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Abstract: - This paper shows that the control points which are implicitly encountered in the Bézier extraction 
during isogeometric analysis can be explicitly used to form Bézier elements of 𝐶଴-continuity in several ways, 
thus eventually leading to a superior accuracy and performance than the 𝐶௣-continuity. The study is reduced to 
the eigenvalue extraction in problems governed by the Helmholtz equation. Analysis is performed in 
conjunction with piecewise cubic interpolation for three benchmark tests in one and two dimensions. In the 
latter case a rectangular and a circular acoustical cavity under Neumann boundary conditions are analyzed. 
Several computational details are also discussed. 
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1 Introduction 
Within the context of the finite element method 
(FEM), the idea of using the same set of basis 
functions for the geometry and the analysis is very 
old. The practical need of this concept is the 
treatment of curvilinear domains where the Jacobian 
matrix has to be found at the integration points 
aiming at estimating the stiffness (static problems) 
as well as the mass matrix (time-dependent 
problems). The first report referring to the so-called 
‘isoparametric element’ is due to Taig, [1]. A later 
public paper is due to Irons, [2], while a detailed 
description may be found in classical FEM 
textbooks (see [3], [4]). 

The above idea, i.e., the use of the same 
functional set for both the geometric model and the 
analysis, was later extended using the Coons 
interpolation method (see [5], [6]). The difference of 
the latter with the previous standard FEM methods 
is that, instead of using a known functional set such 
as a power series expansion or a sinusoidal series, 
global shape functions are extracted from a 
computer-aided geometric design (CAGD) 
interpolation formula. These shape functions span 
an entire patch of the domain which, in general, may 
be also decomposed into a number of smaller 
curvilinear patches. 

As has been documented in classical CAGD 
textbooks such as, [7], the abovementioned Coons 
interpolation formula, due to Steven Coons (1964-

1967), is almost the first one which was ever 
developed in the theory of CAGD. Moreover, in 
chronological order, the second important formula 
was due to William Gordon (1969), a third 
interpolation was due to Pierre Bézier (1970), a 
fourth interpolation was the ‘B-spline’ due to Curry-
Schoenberg formulation (1966) that was later 
treated more efficiently thanks to an efficient 
recursive scheme by Cox-deBoor-Mansfield (1972), 
the fifth was NURBS due to Versprille (1975) but 
was popularized twenty years later mainly by the 
monograph of Piegl and Tiller containing pseudo-
codes, [8]. The sixth cornerstone CAGD-
interpolation is T-splines, [9], while it is anticipated 
that novel CAGD-based interpolations will follow to 
keep busy the next generations of FEM-researchers. 
The author has not included a lot of other significant 
interpolations (e.g. alphabetically: Bajaj-, Barnhill-, 
DeRose-, Gregory-patches, etc.) because he had to 
restrict himself to those advertised in the most 
known commercial CAD/CAM/CAE software 
packages. The research on splines, as a means to 
solve partial differential equations (PDEs) with 
given boundary conditions, still continues to this 
date ( [10], [11], [13]).  

Based on transfinite Coons-Gordon interpolation 
formulas a number of papers have appeared for 
either static or dynamic analysis ([14] and [15]), 
while [16] is a monograph including the summary of 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2022.17.67 Christopher G. Provatidis

E-ISSN: 2224-2856 605 Volume 17, 2022



almost sixty papers (for the period 1989 to 2017) 
which was published much later in 2019.  

Based on B-spline interpolation a number of 
papers on the numerical solution of PDEs have 
appeared near 2000 (see [17], [18], [19]), while a 
relevant monograph is [20]. 

Regarding the application of non-uniform 
rational B-splines (NURBS) in engineering analysis, 
the first relevant studies were reported in 1993 and 
1994 (see [21] and [22]). NURBS were revived in 
2005 under the title ‘NURBS-based isogeometric 
analysis’ (IGA). This was done mainly for product 
shape design, [23]. In the same year (2005), [24], an 
extensive paper dealt with a broader spectrum of 
engineering applications for which all the well-
known flexibilities and advantages of previously 
developed CAGD algorithms such as knot insertion, 
degree elevation, etc were utilized. A relevant 
textbook, published in 2009, is [25].  

In its original implementation, IGA requires 
substantial computer time in order to calculate the 
basis functions at the integration points thus to 
estimate the stiffness matrix, despite the local 
support of the basis and the fact that the efficient de 
Boor-Cox recursive algorithm was used (see [26], 
[27]). To reduce the computer effort, the Bézier 
extraction technique has been proposed, [28]. In 
brief, the main advantage is that Bézier extraction, 
compared to the original implementation of IGA, 
[25], is such that apart from the coefficients of the 
extraction operator (matrix Ce) of the ‘e-th’ 
NURBS-element within a patch, the basis functions 
are identical for all elements in the mesh as it is the 
case for classical finite elements. Therefore, there is 
no need to implement B-spline basis function 
evaluation routines which (as previously said) are 
costly from a numerical point of view. 

