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Abstract: The paper presents an analog circuit solution for implementing models of synapses with short-term 
adaption, derives an analytical solution (Floating gate charge as weights) for spiking input signals, and presents 
simulation results using a 45nm CMOS process using floating gate technology. The circuit is suitable for 
integration in large arrays of integrate-and-fire neurons and thus, can be used for evaluating computational roles 
of short-term adaption at the network level. Proposed floating gate p channel MOSFET (FGPMOS) can self-
adapt, learn and store data with help of external voltages highly precise non-volatile and stable programming of 
weights (training) after fabrication of circuit have been performed. On application of feedback in the circuit, 
short-term self-adaption with spiking input signal has been observed. The model can also demonstrate 
homeostatic intrinsic plasticity, spike-based algorithms, and LMS algorithms. The model has a 4.5µV/℃ 
temperature coefficient, 0.675µW power consumption, and consumes a chip area of about 130×90 nm2. The 
model is compact, low power, and stable. The proposed circuit has been applied to design a cell membrane (bio-
sensor CMOS-based circuit) depicting the effect of Sodium (NA) and Potassium (K) on synaptic action. With the 
help of the Na and K feedback circuit, effects of polarization and depolarization on synapse output have been 
demonstrated and thus depict spike-timing-dependent plasticity.  The work can be extended to design a complete 
neural architecture, an array of such complete neural cells, in turn, can design devices for assistive technology or 
human-like machines. 
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IOT               Internet of things 
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NC                Neuromorphic circuits 
STDP            Spike timing-dependent plasticity 
LMS             Least mean square 
ADALINE    Adaptive Linear Combiner 
SP                 Structural-Plasticity 
VLSI            Very-large-scale integration 
FG                Floating Gate 
PTM             Predictive technology model 
CMOS          Complementary metal-oxide-semiconductor 
 
 
1. Introduction 

For more than two decades, the brain and its capability of 
information processing principles have been a standard in 
building artificial intelligence (AI). AI-based algorithms allow 
recognition tasks and can be implemented with the help of 
very large-scale integration (VLSI) technology. The field of 
integrating brain computation-based algorithms with 
technology is referred to as “Neuromorphic engineering” 
(NE). The term ‘Neuromorphic engineering’ was first 

