactness, and leakage current are
all factors to consider all having an impact on the
FPGA's actual quality. Conventional Field
Programmable Gate Arrays suffer considerably
from their programmable intersects due to the broad
use of SRAM-based pieces of coding, multiplexers,
and barriers in connections. One static random
access cell can have up to seven transistors, but it
can only store 1 bit of data. Because static random
access-based storage has a low density, it adds to the
area overhead of FPGA programmability, resulting
in longer routing paths and longer connection
delays. Furthermore, because static random access is
a sort of unstable recollection, it adds to high
standby energy usage [4].

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 369 Volume 17, 2022

Energy Consumption in Conventional SRAM: The
SRAM's energy consumption can be separated into
two types: dynamic and stagnant dynamism
ingestion. Stagnant dynamism expenditure owing to
SRAM leakage current and active usage of power
due to capacitance charging and de-charging during
query processing.
Dynamic Energy Consumption during reading
Operation: When reading operations, there are four
primary sources of energy dissipation: 1-energy
dissipation during charging and draining data-line
capacitance. 2- Dissipation of energy during word-
line capacitance charging and discharging 3-
Dissipation of energy during word-line capacitance
charging and discharging 4- When the row address
is decoded and one word-line is asserted in a
memory array row, all cells in that row are
connected to a bit-line, causing the unselected bit-
line to discharge, resulting in energy being
dissipated on these circuits. Associated with the four
major causes of energy dissipation during reading
activity stated above, dynamic energy consumption
in SRAM for a normal read operation is calculated
as follows:

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐶𝑤𝑡

𝑉𝑑𝑑
2 + 𝐶𝐷𝐿𝑉𝑑𝑑

2 +

𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2
𝑉𝐵𝐿

2 (𝐶𝐵𝐿 + 𝐶𝐷𝐿) + (2𝑐𝑜𝑙 −

1)𝑥[𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2

(𝐶𝐵𝐿𝑉𝐷𝐷−𝐼𝑃𝑇∆𝑇)2

𝐶𝐵𝐿
] (1)

VBL is the voltage of the bit-line at the end of the
read operation, VDD is the external stream power,
ΔT is the interval time that the cell's access
transistor is turned on, and IPT is the current of the
cell's in the saturation zone of a transistor, and these
values are obtained using the following equation:

𝐼𝑃𝑇 =

𝜇𝑛𝐶𝑜𝑥

2

𝑊

𝐿
(𝑉𝐺𝑆 − 𝑉𝑚)2 (2)

Where n is the motion of electrons, Oxide
capacitance is the gate capacitance per unit area, W
is the width of the cell's access transistor, L is the
length of the cell's access transistor, and VGS is the
gate-source voltage of the cell's access transistor,
and Vtn is the threshold voltage of the cell's access
transistor.
Dynamic Energy Consumption during Write
Operations: For a regular write operation in
conventional SRAM, the dynamic energy
consumption is given by:

𝐸𝑛𝑒𝑟𝑔𝑦𝑤𝑟𝑖𝑡𝑒 = 𝐶𝑤𝑡

𝑉𝑑𝑑
2 + 𝐶𝐷𝐿𝑉𝑑𝑑

2 + 𝐶𝐵𝐿𝑉𝑑𝑑
2 +

(2𝑐𝑜𝑙 − 1)𝑥[𝐶𝐵𝐿𝑉𝑑𝑑
2 −

1

2

(𝐶𝐵𝐿𝑉𝐷𝐷−𝐼𝑃𝑇∆𝑇)2

𝐶𝐵𝐿
] (3)