Within the context of (tensor-product) NURBS 
approximation of degree p (in conjunction with 
control points P), after the computation of the 
extraction operator Ce (for definitions, see [28]) the 
updated set of control points Q (associated 
Bernstein-Bézier polynomials) can be easily 

calculated by the linear formula   ,e

Q C P  where 

the superscript ‘T’ stands for the transpose of the 
matrix Ce. As a result, if the aforementioned control 
points Q are properly grouped, they can build a set 
of Bézier elements of degree p with C0 inter-
element-continuity.  

In this paper it will be shown that the above-
mentioned control points Q, which again are 
implicitly encountered in the abovementioned 
Bézier extraction (MODEL-1), can be explicitly 

used to form Bézier elements of 𝐶଴-continuity 
(henceforth MODEL-2) with superior accuracy.  
 

2 The Main Idea 
The numerical method of ‘Bézier extraction’ is 
based on the insertion of additional knots at all the 
inner knots of the patch until their multiplicity 
becomes equal to the polynomial degree 𝑝. Then a 
linear relationship is derived between the NURBS 
basis functions N and the Bernstein polynomials B 
according to the expression: 

eN C B    (1) 

where eC  is the well known Bézier operator, [28]. 
Since after knot insertion the shape of the patch 
remains unaltered, in form and parametrically, the 
patch ( , ) x  is described by the condition: 

( , )    x N P B Q ,   (2) 

where Q denotes the control points after the 
abovementioned multiple knot insertion (those 
involved in Bézier extraction). Substitution of Eq. 
(1) into Eq. (2) and further drop out of the common 
factor BT on the left of the second equality, leads to 

 e

 C P Q ,    (3) 

or equivalently: 

 1
e

P C Q    (4) 

In one-dimensional (1D)-problems, and for every 
NURBS-element ‘e’, P is of a column-vector of size 
ሺ𝑝 ൅ 1ሻ, Q is of a column-vector of size ሺ𝑝 ൅ 1ሻ, 
whereas the matrix Ce is a matrix of size ሺ𝑝 ൅ 1ሻ ൈ
ሺ𝑝 ൅ 1ሻ. 

Implementing the concept of isogeometric 
analysis (i.e., same basis functions for the analysis 
as well), a similar relationship will hold in both 
systems for the degrees of freedom (DOFs), a, as 
well, thus the analogue of Eq. (4)will be: 

 1
P e Q

a C a    (5) 

Regarding MODEL-1 (original IGA), for any 
NURBS element ‘e’ let the corresponding stiffness 
and mass matrices be eK  and eM , respectively. 
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Below we shall derive the relevant matrices for 
MODEL-2. 

Actually, Eq. (5)depicts a linear relationship 
between the ‘local’ degrees of freedom (DOFs), aP, 
of MODEL-1 (B-spline or NURBS) and the ‘global’ 
DOFs, aQ, of MODEL-2, through the transformation 

matrix  1
e

T C . This change of basis leads to the 

well-known quadratic form (Kglobal = TT Klocal T) 
thus the matrices of MODEL-2 can be written in 
terms of the local matrices as follows: 

     1 1
e e e eQ

 K C K C   (6) 

and  

     1 1
e e e eQ

 M C M C .  (7) 

In addition to the general quadratic form of Eqs. (6) 
and (7) which requires only matrix operations, three 
more equivalent alternatives for MODEL-2 will be 
discussed below.  

To make the procedure as clear as possible, we 
shall start with a typical 1D-problem and then 
continue with a couple of 2D-problems. 

 
2.1 One-dimensional problem 
Problem: Consider the Helmholtz equation 

2 2 2( ) 0u x k u     with wave-number k c , in 

the interval ሾ0, 𝐿ሿ with 𝐿 ൌ 3. The boundary 
condition at the left end is of Dirichlet type (𝑢 ൌ 0 
at 𝑥 ൌ 0) while at the right end is of Neumann type 
(𝜕𝑢 𝜕𝑥⁄ ൌ 0 at 𝑥 ൌ 𝐿). Find the eigenvalues 
implementing IGA for the polynomial degree 𝑝 ൌ 3 
and three uniform B-spline elements. 