introduced by an American scientist Carver Mead [1]. NE 
has two directive goals; one is to understand the 
computational properties of biological neural systems 
using models and the other is to exploit the known 
properties of biological systems to design and implement 
efficient devices for engineering applications (C S Thakur, 
et al., 2018[2]). NE term is used for all neuro-inspired 
techniques: hardware, algorithms, and recently this 
discipline has emerged amongst top technologies 
(information is given by the world economic forum [3]). 
The market for neuromorphic systems is expected to 
increase by roughly 1.8 billion dollars by the time 2025 
[4], [5]. Also due to the gigantic increase in the internet of 
things (IoT) and AI, the need for a system is going to 
increase. A review paper [6] shows a roadmap for future 
development in neuromorphic systems that mainly focused 
on the role of dendrites in neural systems. The neural 
emulating hardware should be highly energy-efficient (low 
power), parallel and efficient computation capable, and 
should occupy a small chip area. To achieve all the above-
mentioned properties, during this decade neuromorphic 
engineers instead of digital computation, are looking for 
solutions in the analog domain. Several Si-based analog 
circuits for synapse modeling, learning methods, neural 
spike generation, etc., have been developed [7,8,9].  With 
the use of such compact models, digital communication 
(large-scale neural networks) of spiking information has 
also been developed which closely emulates the nature of 
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the human brain [10]. Single silicon transistor was interfaced 
successfully with neural networks, resulting in potentially 
interesting clinical applications for neuro-engineering systems, 
neuro-prosthetics, and neuro rehabilitation (F D Broccard, et 
al., 2017[11]). Floating-Gate-based metal oxide 
Semiconductor (FGMOS) devices are very well known for 
memory application and other low-power analog computation 
circuits. Recently they find applications in analog circuits that 
are used for neuron modeling [12, 13], competitive learning 
systems [14], implementation in learning algorithms [15], and 
implementation of online unsupervised deep learning systems 
[16]. Carver Mead noticed that the Si MOSFET operating 
below threshold in current mode has similar characteristics as 
“sigmoidal current-voltage”, which is similar to characteristics 
of neural electrical(ion) channels [17]. Single MOSFET at 
sub-threshold consumes very less power and can become on-
chip programmable, and self-adaptable using floating-gate 
technology. The physics of this device led to the advancement 
of “Neuromorphic” silicon neurons (SiNs). Neuromorphic 
circuits (NC) using SiNs and simulating cognitive features like 
learning, training, and adaptation, gained momentum in the 
recent decade (electric signals, V/I, and ionic signal Na/K) 
[18, 19]. NC emulating features like Homeostatic intrinsic 
plasticity, Spiking-timing-dependent plasticity (STDP), Least-
mean square, perceptron, backpropagation, spiking-driven 
synaptic plasticity and structural plasticity [20, 21, 22, 23] 
have also been developed. Moreover, neural computation for 
artificial intelligence requires complex integrated circuitry, for 
which the designs need to be scaled down. Scaling of such 
SiNs has several advantages like higher frequency response, 
lower parasitic capacitances, and lower power consumption 
along with some design challenges [20]. Such compact 
efficient adaptive neural models are implemented in 
neuromorphic circuits which can either be used to understand 
the computational properties of the biological neural system or 
to exploit known properties (AI algorithms) of the biological 
system to develop intelligent machines, as illustrated in figure 
1. Thus, we propose a floating gate-based PMOS (SiN) 
simulation model at 45nm CMOS technology which shows 
learning, storing, and self-adaptation with higher accuracy and 
stability. The model can also emulate neuron features like 
Spike-timing-dependent-plasticity (STDP) generation and 
self-adaptation (Structural plasticity). The Model shows stable 
learning, consumes low power, and smaller chip area. The 
simulated results have also been compared with previous work 
[20]. Our proposed SiN can be implemented in other adaptive 
neuromorphic circuits which in turn can be used to build a 
neural network emulating some partial features of the human 
brain. Thus, the paper is distributed as follows: section 2 
demonstrates the Si Neuron model, weight concept, proposed 
adaptive model, and results demonstrating the learning 
features of neurons. Section 3 caters to indirect programming 
techniques of FGPMOS, and the role of equilibrium 
conditions in self-adaption. And in the last section, an 
application has been simulated. The proposed SiN model can 
be used to design a complete neural structure whose array can 
develop a neural network. Such neural networks can be used 
in two ways; either as an FPAA with an array of complete cell 
boards implanted to innovate human-like machines. Or such 
boards can be used to understand or emulate some part of the 

complex functionality of the brain. Such boards can also be 
used to design some assistive technology-based devices 
where any deficient feature of the brain can be enhanced 
with the help of physical implants.  For example, there is a 
patent [24]. The invention presented here provides a well-
defined and simplified method of modeling human-like 
thought, emotion, behavioral, cognitive, and conjectural 
processes. 

Figure 1. Neuromorphic system/ Adaptive Neuromorphic-circuits 
and their future in artificial intelligence. 

 
 

2. The SI-based Neuron-Models 
  Silicon neurons (SiNs) are analog VLSI circuits that can 
emulate the electrophysiological behavior of neurons or in 
other words neuron behavior with the flow of ions. SiNs 
are suitable for real-time-large-scale neural emulations 
while in the digital domain SiNs provide only a qualitative 
approximation of real-time performance. 
The digital domain models are not suitable for quantitative 
investigations. In this decade several analog domain SiN 
models have been developed for example Fitzhugh-
Nagumo (FHN) [25], and the modified Izhikevich neuron 
model [26]. Memristor-based neuron models have also 
been proposed [27], The commercial application of 
neuromorphic chips includes low-power sensors, self-
learning robots, and power-efficient supercomputers. 
Hence with scaling down of technology for power-
efficient, highly integrated SiN models are designed using 
analog/mixed-signal circuits. Thus, some desirable 
properties of SiN neurons are: 
• Non-volatile weight 
• Compact Size 
• Low power  

A.  