The formula is based on the fact that the voltage on
the bit-line, word-line, and data-line changes during
a write operation, resulting in energy consumption
similar to a read operation. External SRAM has two
major drawbacks in an FPGA-based embedded
system: cost and board space. Other high-capacity
memory formats, such as SDRAM, are more
expensive per M Byte than SRAM systems. It also
takes up more board space per M byte than SDRAM
and FPGA on-chip memory, both of which take up
none. In a Field Programmable Gate Arrays-based
embedded system, information that is stored on the
chip provides the best quantity and the shortest
delay. It usually just has a one-clock-cycle lag.
Recollection interactions able to be piped, resulting
in a typical transaction rate of one per clock cycle.
The dual-port mode can be used to access some
types of on-chip memory, using distinct terminals
for reading and writing dealings. Mode with two
ports pairs the memory's wideband possibility by
permitting it to be printed on one port and read on
the other. On-chip memory can help developers save
time and money. Moreover, several forms of on-
chip memory can be automatically initialized with
customized information during FPGA construction.
The storage can be used to store small amounts of
wader code or Lookup Table data that must be
retained at reset.
The inclusion of static random access memory-
based interconnects in the field-programmable gate
array construction leads to substantial usage of
energy, which is one of the major disputes in the
activities. Due to the bandwidth, complexity, and
power supply, indulgence of memory SRAM, and
off-chip Dynamic RAM, have a direct impact on the
overall performance of the Field Programmable
Gate Arrays, these linked works are mostly focused
on reducing or replacing the transistor count in the
static random access memory. Traditional Field
Programmable Gate Arrays suffer greatly from their
programmable interconnects due to the extensive
use of SRAM-based programming bits,
multiplexers, or passes transistors and shields. One
static random access memory cell can have up to
seven transistors, but it can only store one bit of
data. Because SRAM-based storage has a low
density, it adds to the area overhead of FPGA
programmability, resulting in longer routing paths
and longer connection delays. Furthermore, because
Static Random Access Memory is a sort of unstable
reminiscence, it adds to high power consumption in
standby mode. To address the shortcomings of
previous work, a novel approach is developed in
which the programmable interconnect of memristor-
based FPGA architecture use only newly discovered

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 370 Volume 17, 2022

circuit elements, such as memristors and metal
wires, rather than the static random access memory-
based interconnects used in the traditional field-
programmable gate array construction. When
compared to previous ways, the key benefit of this
strategy is that the complete FPGA architecture
consumes less power. Because the memristor is a
nanodevice, it does not take up more space than
similar works. The use of Resistive RAM rather
than Static RAM is the key benefit of this
technology.

3 Proposed Hybrid Techniques for

Optimization of Power, Area, Latency,

and Improvement of Throughput
The proposed methodology aims to reduce the
number of CLB in FPGA for area reduction by
employing a Memristor-based FPGA design.

3.1 Memristor Multiplier and CAM Memory

Design
The neoteric Memristor-based Field Programmable
Gate Array architecture was employed in this
project. Instead of programmable interrelates
consisting of SRAM memory cells, Memristor-
based FPGAs use Memristor interconnects. The
proposed technology uses a three-D memory
architecture that relies on crossbars and a three-D
technique for mounting sheets, as well as protecting
inductance from unneeded routing paths.
Memristor-based connectors are customizable field-
programmable gate array architecture use only the
newly discovered trail component, namely
Memristor and metal wires, rather than the static
random access memory-based intersects used in
conservative field-programmable gate array
architecture, resulting in significant reductions in
overall area power consumption, area, interconnect
delay, and FPGA speed. Because Memristor is a
Nano device, it does not take up more space than the
existing system. The use of Resistive RAM rather
than Static RAM is the key advantage of this
method. The key benefits of using a Memristor and
an IMPLY-based adder for memory design are as
follows:

 Exceptionally compact, negligible leakage,

CMOS compatibility, and high power
efficiency.

 During read-write operations in the resistive
crossbar avoids sneak-path.

 For high speed, it employs an adaptive buffer
insertion mechanism.

 Eliminates the problem of increased area and
interconnect delay, as well as increased power
usage.

In this paper, a separate device analysis of both the
SRAM and the Memristor is performed first,
followed by the design of a reliable FPGA with only
one transistor using the HSPICE simulation tool.
The project's main goal is then accomplished by
using the Vivado Design Suite software tools to
design both SRAM and Memristor-based
application circuits in FPGA. Furthermore, a
comparison of static random access memory and
Memristor-based field-programmable gate array
architectures is performed to demonstrate that the
memristor-based FPGA architecture consumes less
power. Content addressable memory is a type of
solid-state memory in which data is accessible by its
content rather than by its physical location. It takes
search data in the form of a search term and
provides the address of a comparable word stored in
its data bank [1]. READ, WRITE, and COMPARE
are the three basic operation modes of a CAM, with
"COMPARE" being the most significant of the three
because CAMs rarely read or write.