Solution: The exact eigenvalues 𝜆௜ ൌ 𝜔௜
ଶ are 

given by:  

2 2 2(2 1) (4 ) , 1,2,i i c L i     . (8) 

2.1.1 Original IGA (MODEL-1)  
First, B-splines analysis (MODEL-1) is performed 
for the knot vector 𝛯 ൌ ሼ0,0,0,0,1,2,3,3,3,3ሽ (i.e, for 
𝑛 ൌ 3 uniform breakpoint spans), for polynomial 
degree 𝑝 ൌ 3, which involves three B-spline 
elements and six control points as shown in Fig. 
1(a). In general, the position of the control points 
may be arbitrary. However, if we allow a linear 
isoparametric mapping, i.e. that 𝑥ሺ𝜉ሻ ൌ 𝜉 with ሺ0 ൑
𝜉 ൑ 3ሻ, then the aforementioned six involved 
control points are found to be located at the 

particular positions 𝑥௖௧௥௟ ൌ ሼ0, భ
య
, 1,2, ఴ

య
, 3ሽ as shown 

in Fig. 1(a). The aforementioned linear mapping is 
not obligatory but permits the accurate 
representation of ideally linear functions. Based on 
these six control points, for each element ′𝑒ᇱ ሺ𝑒 ൌ
1,2,3ሻ the Jacobian will be a constant, because the 
domain is a straight line. Wherever the control 
points are, the six basis functions are those 
illustrated in Fig. 2(a). Two of them span one-third, 
also two of them span two-thirds and the final two 
basis functions span the entire domain. 

Elementary B-spline theory suggests that the 
connectivity vector which allocates the global DOFs 
to each of the abovementioned three B-spline 
elements, will be IEN-1 = [(1,2,3,4), (2,3,4,5), 
(3,4,5,6)], so as only 𝑝 ൅ 1 basis functions affect 
each element. For each of these three elements the 
local matrices are given by: 

0

[ ] , 1,2,3,4
el

je i
ij

NN
dx i

x x


 

 K   (9) 

and 

2
0

1
[ ] , 1,2,3,4

el
e
ij i jN N dx i

c
 M .  (10) 

After matrix assembly, the boundary conditions 
are imposed (deletion of the first raw and column in 
both the mass and stiffness matrices due to the 
Dirichlet boundary condition), and the eigenvalues 
are calculated in terms of the system matrices, K 
and M (after deletion) requiring that the determinant 
vanishes: 

det 0i K M ,  (11) 

with 𝜆௜ ൌ 𝜔௜
ଶ denoting the 𝑖-th eigenvalue of the 

problem.  
Either the basis functions 𝑁௜  involved in Eqs. (9) 

and (10) are computed in terms of usual B-splines 
(e.g., using a standard function such as the spcol 
in MATLAB) or in terms of Bernstein polynomials 
using the Bézier operator eC  [see, Eq. (1)], the 
obtained matrices are the same thus leading to the 
numerical results shown in Fig. 3 (blue line). One 
may observe that the computational error increases 
with the serial number of the eigenmode. 
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Fig. 1: Arrangement of control points in (a) initial 
B-spline and (b) after the multiple knot insertion. 

 

Fig. 2: Basis functions for (a) initial B-spline and (b) 
after the multiple knot insertion. 

 

Fig. 3: Errors (in percent) of the calculated 
eigenvalues (Model-1: 6 and Model-2: 10 control 
points). 

 
2.1.2 Bézier elements and similar (MODEL-2) 
Increasing the multiplicity of the two inner knots (at 
𝜉 ൌ 1 and 𝜉 ൌ 2) from ‘1’ to ‘3’ (note that 𝑝 ൌ 3), 
the new control points increase from 6 (P) to 10 (Q) 

and are uniformly arranged within the interval [0,3] 
as shown in Fig. 1(b) while the corresponding basis 
functions are shown in Fig. 2(b). In the latter figure, 
one may observe that the new basis functions are 
interpolatory at the ends of each element (which are 
also ends of repeated knots) and span two elements 
(one on the left and the other on the right of each 
multiple inner knot). The new connectivity vector 
will be: IEN-2 = [(1,2,3,4), (4,5,6,7), (7,8,9,10)]. 
Again, only 𝑝 ൅ 1 basis functions affect each 
element. 

At this point, four alternative procedures (all of 
them labeled as ‘MODEL-2’) are tested as follows: 

 
2.1.2.1 Procedure (2a): de Boor B-splines  
The first procedure for Model-2 consists of 
practically using the same code as that of MODEL-1 
but now setting the multiplicity of the (two) inner 
knots equal to 𝑝 ൌ 3. For the produced updated 
basis functions 𝑁௜, 𝑖 ൌ 1, … ,10, we can use the 
standard recursive (de Boor) formula, such as 
spcol existing in MATLAB®. For each of the 
three B-spline elements we use four (i.e., 𝑝 ൅ 1) 
Gauss points and significant computer savings are 
achieved when the local support is encountered 
through the above-mentioned connectivity vector 
IEN-2.  
 