B. Proposed SiN Simulation model at 45nm technology. 

Before proposing a SiN neuron model, let us consider a 
neuron with input x and output y in a neural network as 
expressed in equation 1. 

                      𝑦𝑛 = 𝑊𝑛∗𝑚𝑥𝑚                                 (1) 
Where 𝑦𝑛 is the output vector of size n, 𝑥𝑚 is the input 
vector of size m and W is the synaptic function of size 𝑛 ∗
𝑚. where weight W can be expressed as: 

                     𝑊 = 𝑒
𝛥𝑣𝑓𝑔

𝑈𝑡                                        (2) 
where 𝛥𝑣𝑓𝑔is the change in voltage of floating gate, 𝑈𝑡  is 
the thermal voltage. Our proposed SiN model generates 
this weight W in terms of non-volatile charge at FG which 
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can be programmed using few external voltages. This charge 
at FG can also be feedback through a capacitor, to adapt to 
certain changes in input stimuli. Programming this charge 
energy can be performed using tunneling (𝐸𝑡𝑢𝑛) and injection 
(𝐸𝑖𝑛𝑗) and can be expressed in terms of 𝛥𝑣𝑓𝑔. 

              𝐸𝑡𝑢𝑛 = 𝐶𝑡𝑜𝑡𝛥𝑣𝑓𝑔(𝑉𝑡𝑢𝑛 − 𝑣𝑓𝑔)               (3) 
             𝐸𝑖𝑛𝑗 = 𝐶𝑡𝑜𝑡𝛥𝑣𝑓𝑔(𝑉𝑑𝑠,𝑖𝑛𝑗)                         (4) 

 
Where 𝐶𝑡𝑜𝑡 denotes total parasitic capacitance, 𝑉𝑡𝑢𝑛 denotes 
tunneling voltage, and 𝑉𝑑𝑠,𝑖𝑛𝑗 is high drain-source voltage 
applied for injection.  
The circuit illustrated in figure 2 is inspired from [28] which 
uses the two-quantum mechanisms; Fowler Nordhiem 
tunneling and Hot-electron Injection (IHEI) which are 
responsible for adding and removing electrons on the floating 
gate, respectively. The programming of stored charge at FG is 
used to adapt its dc operating point with the help of external 
voltages. In the simulation model of directly programmable 
FGPMOS, a PMOS with common FG is used as a MOS 
capacitor, to provide tunneling junction 𝑀𝑎 (shown in Fig 2), 
which is used to form a high potential terminal for tunneling 
of charge from FG. 

 
 

Figure 2. Low power compact, adaptive, non-volatile weight SiN 
simulation model. 

 
The two-quantum current in the femtoampere range has been 
simulated using empirical equations (10, 11), implemented 
with the help of two voltages controlled current sources. 
Capacitor C1, the input capacitor simulates the feature of the 
double polysilicon structure used to fabricate FG and control 
gate. Capacitor C2 is used to provide feedback at the drain 
terminal. On applying external voltages at tunneling junction 
𝑉𝑡𝑢𝑛 Through a MOS capacitor and a potential difference 
between source and drain terminal of FGPMOS, both injection 
and tunneling currents have been generated. The steady-state 
is reached when the injection current is nullified by tunneling 
current i.e., Itun =Iinj and thus after equilibrium (12ps) charge at 
the FG gets fixed.  
The circuit is inputted by an up-going and down-going step at 
the gate terminal, Figure 3 illustrates output voltage showing 
adaption. The adaptation in response to the up-going pulse 
results in electron tunneling, which decreases charge at FG, 
and as a result the 𝑉𝑑𝑠 decrease which leads to less injection 
current. Moreover, adaptation response for down-ward going 
pulse results in hot electron injection that leads to increase in 

charge at FG which leads to increase in 𝑉𝑑𝑠 and thereby 
increasing the injection.  