3.2 Architectural Level Delay Reduction

Techniques using Memristor
We have numerous solutions for decreasing the
critical route in the data path, as well as power
gating, at the design level. This section discusses
some of the delay reduction approaches that will
help CAM overcome its overall searching speed.
There are only three passive elements with two
terminals each available in circuit theory: resistor,
capacitor, and inductor. These elements are defined
by the relationship between fundamental circuit
variables such as current, voltage, charge, and flux.
Prof. Leon Chua anticipated that a 4th essential
component of a network would be needed to
establish the relationship between charge and
discharge of magnetism in 1971. The nano-machine
memristor is a non-active component that
remembers the previous state it was used in. The
Memristor was a type of element of Memristive
element that varied its resistance in response to the
quantity of control flowing over it. The Memristor
functions similarly to a linear resistor with memory,
but it also has several fascinating nonlinear
properties. The Memristive, memcapacitative, and
meminductive subsystems make up the Memristive
class. Such components are regarded as a single port
element whose properties are determined by the
charge and flux linkage's time differential. The
relationship between fundamental circuit parts is

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 371 Volume 17, 2022

depicted in Fig.1, which also fills in the gap
between charge and flux linkage. The Memristor's
key characteristics are as follows:
 Has Resistive Random Access Memory.
 Memristors are tiny and scalable down to 5x5
nm.
 At 180nm, it can be programmed in 5ns and
consumes less power.
 It necessitates a very low biassing voltage and
quick switching - up to six orders of magnitude -
due to the very non-linear rate of switching.
 Because of its nano size, it performs better than
traditional Non-Volatile Memory (NVM) elements.

Fig. 1: Relationships between Four Fundamental
Circuit Elements

The Memristor was projected using the regularity
values of two of the four fundamental electrical
measures: current I voltage, charge, and flux. A
memristor is a semiconductor reedy picture inserted
among two metallic associates with an entire
distance of D of TiO2 film with doped low and un-
doped high resistance regions with a total length of
D of TiO2 film. Symbol 2 depicts the fleshly
assembly and its comparable track perfect. The
memristor can raise resistance in one direction of
current while decreasing resistance in the other. So
when ambient energy that has been applied is
removed, the memristor returns to its previous
condition, indicating that it has resistive memory.
To put it another way, a memristor is an analog
resistor whose resistance may be altered by
changing the direction of applied voltage or current.
The basic geometrical structure of a memristor is
shown in Figure 2. Figure 3 depicts the simulation
findings. The wideness of the entire constituent is
denoted by D, whereas the fatness of the nobbled
coating is denoted by w. To adequately illustrate the
essence of the models and simulations, a
mathematical memristor model must be presented.
As seen below, the memristor functioned as a
recollection resistor by connecting the voltage

across the component and the current flowing
finished it,
𝑣 = 𝑀(𝑤)𝑖) (4)

The memristance functions similarly to resistance,
with the exception that it is dependent on a
parameter, which in Chua's sources was either the
charge. Because charge and current are connected in
the following way,
 𝑑𝑞

𝑑𝑡
= 𝑖 (5)

Fig. 2: HP Laboratory's Memristor Structure and Its
Corresponding Ideal

The memristor acts like a resistor with memory
since M is dependent on the whole history of the
current going finished component. The nonlinear
memristance M is a function of charge q, and no
RLC element combination mimics or copies such a
feature, making it a fundamental circuit element.
Chua later demonstrated that memristors are part of
a larger class of systems known as memristive
systems, as defined by,

𝑣 = 𝑀(𝑤, 𝑖)𝑖 𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑖) (6)

Equations will be used to express the hysteresis loop
of the memristor (6). Equations (7) and (8) define
the optimal mathematical model of a memristor (8).

𝑉(𝑡) = [(
𝑅𝑜𝑛 𝑊(𝑡)

𝐷
) + 𝑅𝑜𝑓𝑓 (1 −

𝑊(𝑡)

𝐷
)] 𝑖(𝑡) (7)

𝑑𝑤(𝑡)

𝑑𝑡
=

µ𝑣 𝑅𝑜𝑛

𝐷
 𝑖(𝑡) (8)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 372 Volume 17, 2022

Fig. 3: Simulative Flux V/S Charge and Simulative
Current V/S Voltage Plots

3.3 Mathematical Modeling of a Memristor
The fourth Memristor along with RLC components
is two pins circuit and it can be defined in terms of
two variable charges, voltage and current is given
by

𝑞(𝑡) = ∫ 𝑖(𝜏)𝑑𝜏
𝑡

−∞

𝜑(𝑡) = ∫ 𝑣(𝜏)𝑑𝜏
𝑡

−∞

It's worth noting that "q" and "are mathematically
defined and don't need any physical meanings.
Nonetheless, we refer to the charge and flux of the
memristor as q and f, respectively, because these
correspond to the formulas connecting charge to
current and flux to voltage. Charge-controlled or
flux-controlled memristors are described as such.