2.1.2.2 Procedure (2b): Bézier elements 
The second procedure for Model-2 consists of using 
the three cubic (4-node) Bézier elements of equal 
size shown in Fig. 1(b) and Fig. 2(b). Each Bézier 
element is made of four DOFs associated to four 
Bernstein polynomials as basis functions. If one 
does not wish to perform numerical Gauss 
integration in conjunction with the aforementioned 
Bernstein polynomials, the analytical formulas of 
the matrices in each element are given in Appendix 
A. The connectivity vector will be again the 
aforementioned IEN-2. 
 
2.1.2.3 Procedure (2c): Lagrange elements 
The third procedure for Model-2 consists of using 
the three classical cubic Lagrange elements of equal 
size which are shown in Fig. 1(b). The analytical 
formulas of the matrices in each element are given 
in Appendix B. The same connectivity vector, i.e., 
IEN-2 will be applied. 
 
2.1.2.4 Procedure (2d): Matrix transformation 
The fourth and last alternative procedure for Model-
2 consists of blindly implementing Eqs. (6) and (7) 
at each of the three B-spline elements shown in Fig. 
1(a) that have been found in Model-1, and then 
rearranging the produced quadratic form in the form 
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of enlarged matrices according to the connectivity 
vector IEN-2. From the computational point of 
view, we can use two loops as follows. The outer 
loop refers to the three elements while the inner 
loop refers to the (𝑝 ൅ 1) Gauss points in each 
element. Between these two loops, the local 
matrices (Ke, Me) are calculated and then  e Q

K  as 

well as  e Q
M  are found according to Eqs. (6) and 

(7).  
It was found that three out of the four 

abovementioned procedures (i.e., the Procedures 2a, 
2b and 2d) lead to identical mass and stiffness 
matrices. Not only that, but although the Procedure 
2c gives different matrices than the other three 
procedures, it eventually leads to the same 
numerical results (calculated eigenvalues) with the 
Procedures (2a, 2b and 2d). Therefore, the error of 
the calculated eigenvalues for all these four 
procedures, represented under the umbrella of 
MODEL-2, is shown in Fig. 3 (red line).  
 
2.1.3 Comparison of MODEL-1 with MODEL-2 
One may observe that MODEL-1 [i.e., three B-
spline elements (6DOFs, 𝐶ଶ-continuity)] is less 
accurate than MODEL-2 [i.e., a totality of three 
Bézier elements (10 DOFs, 𝐶଴-continuity)]. One 
reason for the superiority of the 𝐶଴-continuity 
(MODEL-2) is probably the larger number of the 
participating DOFs (10 versus 6 before the 
imposition of the BCs, and 9 versus 5 after the 
deletion of the restrained DOFs).  

It is noted that in the above one-dimensional test 
case it is very difficult to compare the CPU-times 
because all of them are very small and the whole 
comparison is very sensitive. 
 
2.2 Two-dimensional problems 
 
2.2.1 Rectangular cavity 
Consider an acoustic cavity of size 𝑎 ൈ 𝑏 ൌ 2.5𝑚 ൈ
1.1𝑚, with normalized wave speed 𝑐 ൌ 1 𝑚 𝑠⁄ , and 
rigid walls (𝜕𝑢 𝜕𝑛⁄ ൌ 0). For the governing 
Helmholtz equation ∇ଶ𝑢 ൅ 𝑘ଶ𝑢 ൌ 0 (with 𝑘 ൌ
𝜔 𝑐⁄ ), calculate the lowest 15 eigenvalues 𝜆௜ ൌ
𝜔௜

ଶ, 𝑖 ൌ 1,2, ⋯ ,15. We recall that the exact 
eigenvalues are given by the formula: 

2 2
2 2 2 , , 0,1, ,mn mn

m n
c m n

a b
  

            
     

   #(12) 

Solution: The initial isogeometric model 
(MODEL-1 of 𝐶ଶ-continuity) comprises 10 cubic B-
spline elements in a 5 ൈ 2 setup, which includes 8 ൈ
5 ൌ 40 control points (see, Fig. 4(a)). Therefore, 
each matrix of (Κ, Μ) comprises 40 rows and 40 
columns, of which none is deleted when imposing 
the Neumann-type BCs. The results of this model 
are shown in Fig. 5: (blue line).  

 

Fig. 4: Control points for (a) 𝐶ଶ- and (b) 𝐶଴-continuity, (c) detail of Bézier element No. 8. 