 
Figure 3. Illustrating adaptive output response at the drain 

terminal of FGPMOS. 
 

Emulating STDP it is a biological phenomenon that 
provides strength to neuron wiring by adjusting the 
connections between the brain and neurons. The feature is 
based on the relative timing of a presynaptic or 
postsynaptic neuron’s output and input action potentials in 
the form of spikes [29-31]. Mathematically STDP is 
modeled as: 

   𝛥𝑊 =         {
𝛥𝑤+ = 𝐴+𝑒

𝛥𝑡

𝜏+ , 𝑖𝑓𝛥𝑡 > 0

𝛥𝑤+ = 𝐴−𝑒
𝛥𝑡

𝜏− , 𝑖𝑓𝛥𝑡 ≤ 0
              (5) 

 
Where 𝛥𝑡 =  𝑡𝑝𝑜𝑠𝑡 − 𝑡𝑝𝑟𝑒. The equation above reflects that 
synapse is potentiated/raised (depotentiated) if 
postsynaptic action occurs after (before) presynaptic 
action. 𝐴+ and 𝐴− denote the highest change in weight and 
𝜏+ and 𝜏− denote the time of interval in which spiking 
occurs. Weight represented in equation 5 has been 
simulated shown in figure 4. Which is obtained using 
equation 5 the plot shows weight change as a function of 
the time difference of presynaptic and postsynaptic spike in 
STDP. 

 
Figure 4. Plot of neuron weight extracted from equation 5. 
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In the previous section this neuron weight has been expressed 
in terms of charge at the floating gate illustrated by equation 2. 
whenever there is a change at the input/ programming 
voltages, there will be the change in charge at the floating gate 
terminal. The output of the neuron changes according to this 
change in weight multiplied by the input, which in turn results 
in an impulse response. It has been observed (as shown in fig 
3) that the charge in FG will be adapted automatically to 
equilibrium position. Figure 5 represents the output voltage of 
the neuron model (shown in fig 2) in response to the input 
step. The response is similar to STDP obtained from a 
mathematical equation (shown in fig 4). The response is also 
comparable with the result of the paper [29]. 

 
Figure 5. Emulating STDP response of neuron membrane 

 
Extracting LMS it is the former/aged learning rule obtained 
for the non-spiking neural networks [23]. LMS aims to 
minimize error step by step with minimum change in the 
parameters to make the memory more efficient. For an 
explanation of LMS a simple neural network and adaptive 
linear combiner (ADALINE) have been considered and 
narrated by the equations as follows:  

                        ℎ = 𝑌¯𝑇
𝑊 ¯                                    (6) 

                        𝑒 = 𝑑𝑠– ℎ                                      (7) 
 

Where𝑌¯ represents the input vector of the neural network, 𝑊 ¯ 
is the vector of weight, ds are the required output and e 
denotes the corresponding error. LMS works on weight 
updating algorithm as given as: 

                  𝛥𝑊¯ = 𝛿
𝑒𝑌¯

|𝑌¯|^2
¯                               (8) 

Where δ is the value chosen between 0.1 to 1 for better 
stability and good convergence speed and it is observed that 
the error reduces at every step. The main application of the 
LMS algorithm is to reduce mean square error at every step. 
This feature is used to reduce error, and to emulate neural 
computations and can also be designed in NCs.With the 
change in high potential at the tunneling junction, the 
amplification (dc level/equilibrium level) has been shifted, as 
demonstrated in Figure 6. As 𝑣𝑡𝑢𝑛 increases charge at FG 
decreases so the dc level for 2.11V is 1.2V and for 2.19V it is 
shifted to 0.95V. (The range of tunneling from 2-4V has been 
reduced to 2.11-2.19V). With the feedback mechanism in our 
proposed model if there is a difference in the desired output it 

is feedback to the FG terminal and hence error will be 
reduced step by step until the desired response is obtained. 