𝜑 = 𝜑(𝑞)̅̅ ̅̅ ̅̅ ̅

𝑣 =
𝑑𝜑

𝑑𝑡
= 𝑅(𝑞)𝑖

Where 𝑖 = 𝐺(𝜑)𝑣

Here ϕˆ (q) & qˆ (ϕ) represents the unremitting and
piecewise-differentiable purposes with restricted
grades is entitled the inductance at ϕ, and have the
unit of Siemens (S). It's worth noting that it's
comparable to Ohm's law, but the resistance is
different R (q) at a given time t = t0 is determined
by the full functionality of i(t) from t = t −∞ t = t0.
Similarly, in eqn, the conductance G (ϕ) is
determined by the full history of v (t) from t =−∞ to
t = t0. The charge-controlled memristor is thus
characterized as analogous to the charge reliant on
Ohm's law. It is important to note that if a memristor
with a resistance R0 is opened or short-circuited for
t=t0 to bring the Memristor to equilibrium condition
and at this condition, the values of V and I are zero
therefore Memristor device does not lose its data.
Whenever power is turned off then V and I go to
non-zero values but minimum i.e negligible, but
rather retains the value at q0 and ϕ0. As a result, the
passive memristor has nonvolatile memory. At the
three-phase, the charge and memristance are
identical and its state map with the state equation
dq/dt = I are corresponding to a Memristor in the
sense that given applied current source input signal
i(t) for all times from t =−∞, or equivalently, for
positive times from t = 0, plus the initial charge q(0)

which represents the time integral of i(t) from t
=−∞to t = 0, one can calculate the (t). Inversely, if R
> 0, the inverse constitutive relation q = ˆq (ϕ) is a
continuous function, and given any v (t), the
corresponding i (t) may be calculated. Most of the
waveforms and hysteresis loops, on the other hand,
are just memristor manifestations and cannot be
used to predict the voltage response given any
excitation waveforms other than I = Ascent, with A
= 1 and ω = 1. Changing the parameter A, or the
waveforms of I (t), or both, would produce radically
different reactions. For example, as the hysteresis
loop reduces until it collapses into a unit-slope
straight line through the origin, we will see that q (t)
tends to zero, v (t) tends to sin t, and R (t) goes to 1.
Indeed, the charge q (t) and flux (t) would both
trend to the origin and remain immobile thereafter,
as they always do. In this special case, the
memristor degenerates into a linear resistor, where
R is simply the slope of the –q curve at the origin,
i.e. R = 1.

4 IMPLY Based 64-Bit Adder with

Memristor
The most common IMPLY-based adder designs are
either serial or parallel. Parallel techniques are faster
but require a large number of work Memristors,
whereas serial systems require a minimum group of
Memristors and hence compromise velocity. The
purpose of our semi-serial adder design is to
incorporate the benefits of both serial and parallel
approaches to produce a more efficient design with
an advanced Figure of Merit. In contrast to serial or
parallel designs, the input variables ai and bi is
separated into two sections in our semi-serial adder,
while the five work memristors w1 to w4 and c and
the carry-in memristor cin are separated into a third
section. Our approach requires 2n + 6 Memristors:
2n for input and output variables, 4 work
Memristors, and two carry Memristors. Each input
section has its own work resistor RG, as shown in
Figure 5, and each memristor in the independent
third section can be linked to any of the two input
sections, a and b. To store the resultant sum and
carry, the input section a and the carry-in memristor
cin are recycled. The formulations of summation
and carry in SUGGEST logic, which we utilize to
create the quasi adder, are shown in Equations (1)
and (2).

𝑆𝑢𝑚 = [(�̅� → 𝑏) → ((𝑎 → �̅�))] → (𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅)

→ 𝑐̅ (9)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 373 Volume 17, 2022

𝐶𝑎𝑟𝑟𝑦𝑜𝑢𝑡 = [((𝑎 → �̅�) → 𝑐) → �̅� → 𝑎̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
] (10)

Because each bit is calculated serially, we call this
structure semi-serial. Work memristors, on the other
hand, are included in a distinct third segment,
allowing for parallelism beyond what is feasible in
serial design. Table I lays out the algorithm in
detail. C is employed and transmitted throughout the
main body of the program. The supposition is
accurate in the intermediate phases because the
algorithm creates and propagates c, although cin is
normally provided at the beginning (not c).
Furthermore, cout is usually preferred over cout at
the end of the day. As a result, we propose one more
step for the inversion of cin at the start of the
algorithm and one additional inversion step at the
end of the algorithm to comply with this. These
phases, which are only performed once at the start
and end of the algorithm execution, are underlined
in bold blue in Table I. As a result, the total number
of steps equals 10n + 2. For each step in the
algorithm, Table II shows the connection status of
memristors in the work memristors section (c, cin,
w14). The letter "U" indicates that the memristor is
connected to the top segment (a memristor),
implying that the higher switch is closed while the
lower switch is open. Similarly, an "L" indicates
that the respective memristor is connected to the
bottom portion, indicating that the top switch is
open and the lower switch is closed. A dash ("-")
signifies a "don't care" state, suggesting that the
memristor could be attached to either of the sections
because it is not used in that phase.