 
 
 

 
 
 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2022.17.67 Christopher G. Provatidis

E-ISSN: 2224-2856 609 Volume 17, 2022



After the Bézier decomposition, the totality of 
the new control points are rearranged according to 
Fig. 4(b), in which their number has increased (from 
40) to 16 ൈ 7 ൌ 112. Now, each of the ten cubic 
Bézier elements consists of 16 control points 
arranged in a 4 ൈ 4 setup. Here it happens that all 
the extreme control points belong to the true 
boundary of each element and they split each edge 
in three equal pieces, as if we had to deal with 
conventional rectangular finite elements. As 
previously happened with the 1D-problem, four 
equivalent procedures have been developed; three of 
them are coincident (i.e., the procedures 2a, 2b, and 
2d), one is equivalent (procedure 2c), and all of 
them constitute ‘MODEL-2’. The IEN-2 matrix can 
be automatically computed in advance, based on the 
formulas which are illustrated in Fig. 4(c), where the 
indices (𝑖ଵ, 𝑖ଶ, 𝑖ଷ and 𝑖ସ) denote the serial numbers of 
the control points at the corners of each NURBS 
element. In this convention, the Bézier elements are 
numbered sequentially starting from the lower left 
and increasing until the bottom edge is completed; 
then we continue with the above-the-bottom layer 
from left to right, and so on (see, the numbers inside 
the small red circles of Fig. 3b). Again, Procedure-
2a involves the MATLAB’s function spcol in 
conjunction with multiplicity 3 (or its equivalent 
Bézier extraction), Procedure-2b includes the ten 
tensor product cubic Bézier elements, Procedure-2c 
includes ten conventional tensor product cubic 
Lagrange elements, whereas the algebraic 
Procedure-2d includes change of basis using Eqs. 
(6) and (7). In all these four alternative procedures 
(2aൊ2d) for Model-2 the results were found to be 
identical (see Fig. 5:, red line) and one may observe 
that they outperform the Model-1.  

Although MODEL-2 (based on 𝐶଴-continuity) is 
superior to MODEL-1 (𝐶ଶ-continuity), we have to 
admit that the former deals with 112 DOFs 
compared to 40 DOFs existing in the later model.  

Fig. 5: Errors of the calculated eigenvalues for the 
rectangular cavity. 

 
2.2.2 Circular cavity 
A circular acoustic cavity of unit radius ( 1a  ) 
under Neumann boundary conditions is studied. The 
analytical solution is given by  

( ) 0, 0,1,2,mJ ka m     #(13) 

where ( )mJ ka  is the first derivative of the Bessel 

function ( )mJ ka  of the first kind and order m  and 

k c  is the wavenumber. We wish to find the 

lowest seventeen eigenvalues applying IGA. 
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(a) (b) 

 
(c) (d) 

Fig. 6: Progressive knot insertion in a circular cavity (a) quadratic Bézier with isolines, (b) 

cubic Bézier, (c) cubic NURBS with 𝐶ଶ-continuity, (d) cubic NURBS with 𝐶଴-continuity. 

 
Solution: The starting point is the well-known 9-

point rational Bézier tensor product (a 3 ൈ 3 setup, 
see Fig. 6a) for degree 𝑝 ൌ 2, knot vector 𝛯 ൌ
ሼ0,0,0,1,1,1ሽ ൈ ሼ0,0,0,1,1,1ሽ and weights 𝒘 ൌ
ሼ1, భ

√మ
, 1ሽ ൈ ሼ1, భ

√మ
, 1ሽ.  

Then the degree is elevated to 𝑝 ൌ 3 and, as a 
result, the new set of the sixteen control points are 
arranged in a 4 ൈ 4 setup, as shown in Fig. 6(b), 
where the new knot vector per direction becomes 
𝛯′ ൌ ሼ0,0,0,0, 1,1,1,1ሽ ൈ ሼ0,0,0,0, 1,1,1,1ሽ.  

Eventually, to produce a true NURBS patch 
which will continue to accurately represent the 
circumference of the circle, an inner knot is inserted 
at the middle of each knot vector in either direction. 
Therefore, the twenty-five control points are 
arranged in a 5 ൈ 5 setup, as shown in Fig. 6(c), and 
therefore the final knot vector becomes 𝛯" ൌ
ሼ0,0,0,0, భ

మ
, 1,1,1,1ሽ ൈ ሼ0,0,0,0, భ

మ
, 1,1,1,1ሽ while the 

weights are ሼ1, 0.9024, 0.8047, 0.9024, 1ሽ.  
It is noted that the circle in green colour shown 

in Fig. 6(b,c,d) is the accurate one which is ensured 
in all the rational formulations of Model-1 and 
Model-2. 