 
Figure 6. Shows variation of dc level on sweeping 𝑉𝑡𝑢𝑛 from 

2.11v to 2.19v. 
 

Emulating Structural plasticity: It is the cognitive 
behavior of the human brain. Most learning algorithms in 
neuromorphic systems have a definite relation to changes 
in synaptic weights. In the same, way the network structure 
(in form of wiring) of an adult brain also undergoes certain 
changes for example formation of new connections and 
replacing them with old ones and this phenomenon is 
known as structural plasticity (SP) [30,31]. The presence 
and absence of connections are treated as 1-bit memory 
signals and they are easy to store in CMOS latches with 
less power and lesser chip size [32]. These algorithms are 
recently applied to real-world problems. Based on SP 
several algorithms have been developed which have 
recently been applied for real- time applications [33]. The 
proposed model shows self-adaption of charge at the 
floating gate (non-volatile weight) due to feedback at the 
drain terminal of FGPMOS, (as shown in fig 3). This 
property of self-adaption of any input stimuli can depict 
features of structural plasticity of neurons in the human 
brain. In the following section, indirect programming of 
the proposed model has been illustrated with which model 
can be implemented in any neuromorphic circuit. 
 

3. On-Chip Programming of 

FGPMOS 
To design an array of proposed SiN neural cells as 
described in the previous section, to generate an output 
with respect to input stimuli, weights need to be estimated. 
As illustrated earlier these weights correspond to the 
charge stored in the floating gate (equation 2). The 
proposed SiN model is based on floating gate technology 
where the charge at the floating gate(weights) is 
programmed using external voltages using two quantum 
mechanical techniques; tunneling and injection. The 
experimental results of on-chip, precise, non-volatile 
programming have been demonstrated in the next section. 
The charge also self-adapts in correspondence to spiking 
input due to feedback shown in Fig 2. The FGPMOS can 
be programmed either directly or indirectly using 
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programmer FGPMOS with a common floating gate. To 
explain programming techniques a simulation model for 
indirectly programmable FGPMOS is demonstrated in Figure 
7(a). In the mask shown in Figure 7 (b) floating gate has been 
fabricated using a double poly structure. The floating gate 
whose charge works like weights in our proposed SiN model 
is once programmed, remains trapped on it for years, as FG is 
covered from oxide from all sides and electronically ‘floating’. 
The FGPMOS has been fabricated using on semiconductor C5 
CMOS process using MOSIS fabrication services in the USA 
in association with the University of Maryland. The 
experimental results of tunneling and injection respectively are 
demonstrated in Figures 8(a) and (b), respectively. The charge 
at the floating gate can be programmed with seven bits of 
resolution as illustrated in Tables I and II. The tunneling, 
removal of charge, and an injection that is the introduction of 
charge have been simulated with the help of voltage-
controlled current sources in the simulation model shown in 
Figure 7(a). These VCCS use empirical current equations 
derived f4rom experimental values and relations with the 
voltage differences, written in equations 10 and 11. An 
equilibrium is created when simultaneously tunneling and 
injection of charge are performed after 0.2µs, as shown in 
Figure 10. The final stable learned charge at the floating gate 
is the difference between two currents, as shown in equation 9. 
This change in charge after equilibrium is the stable weight of 
our SiN neural model and according to it will produce output 
when an input spike is provided. In the next section, 
programming techniques have been explained in detail.   
                   𝐶 𝑑𝑣𝑓𝑔

𝑑𝑡
= 𝐼𝑡𝑢𝑛 − 𝐼𝑖𝑛𝑗                                          (9) 

 

 
Figure 7(a). Simulation model of indirectly programmable FGPMOS 
(Md the FGPMOS, Mp programmer FGPMOS used for injection, 
MOS capacitor for Tunneling, Ma common FG separated from CG 
through C1 (double ploy structure), and two voltage-dependent 
current sources which depend on current equations (injection Iinj & 
Tunneling Itun derived from experimental data. 