5 64-Bit Vedic Multiplier using Imply

Adder and Memristor
The article's fourth addition is a novel multiplier
design based on our semi-serial adder, which is
shown there. A 2n 1 bit semi-serial adder circuit is
reproduced 2n – 1 time for a and b, where a and b
are binary values of size n, to form an nn-multiplier.
The I -th adder starts with a2i and a2i+1 in its work
memristors wi,0 and wi,2. Every adder has b moved
to the left (one bit) in both summand registers 4
where b is the second input of the product a b.
Initially, each adder calculates the relevant set of
partial products, i.e., the partial products a2ib j and
a2i+1b j are calculated simultaneously in the I -th
adder, where j is a natural number in the range [0,
n1]. As a result, the operation akxb j = ak_b j, which
represents the calculation of one partial product, is
executed. The statement has been rephrased as
Three IMPLY steps are required for this logic

process. The adders calculate the overall product by
summing all partial products step by step after
computing the component products. This means that
each adder's sets of partial products are totaled first,
and then two by two adders are connected to
calculate intermediate sums until all sets of partial
products are totaled. The output or calculated
product of a b is represented by this total sum. The
result of the multiplication and how it was done will
be stored in the cin & memristors of the system's
initial adder (cin as the most significant bit or carry-
out, and an as the rest of the output value). Table
VII shows a two-bit example of the algorithm that is
used to calculate partial products. The adders
resume their semi-serial adding procedure once
partial products have been determined. Figure 8
depicts a 44-bit multiplier made up of two semi-
serial adders and one additional switch used to
connect the adders during the summing phase. The
semi-serial adder circuit does not need to be
changed except for the additional switch. In other
words, for an n n-bit multiplier, the adder is only
repeated n/2 times. The total number of additional
switches required is n-1/2.

6 Results and Discussion
The proposed multiplier design was simulated at
two different levels of abstraction. A Matlab
simulation was used to test the behavioral accuracy
of the multiplier method, assuming optimal
memristor behavior. Because the multiplier
approach is split down into partial product
calculation and subsequent addition, we confirmed
the accuracy of partial product computation on the
circuit level by simulating it in Vivado platform
using the Modelsim software, using the same
configuration as in Section 4. Our semi-serial adder
algorithm, which was verified in Section 5, is used
to do the succeeding addition. The LT Spice
simulation of the calculation of one partial product a
b, where a = 1 and b = 1, is shown in Figure 9. The
work memristors w1 and w2 are expected to be
initialized to HRS (logic '0') in this example. In w2,
the result of a b is saved. For all input combinations
of a and b, Figure 10 shows the proper calculation
of w2 = a b. In both simulations, an IMPLY step
takes 30 seconds. The technique was carried out
using a SPICE implementation of the VTEAM
model, as in Section III-B. The same variables were
used as in the previous example.
Table VIII compares based on multiplier
architecture to others in the literature for a 32-bit
multiplier in terms of features and performance
metrics. We couldn't determine the number of