The above-mentioned 25-DOF model (MODEL-
1, in a 5 ൈ 5 setup, as shown in Fig. 6(c), is solved 
first in conjunction with standard NURBS-based 
IGA. This is accomplished once using the usual de 
Boor functions (spcol in MATLAB) and another 
using the equivalent Bézier extraction. Obviously, 
the results were found to be identical, and the 
associated errors are shown in the third column of 

Table 1. It is noted that the aforementioned Bézier 
extraction was based on increasing the multiplicity 
of the nine inner knots (in a 3 ൈ 3 setup) to 𝑝 ൌ 3, 
thus the involved Bézier operator eC  implicitly 
utilizes 49 control points. 

Then, the 49-DOF model (MODEL-2, in a 7 ൈ 7 
setup), of which the control points had been 
implicitly used in the aforementioned Bézier 
extraction, is solved using four rational cubic Bézier 
elements (separated by the two perpendicular thick 
lines in red colour, as shown in Fig. 6(d)) and the 
relevant results are shown in the fourth column of 
Table 1. 

Once again, one may observe that MODEL-2 
outperforms in accuracy. Since the difference 
between the degrees of freedom in the two Models 
is less than 1:2, this problem is not the worst case.  

Due to the above fact, in Section 3 the 
comparison of CPU-times will be reported for only 
the rectangular cavity as is explained therein.  
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Table 1. Eigenvalues of the circular cavity with hard 
walls 

 

Mode 

 

EXACT 

Errors (in %) of Calculated 
Eigenvalues 

MODEL-1 

(25 DOFs) 

MODEL-2 

(49 DOFs) 

1     0 - - 
2 3.389957716671888 0.43 0.07 
3 3.389957716671888 0.43 0.07 
4 9.328363213746355 0.34 0.32 
5 9.328363213746355 3.75 0.47 
6 14.681970642123899 1.13 0.96 
7 17.649988519749648 11.85 1.99 
8 17.649988519749648 11.85 1.99 
9 28.276371248725660 13.68 3.25 
10 28.276371248725660 98.64 3.25 
11 28.424282047372301 97.60 3.01 
12 28.424282047372301 157.67 8.97 
13 41.160133480153071 140.69 12.39 
14 41.160133480153071 159.07 15.31 
15 44.972222417793944 179.09 5.53 
16 44.972222417793944 179.09 46.28 
17 49.218456321694596 219.70 35.55 

 
 

3 Discussion 
If we restrict our discussion to the polynomial 
degree 𝑝 ൌ 3, then MODEL-1 is of 𝐶ଶ-continuity 
and leads to a pair of matrices, say (K1,M1), 
whereas MODEL-2 is of 𝐶଴-continuity and leads to 
another pair of matrices, say (K2,M2). Each pair of 
matrices leads to a separate set of eigenvalues and 
our findings suggest that the set (K2,M2) will lead to 
lower (thus most accurate) values. 

Actually, from the three numerical examples of 
this study, it becomes clear that MODEL-1 (IGA of 
𝐶ଶ-continuity) is less accurate than MODEL-2 
(Bézier elements of 𝐶଴-continuity), when the 
control points which are implicitly encountered in 
the Bézier extraction (MODEL-1) are explicitly 
used to form Bézier elements (MODEL-2).  

One may advocate that the aforementioned fact 
is due to the higher number of DOFs involved in 
MODEL-2. Actually, in the 1D-problem the 6 DOF 
of MODEL-1 increased (by 67 percent) to 10 in 
MODEL-2. In the 2D-rectangular cavity the 40 
DOF of MODEL-1 increased (by 180 percent) to 
112, while for the circular cavity the 25 DOF of 
MODEL-1 increased (by 96 percent) to 49 in 
MODEL-2. 

Of course, a fair comparison would require 
extensive experimentation regarding the computer 
effort and a relevant cost-benefit analysis, not only 
for the Helmholtz equation but also for other partial 
differential equations (PDEs) as well (e.g., Laplace-
Poisson, elasticity problems, electro-magnetics, 
etc.). At the moment, for the examples of this study 

which restricts to the Helmholtz equation, we have 
found that MODEL-2 outperforms in accuracy but 
its superiority in computer effort is sensitive and 
depends also on the particular procedure followed 
(see Procedures 2aൊ2c, which were defined in sub-
section 2.1.2).  