 

 

Figure 7(b). Layout of directly programmable FGPMOS.

 

 
 

 
Figure 8(a). Experimental plot for programming of threshold 

voltage by tunneling. (b): Experimental plot for programming of 
threshold voltage by injection. 

 
A. Programming technique 

Tunneling arises from the phenomenon of the electron 
wave function which has a finite extent. It is a quantum 
mechanics process that is used to tunnel out electrons from 
the floating gate. For a thin barrier it is sufficient for an 
electron to penetrate the barrier. In Fowler Nordheim 
tunneling mechanism a high potential is applied at the 
tunneling junction to create a strong electric field between 
the tunneling junction and Floating gate which in turn 
results in a thinner barrier to the electron at the floating 
gate as illustrated in figure 7(a). The empirical equation 
(10) parameters have been extracted from hardware results 
and estimated for 45nm MOS model values (inspired by 
paper [20]).  

      𝐼𝑡𝑢𝑛 = −𝐼𝑡𝑢𝑛0 𝑒𝑥𝑝 𝑒𝑥𝑝 (
−𝑉𝑓

𝑉𝑡𝑢𝑛−𝑉𝑓𝑔
)       (10) 

Where 𝑣𝑓 and 𝐼𝑡𝑢𝑛0 are the extracted parameter and values 
estimated are 𝐼𝑡𝑢𝑛0 = 2. 𝑒7, 𝑉𝑓 = 269. With the increase in 
tunneling junction voltage, the negative charge at the 
floating gate reduces due to which the positive threshold 
voltage of FGPMOS increases. The same has been 
illustrated in Figure 9(a), which depicts the change in the 
value of drain current at one time (200ps) with increasing 
tunneling voltage from 2V to 4V.  
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Figure 9(a). Showing variation of drain current by sweeping 

Tunneling voltage 𝑉𝑡𝑢𝑛 from 2v to 4v. (b) Showing variation of drain 
current by sweeping injection voltage 𝑉𝑖𝑛𝑗 (𝑣𝑑-𝑣𝑠) from 1v to -4v. 

 
Injection Hot electron injection provides us a facility to inject 
electrons i.e. increases the positive charge at the floating gate. 
The Physics of hot electron injection is to provide electrons 
with enough kinetic energy and direction in the channel to 
drain near the depletion region to surpass the Si-SiO2 barrier. 
FGPMOS must have two requirements for injection of an 
electron in FG. First, an electron must gain more than 3.1ev of 
kinetic energy to cross the Si-SiO2 barrier. Second, the electric 
field in the oxide is desired in a unique direction to receive 
electrons once they cross the Si-SiO2barrier. The injection 
current can be simulated using empirical equation 11, whose 
parameter values have been extracted from fabricated results 
[20].    

 𝐼𝑖𝑛𝑗 = 𝐼𝑠 × 𝛼 ×𝑒𝑥𝑝 𝑒𝑥𝑝 (
−𝛽

𝑉𝑓𝑔−𝑉𝑠+𝛾
+ 𝑉𝑠 − 𝑉𝑑) (11) 

Where 𝛼 = 0.5𝑒 − 8, 𝛽 = 150, 𝛾 = 0.402 have been 
estimated for the proposed model at 45nm. For indirect 
injection, a programmer uses a PMOS at common floating 
gate. With the increase in the magnitude of the difference of 
voltages between drain and source, the negative charge at the 
floating gate increases and the threshold voltage of FGPMOS 
decreases. The same has been illustrated in Figure 9(b), which 
depicts the change in the value of drain current at one time 
(1000ns) with increasing 𝑉𝑖𝑛𝑗 voltage from 1v to -4v. 