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 374 Volume 17, 2022

required memristors, steps, or switches for n = 32
because didn't supply any equations. The FoMs in
Table X are calculated using n = 32, but the FoMs in
Table XI are generated using n = 8, because, as
previously stated, the source for the Dadda
multiplier only offers efficiency and characteristic
figures for an 8-bit multiplier. In both tables, the
best design according to each Figure of Merit is
boldfaced to make it easier to spot. The equation
was used to determine the improvements (8). As
shown in Table X, our multiplier design
outperforms array- and Dadda-type multipliers by a
factor of 50, owing to significant reductions in the
number of memristors and switches used. A Shift &
Add multiplier with a 32-bit implementation
surpasses all other multiplier designs in 4 out of 5
Figure of Merit, while its 8-bit version outperforms
others in 3 out of 5 Figure of Merit. This is caused
by a few factors;
 The original performance of the Shift &
Add coefficients,
 The design's basic components, for an
example multiplexers and transferal records, have a
high level of optimization built-in, and
 Multiplexers and shift registers are common
examples of external CMOS circuitry.
The final component, in particular, makes a
comparison with our suggested multiplier
problematic, as our design makes far less use of
external Complementary metal–oxide–
semiconductor motherboard. Furthermore, we have
not considered, and will not examine, the
Complementary metal–oxide–semiconductor tracks
that are required to create the state machine that
controls the Shift&Add, Array, and Dadda
multiplier. It can tip the scales even further in our
favor, particularly in the case of FoMA. Even when
the aforementioned parameters are ignored, our
suggested multiplier beats all previous designs in
terms of FoMA in both 8-bit and 32-bit versions.
When compared to the Shift&Add multiplier [40],
for example, according to the majority of Figure of
Merit is the best design, our approach is 532 percent
superior in terms of FoMA. In other terms, our
proposed solution saves over 5 times the amount of
space as the Shift&Add multiplier. The Area-
centered Diagram, we believe, is correct Merit from
Equation (7) delivers the furthermost truthful
estimate of worth when it comes to the die area
because it not only considers Complementary
metal–oxide–semiconductor circuitry but also the
fact that additional Complementary metal–oxide–
semiconductor motherboard is buried beneath the
memristor crossbar due to the most common
practice of using memristors in BEOL. Apart from

that, we designed our multiplier by just duplicating
our serial adder without adding any additional
building blocks, keeping CMOS circuitry basic. The
contrast of our concept with Array Multiplier is
another example of one parameter's lack of
representativeness in the worth of a design. Our
approach is 58 percent slower than Array Multiplier,
but because we use 70 percent fewer memristors, we
exceed it in four out of five Figures of Merit. These
two examples demonstrate that existence improved
or worse in one aspect does not provide us with a
whole picture of architecture’s worth. As a result, a
designer must select a Figure of Merit that best
represents the design constraints, evaluate any
design using the proper Figure of Merit, and make
design choices that assist the system in achieving
the criteria.

Fig. 4: RTL schematic diagram of Memristor-based
gates.

Fig.4 shows the RTL diagram of Memristor-based
gates and each gate consumed two Memristors for
two inputs. The resistor values vary from 100 Ohm's
40KOhm to perform the exact logic of gates. The
simulated results of all gates are shown in Fig.5.

Fig. 5: Simulated results of Memristor based Gates

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 375 Volume 17, 2022

The analysis of proposed Memristor-based gates and
multiplier and CAM memory is analyzed with three
main metrics such as latency, throughput, and area
utilization. The throughput is given and their
calculated values are shown in Table 1

Throughput =

Frequency of operation

𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝑥𝑆𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

Table 1. Comparison between Existing and

Proposed Gates and 64-bit Vedic multiplier and
Memristors with IMPLY based adder

Paramet
er

Vedic
with
PPA
based
adder
[12,9,2
4]

Vedic
with
IMPLY
based
adder
and
Memris
tor

Conventio
nal Gates
without
Memristo
r

Memris
tor
based
Gates

Slice
Register
s (Area)

7809 7818 204 192

Slice
LUT’s

16472 14491 409 398

Flip-
Flops

7940 7808 215 206

Delay in
ns

17.313
ns

17.208 7.3 6.175

Power in
Watts

0.491 0.491 0.88 0.450

Frequen
cy in
MHz

185.4 250.627 185.8 291.886

Through
put in
Mbps

205.6 227.8 34.5 47.2

Latency 19.4 17.6 6.4 6.4

Table 2. Comparison between existing floating and

proposed floating-point multiplier.
Parameter Floating-point

Vedic
multiplier with
PPA based
adder [6,10,16]

Double
precision
floating point
Vedic
multiplier with
IMPLY based
adder and
Memristor

Slice Registers
(Area)

4816 3819

Slice LUT’s 5002 4951
Flip-Flops 2451 2100
Delay in ns 4.6 3.841
Power in Watts 0.89 0.881
Frequency in
MHz

217.5 261.4

Throughput in
Gbps

3.2 4.3

Latency 5.61 4.651

The Memristor with Vedic multiplier is applied for
the design of a double-precision floating-point
multiplier and validated with a different floating
number in both MATLAB environment and Vivado
Design Suite 2018.1 software. As per Table.2, there
is a 6% improvement in the area, a 4% improvement
in LUT, and a 13% reduction in latency.

Fig. 5: Comparison of area, LUT, and flip-flops.

Figure 5 shows the suggested system's performance
in terms of area, LUT, and flip-flops.