To become clear, we focus on the second 
example (the rectangular cavity of subsection 2.2.1) 
because it is characterized by the abovementioned 
largest increase (180 percent) of the control points 
between MODEL-1 and MODEL-2 (Procedure 2b) 
thus it is the hardest case. To allow our work to be 
reproduced by anyone interested, MODEL-1 (Bézier 
extraction) was programmed in the MATLAB 
environment cited in [29]. In the latter software only 
slight modifications have been made in subroutine 
FormK as follows: the Laplace operator (∇ଶ) of our 
study has substituted the Navier–Cauchy equations 
of two-dimensional elasticity therein and thus has 
led to a different stiffness matrix [K]. Moreover, a 
mass matrix [M] has been added below the stiffness 
matrix. The eigenvalues have been calculated using 
the command eig(K,M). Furthermore, MODEL-2 
has been programmed as an independent MATLAB 
code in which Bernstein polynomials and their 
derivatives were found using three alternatives 
given in Table 2 under the header MODEL-2, as 
follows: 

1) Label spcol: The spcol function, which is 
inherent in the Spline Toolbox of MATLAB, 
was used to calculate the Bernstein 
polynomials in each Bézier element, 
independently. 

2) Label Analytical: The four Bernstein 
polynomials and their derivatives were 
analytically calculated using the formulas: 
𝐵଴,ଷ ൌ ሺ1 െ 𝜉ሻଷ,  𝐵ଵ,ଷ ൌ 3𝜉ሺ1 െ 𝜉ሻଶ, 𝐵ଶ,ଷ ൌ
3𝜉ଶሺ1 െ 𝜉ሻ, 𝐵ଷ,ଷ ൌ 𝜉ଷ , etc. 

3) Label Data: After the analytical computation 
of Bernstein polynomials and their 
derivatives, the numerical results were 
tabulated in matrices of size 4×4 and were 
put in the beginning of the subroutine which 
estimates the element stiffness and mass 
matrices. 

In both models, the CPU-time has been 
calculated as the mean average of 30 trials, on the 
same computer under the same conditions, and the 
results are given in Table 2. One may observe that 
CPU-time required for the computer execution of 
MODEL-2 is smaller than that required in MODEL-
1, even for the hardest (worst) case of using the 
standard spcol function while it requires halve 
computer time when the data at Gauss points are 
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given in advance. In any case, considering the more 
accurate results of MODEL-2 shown in Fig. 5:, it is 
concluded that MODEL-2 outperforms with respect 
to MODEL-1 from all the points of view. 

 
Table 2.  CPU-time for a rectangular cavity 

 
MODEL-1 

MODEL-2  
(Procedure 2a) 

Bernstein polynomials using
spcol Analytical Data

0.088757 0.080333 0.055735 0.041925 
 

The comparison in Table 2 is quite fair. In both 
models the Jacobians have been calculated at the 
4×4 Gauss points of all the ten B-spline or Bézier 
elements shown in Fig. 4, accordingly. To make this 
point still clearer, if –for instance– the element 
matrices (𝐊௘, 𝐌௘) are analytically calculated in 
MODEL-2 once for the first 16-node Bézier element 
only, then the CPU-time dramatically reduces to 
only 0.01328 seconds. Note that in MODEL-1 we 
have to calculate 40 eigenvalues while in MODEL-2 
we deal with 112 ones; so the CPU-time in 
MODEL-2 includes extra computer effort for the 
computation of a higher number of eigenvalues 
(performed by the eig function).  

While the abovementioned Procedure 2b (Bézier 
element of 𝐶଴-continuity) clearly requires less 
computer effort than the usual Bézier extraction, this 
is not the case for Procedure 2d (Eqs. (6) and (7)). 
Obviously, this is because Procedure 2d is a 
continuation of MODEL-1. On this issue there is 
still space for further contribution, with the hope 
that the extra computer effort will be compensated 
by the smaller numerical error. For example, 
regarding the efficient computation of the two 

involved quadratic forms      1 1

e e e eQ

 K C K C  

etc., one could apply ideas found in a recent study 
on symmetric matrices, [30]. 

Ongoing research on programming details shows 
that if we wish to calculate both models (i.e. 
MODEL-1 and MODEL-2: Procedure 2a) 
simultaneously, then at each Gauss point we have to 
perform the Bézier extraction (MODEL-1) and then 
calculate the Jacobian matrix in terms of the first set 
of control points (see, [28]). But since after knot 
insertion the shape of the domain remains 
parametrically the same, the numerical values of the 
aforementioned Jacobian matrix may be preserved 
for MODEL-2 as well. The latter consists of using 
the value of the Bernstein polynomials and their 
local derivatives at the same Gauss points, a 
procedure that can be done once outside the 
subroutine which performs the numerical integration 

of the matrices. Unlike the eigenvalue problem of 
this study, regarding other types of PDEs in the 
general form 𝐷ሺ𝑢ሻ െ 𝑓 ൌ 0, the simultaneous 
computation of  the variable 𝑢 and its gradient ∇𝑢 at 
the same points in both models (MODEL-1 and 
MODEL-2: Procedure 2a) is promising to build a 
new ‘error-estimator’ for further adaptation of the 
control points for a still more accurate numerical 
solution.  