 

 

 

 

 

 

Table. I Tunneling programming precision 
𝑽𝒕𝒖𝒏(Volts) 𝑽𝒇𝒈(Volts) 

3.0000001 1.2851 

3.0000002 1.2852 

3.0000003 1.2853 

3.0000004 1.2854 

3.0000005 1.2855 

3.0000006 1.2856 

3.0000007 1.2857 

 
Table. II Injection programming precision 

𝑽𝒊𝒏𝒋(Volts) 𝑽𝒇𝒈(Volts) 

3.0000001 1.3856 

3.0000002 1.3857 

3.0000003 1.3858 

3.0000004 1.3859 

3.0000005 1.3860 

3.0000006 1.3861 

3.0000007 1.3862 

 
Injection and tunneling current is tuned with voltage-
controlled current sources (VCCS) the value of VCCS 
depends upon tunneling and injection voltages according to 
the empirical current (equations 10 and 11), Due to the 
tunneling/Injection, quantum mechanism 𝑉𝑡ℎ of the 
FGPMOS can be programmed with about 7 bits of 
programming resolution. In papers [34, 35] it has been said 
by experimental verified results that with 
tunneling/injection mechanism Vth of FGPMOS is 
programmed by about 13 bits of programming resolution. 
Same has been observed while simulation and is illustrated 
in Table I and Table II which depict the change in drain 
current on increasing 𝑉𝑡𝑢𝑛 from 3.0000001v to 3.0000007v 
and this change is due to a change in voltage of the FG 
respectively. 
 
Equilibrium Condition injection and tunneling 
mechanism are operated at the same time and it is being 
noticed that the effect of injection on the charge at the FG 
(the value of 𝑉𝑡ℎ) is more as compared to the tunneling. 
Equilibrium operating conditions has been fulfilled where 
both process effects get neutralized. To attain equilibrium 
between injection current and tunneling current floating 
gate voltage is varied from 0.8v to 2 v and as illustrated in 
figure 10. 
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Equilibrium is attained at 𝑉𝑓𝑔=1.05v which concludes that the 
equilibrium condition is attained at two values of 𝑉𝑓𝑔. 

 
Figure 10. Plot of injection current (𝐼𝑖𝑛𝑗) and tunneling current (𝐼𝑡𝑢𝑛) 

w.r.t floating gate voltage (𝑣𝑓𝑔). 
 
 

4. Biosensor Circuit with Proposed 

SIN 
Neuromorphic circuits simulating spikes (STDP) have 
recently become a popular area of interest in the neuro-
engineering field (Stephen Nease et al., 2016). These designs 
are also used to implement event-driven computing systems. 
Within the above context many different types of SiNs have 
been proposed that mimic neurons and synapses at different 
levels [36]. A Neuromorphic biosensor circuit is used to detect 
the functioning of biomolecules; sodium and potassium. It 
generates an output whose frequency is modulated with 
different current values. It consists of an FG-FET sensing area, 
a membrane capacitor  𝐶𝑀, a 𝑁𝐴 sodium channel, and a 
potassium K channel. Whenever any charge particle appears 
around the sensing area of the circuitry the threshold voltage 
of FG-FET gets changed and due to this there is a drain 
current variation across the drain terminal of FG-FET, which 
results in a spike at the membrane capacitor with the help of 
feedback Na and K sub circuits [37]. The FG-FET with bio-
sensing area in the circuit is replaced with our proposed self-
adaptive FGPMOS model as shown in Fig 11. The circuit 
consists of two feedback sub-circuits: sodium feedback circuit 
and a potassium feedback circuit. The sodium (Na) channel 
shown in figure 11 works like a bandpass filter; the bias 
voltage 𝑉𝑀 and 𝑉𝐻 is used to tune the bandpass filter circuit. 
The current across the sodium (Na) channel in response to a 
step input is shown in figure 12(a). Further, the potassium (K) 
channel whose gate voltage is controlled by MOS M6, M7 and 
C3 as shown in figure 11. The K feedback circuit works like a 
low pass filter, and the tuning of the time constant of the 
potassium (K) channel is done with the help of biasing voltage 
Vn. Moreover, the current across the potassium (K) channel is 
shown in figure 12(b). With the adaptive SiN model, any input 
pulse can generate self-adaptive impulses at the membrane 
capacitor which can further be controlled by feedback from Na 
and K circuits. The charging of the neuron membrane can be 
done by the Na channel, while the discharging of the cell 