Fig. 6: Performance analysis of the planned system
in positions of control, deferral, throughput, and
latency.

6Conclusion
The paper presents a stateful Boolean logic
implementation method for AND, OR, NAND,
NOR, COPY, and NOT, as well as a Vedic

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 376 Volume 17, 2022

Multiplier built with Memristor and IMPLY-based
adders. Each recommended logic gate uses a simple
memristor connection, with the output memristor's
logic state changing in reaction to the input
memristor’s logic states. Not only can the suggested
logic gates conduct logic functions, but they can
also store sense standards. Multi-input state
complete logic gates are available in addition to 1-
input and 2-input logic gates. Previous memristor-
based logic designs are compared to the suggested
approach. According to the results of the
comparison, the provided approach can execute 6
simple stateful Boolean sense processes with
compact circuit topologies. Furthermore, the future
enterprise can be used to create a multi-functional
journey, reducing the number of memristors
required. The suggested product's validity is
demonstrated by computer simulation results. The
whole scheme presents a novel way for creating
memristor-based stateful logic that combines logic
value storage with logic operation to build an
unconventional cognitive framework. The
assessment of our semi-serial 3 out of 5 Figures of
Merit for the SUGGEST-created Memristive full-
adder design, which outperforms extra enterprises in
the research, is enhanced in this study. The
complete design is synthesized using Vivado Design
suite platform, based on obtained results, the area is
reduced by 13%, latency is decreased by 31% and
power is minimized by 15%.. Proposed four new
Figures of merit to improve the parallel of
memristive systems in terms of efficiency.
Regarding the design aim, a designer might select
the most appropriate FoM. Furthermore, they can be
inspired by the proposed FoMs to create a new FoM
that more accurately depicts the particular of their
architectural restrictions and trade-offs. We also
reviewed the literature on SUGGEST-based
multiplier designs and planned a new multiplier
founded on our semi-sequential full-adder
architecture. This repeater concept outperforms
other approaches in the field when the area slide
created by supplementary obligatory
Complementary metal–oxide–semiconductor
switches is taken into consideration. Calculations of
power consumption and die area should be carried
out in the future helps improve replicability and
quality of work.

References:
[1]. S. Hamdioui, H. Aziza and G. C. Sirakoulis,

"Memristor based memories: Technology,
design and test," 2014 9th IEEE International
Conference on Design & Technology of

Integrated Systems in Nanoscale Era (DTIS),
2014, pp. 1-7, doi:
10.1109/DTIS.2014.6850647.

[2]. D. Niu, Y. Chen and Y. Xie, "Low-power
dual-element memristor based memory
design," 2010 ACM/IEEE International
Symposium on Low-Power Electronics and
Design (ISLPED), 2010, pp. 25-30, doi:
10.1145/1840845.1840851.

[3]. Prithivi Raj, M., Kavithaa, G. RETRACTED
ARTICLE: Memristor based high speed and
low power consumption memory design using
deep search method. J Ambient Intell Human

Comput 12, 4223–4235 (2021).
https://doi.org/10.1007/s12652-020-01817-2

[4]. M. R. Mahmoodi, A. F. Vincent, H. Nili and
D. B. Strukov, "Intrinsic Bounds for
Computing Precision in Memristor-Based
Vector-by-Matrix Multipliers," in IEEE
Transactions on Nanotechnology, vol. 19, pp.
429-435, 2020, doi:
10.1109/TNANO.2020.2992493.

[5]. D. Radakovits, N. TaheriNejad, M. Cai, T.
Delaroche and S. Mirabbasi, "A Memristive
Multiplier Using Semi-Serial IMPLY-Based
Adder," in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 67, no. 5, pp.
1495-1506, May 2020, doi:
10.1109/TCSI.2020.2965935.

[6]. J. Vista and A. Ranjan, "Flux Controlled
Floating Memristor Employing VDTA:
Incremental or Decremental Operation," in
IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
vol. 40, no. 2, pp. 364-372, Feb. 2021, doi:
10.1109/TCAD.2020.2999919.

[7]. O. Leitersdorf, R. Ronen and S. Kvatinsky,
"MultPIM: Fast Stateful Multiplication for
Processing-in-Memory," in IEEE
Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 3, pp. 1647-1651,
March 2022, doi:
10.1109/TCSII.2021.3118215.

[8]. Chang et.al, Ultra-low-voltage, low power
CMOS 4-2 and 5-2 compressors for fast
arithmetic circuits, IEEE Trans. Circuits Syst.
I, Fundam. Theory Appl., 2004, 51, (10), pp.
19851997.