Having already discussed the three Procedures 
2(a, b and d), let us now turn to the remaining 
Procedure 2c, which is related to tensor product 
cubic Lagrange polynomials (here of uniform 4×4 
nodes). This can be programmed as usual, following 
standard FEM programming rules. The most critical 
issue is that Lagrange polynomials and their local 
partial derivatives should preferably be calculated in 
advance at the Gauss points and stored, so the 
computer effort substantially decreases. 
Interestingly, Lagrange elements lead to identical 
eigenvalues with Bézier elements of the same 
degree. Here, we ought to explain the reason that 
although Procedure 2b (Bézier elements) differs 
from Procedure 2c (Lagrange elements) in their 
matrices they both lead to the same numerical result 
(not only in the eigenvalues of this paper but in all 
other boundary-value problems). The explanation is 
the fact that both functional sets of these 
polynomials share the same monomials in the form 
𝑥௜𝑦௝, so there is a linear relationship between 
Bernstein-Bézier and Lagrange polynomials. In 
other words, we only have a change of basis thus the 
final numerical results become identical. On this 
issue the interested reader may consult a detailed 
discussion in [16, pp. 258-268].  

In general, MODEL-1 should be carefully 
programmed otherwise sometimes Bézier extraction 
may even be slower than the usual IGA. But even 
our programming is efficient the gain is not always 
that big. For example, regarding a particular 2D 
boundary value problem governed by Laplace 
equation, and for control points which are tensor 
product of Fig. 1 (i.e., 6×6 = 36 control points in 
total), working with an older hardware we have 
found that the required CPU-time for the usual IGA 
is 0.971 sec, for the usual Bézier extraction is 0.928 
sec, while for a smart implementation of Bézier 
extraction is 0.900 seconds (7.3 percent reduction 
with respect to the usual IGA). It is worthy to 
mention that in the latter case the univariate 
Bernstein-Bézier polynomials as well as their local 
derivatives have been pre-calculated at the four 
Gauss points in each direction once and then stored 
for future demand (see, [31, p. 50]). 
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4 Conclusion 
In the implementation of NURBS-based 
isogeometric analysis (IGA), at this date Bézier 
extraction is the standard procedure. The latter 
requires that the multiplicity of inner knots increases 
up to the polynomial degree, thus the Bézier 
operator is calculated and then the basis functions 
(of C2-continuity) are efficiently estimated. In this 
paper it was shown that implementing trivial matrix 
operations such as matrix inversion and 
multiplications on the standard IGA stiffness and 
mass matrices, it is possible to estimate larger 
matrices which correspond to the involved Bézier 
elements characterized by C0-continuity. 
Interestingly, the same matrices may be derived 
treating the Bézier elements independently, i.e., in a 
similar way with the standard finite element method, 
and this model showed to outperform. 

APPENDIX A 

Stiffness and mass matrices for the cubic Bézier 

element of length el : 

Using the well known formulas  

0

el

ij i jk B B dx    and 
0

el

ij i jm A B B dx  ,     (Α-1) 

in conjunction with the standard Bernstein 
polynomials of degree three, i.e.,  

3 2
1 2

2 3
3 4

(1 ) , 3(1 ) ,

3(1 ) , ,

B B

B B

  

  

   

  
  (Α-2) 

it can be found that: 

Bezier

Bezier

6 3 2 1

3 4 1 23
,

2 1 4 310

1 2 3 6

60 30 12 3

30 36 27 12
.

12 27 36 30420

3 12 30 60

e

e

l

l

   
   
  
    
 
 
 
 
 
 

K

M

  (Α-3) 

 

 

APPENDIX B 

Stiffness and mass matrices for the cubic 

Lagrange element of length el : 

Using the well known formulas  

0

el

ij i jk L L dx    and 
0

el

ij i jm A L L dx  ,  

 (Β-1) 

in conjunction with the standard Lagrange 
polynomials of degree three, i.e.,  

91
2 2

9 1
2 2

1 2

3 4

(3 1)(3 2)(1 ), (3 2)( 1),

(3 1)(1 ), (3 1)(3 2)

L L

L L

     

     

      

     
, 

  (Β-2) 

it can be found that: 

Lagrange

Lagrange

148 189 54 13

189 432 297 541
,

54 297 432 18940

13 54 189 148

128 99 36 19

99 648 81 36
.

36 81 648 991680

19 36 99 128

e

e

l

l

  
   
  
   

 
   
  
  

K

M

(Β-3)  
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