membrane (CM) happens through the K channel.  Thus, 
the complete biosensor design is used not only to emulate 
STDP depicting effects of Na/K ions in neuron membrane 
but also used to emulate features of structural plasticity 
(self-adaption) of the human brain. The spike generated at 
the cell membrane as shown in figure 12 can be used to 
improve the insulation of the myelin sheath which is 
responsible to transmit electrical impulses in the brain and 
spinal cord and have the ability to emulate the STDP 
feature of the human brain. 

 
Figure 11. Bimolecular Sensor circuit using neural synapse 

FGMOS. 
  

 

 
Figure 12 (a). Current across sodium channel (b): Current across 

potassium channel. 
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4.1 Action Potential 
The action potential is an electrical activity that occurs when 
different types of ions cross the membrane of our neuron. In 
response to the stimulus provided at the input the sodium 
channels open as there are more sodium ions outside the 
neuron membrane and generally neuron has negative relative 
to outside of the neuron membrane, depolarization occurs 
because sodium ion is positively charged and due to this 
neuron becomes more positive and as a result of this 
potassium channel takes more time in opening and when they 
do so potassium ions rushes out of the neuron membrane, 
reversing the process of depolarization also at this particular 
instant sodium channels starts to close. When the neuron is not 
sending any signal in the form of spikes it is considered to be 
at rest, the resting potential of a neuron is (-70mV) which 
represents that the outside of the neuron membrane is 70mV 
higher than the inside. This causes the action potential to reach 
-70mV (re-polarization) but actually, it goes beyond -70mV 
because the potassium channel opens a bit too long and this 
state is stated as hyperpolarization and then the cell returns 
back to resting potential at -70mV. 
 Action potential shown in figure 13 is obtained by applying a 
step pulse from (-65mV to -10mV) at the input terminal of the 
bio-sensor circuit shown in figure 11. It can be noted that due 
to tunability of circuit and bias conditions a significant 
variation in the shape of the action potential is observed. The 
voltage shown across the y axis of figure 13 is the voltage 
spike at the cell membrane (𝐶𝑀) minus the voltage of the 
circuit at rest. The concept of depolarization (rising phase) 
where the spike goes to +40µV and Repolarization (falling 
phase) is illustrated in figure 13. 

 
Figure 13. the plot represents voltage across membrane capacitor 

(𝐶𝑀) shown in fig 11. Output response across cell membrane. 
 

5. Conclusion 
In this paper a Si-based adaptive neuron model is proposed 
and simulated using 45nm CMOS technology. It shows 
features like storing, programming, and adaptability of charge 
at FG. It can enhance the on-chip learning ability of Si 
neurons. The model shows 4.5uV/℃ of temperature coefficient 
when the temperature is varied from 0 to 80-degree Celsius, 
consumes 0.675µW power, and occupies a chip area of about 
130×90 nm2. Thus, a single FGPMOS operated at 
subthreshold conduction, is used to emulate a neuron and its 
features such as LMS, STDP, and structural plasticity. The 

proposed synapse model along with the concept of 
proposed cell membrane could illustrate short-term 
synaptic action of a cell in response to input spike. The 
work can be extended by adding an axon and dendrite 
circuit with the proposed cell model and a complete neural 
architecture can be created. An array of these cells 
depicting features like learning, storing, and self-adaption 
can create a Neural network. Such analog based Neural 
networks can be used in two ways; 1. it can get implanted 
in machines to depict human-like behavior in bots. 2. It can 
also be implanted inside a deficient brain to replicate the 
correct cognitive behavior (can help in developing devices 
for assistive technology).   
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