[9]. Raphael, D et.al, A Power-Efficient 4-2
Adder Compressor Topology, 15th IEEE
(NEWCAS), Strasbourg, France, 2017, pp.
281-284.

[10]. O. Leitersdorf, R. Ronen and S. Kvatinsky,
"MultPIM: Fast Stateful Multiplication for
Processing-in-Memory," in IEEE

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 377 Volume 17, 2022

Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 3, pp. 1647-1651,
March 2022, doi:
10.1109/TCSII.2021.3118215.

[11]. Shaahin, A et.al, Majority-Based Spin-CMOS
Primitives for Approximate Computing, IEEE
Trans. on Nanotech., 17(4), 2018, pp. 795-
806.

[12]. Avinash, L et.al, Parsimonious Circuits for
Error-Tolerant Applications through
Probabilistic Logic Minimization, Int.
Workshop on PATMOS 2011, pp.204-213.

[13]. DarinDarjn, E et.al, Approximate Multipliers
Based on New Approximate Compressors,
IEEE Trans. on CAS-I: Reg. Pap, PP(99),
2018, pp. 1-14.

[14]. Meijia Shang, Xiaoping Wang, A memristor-
based circuit design for generalization and
differentiation on Pavlov associative memory,

[15]. Neurocomputing, Volume 389, 2020, Pages
18-26, ISSN 0925-2312,
https://doi.org/10.1016/j.neucom.2019.12.106.

[16]. Liang, J et.al, New Metrics for the Reliability
of Approximate and Probabilistic Adders,
IEEE Trans. on Comp., 63(9), 2013, p. 1760-
1771.

[17]. Zervakis, G et.al, Design-Efficient
Approximate Multiplication Circuits Through
Partial Product Perforation, IEEE Trans. on
VLSI Systems, 24(10), 2016, pp. 3105-3117.

[18]. X. Xu, X. Cui, M. Luo, Q. Lin, Y. Luo and Y.
Zhou, "Design of hybrid memristor-MOS
XOR and XNOR logic gates," 2017
International Conference on Electron Devices
and Solid-State Circuits (EDSSC), 2017, pp.
1-2, doi: 10.1109/EDSSC.2017.8126414.

[19]. Y. Cho and M. Lu, "A Reconfigurable
Approximate Floating-Point Multiplier with
kNN," 2020 International SoC Design
Conference (ISOCC), 2020, pp. 117-118,
DOI: 10.1109/ISOCC50952.2020.9332978.

[20]. M. Hajizadegan and P. Chen, "Harmonics-
Based RFID Sensor Based on Graphene
Frequency Multiplier and Machine Learning,"
2018 IEEE International Symposium on
Antennas and Propagation & USNC/URSI
National Radio Science Meeting, 2018, pp.
1621-1622, DOI:
10.1109/APUSNCURSINRSM.2018.8608604
.

[21]. K. Paramasivam, N. Nithya and A. Nepolean,
"A Novel Hybrid CMOS-Memristor Based 2-
Bit Magnitude Comparator using Memristor
Ratioed Logic Universal Gate for Low Power
Applications," 2021 International Conference

on Advancements in Electrical, Electronics,
Communication, Computing and Automation
(ICAECA), 2021, pp. 1-5, doi:
10.1109/ICAECA52838.2021.9675534.

[22]. N. C. Dao and D. Koch, "Memristor-based
Pass Gate Targeting FPGA Look-Up Table,"
2021 International Conference on Electronics,
Information, and Communication (ICEIC),
2021, pp. 1-4, doi:
10.1109/ICEIC51217.2021.9369751.

[23]. N. C. Dao and D. Koch, "Memristor-based
Pass Gate Targeting FPGA Look-Up Table,"
2021 International Conference on Electronics,
Information, and Communication (ICEIC),
2021, pp. 1-4, doi:
10.1109/ICEIC51217.2021.9369751.

[24]. M. Teimoory, A. Amirsoleimani, A. Ahmadi
and M. Ahmadi, "A hybrid memristor-CMOS
multiplier design based on memristive
universal logic gates," 2017 IEEE 60th
International Midwest Symposium on Circuits
and Systems (MWSCAS), 2017, pp. 1422-
1425, doi: 10.1109/MWSCAS.2017.8053199.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS and CONTROL
DOI: 10.37394/23203.2022.17.41 Shruthi K. N., R. Bhagyalakshmi, Roopashree D.

E-ISSN: 2224-2856 378 Volume 17, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

