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Abstract: This work introduces a new six-dimensional system with chaotic and periodic
solutions. For special values of parameters, we calculate the Kaplan-Yorke dimension and
we show the dynamics of Lyapunov exponents. Some definitions and propositions are
given. Visualizations where possible, are provided.
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1 Introduction

Mathematical modeling of nonlinear dy-
namic systems is an interdisciplinary tool
for studying various processes in nature and
society. Artificial neural network (ANN in
short) models are a simplification of human
neural systems. ANN consists of computing
units. These blocks are called artificial
neurons. Artificial neurons are similar to
neurons in the biological nervous system,
[1]. The ANNs model is the most common
emerging tool for modeling environmental
concerns, particularly, in water quality
modeling, [2]. Also, the ANN model for
the crude oil distillation column was con-
structed based on the results of simulations,
[3]. ANN are used in agriculture, medicine,
marketing and other industries. Their
mathematical models can be formulated in
terms of systems of differential equations of
the form (1)




x′1 = tanh(w11x1 + . . . + w1nxn)− b1x1,
x′2 = tanh(w21x1 + . . . + w2nxn)− b2x2,
. . .
x′n = tanh(wn1x1 + . . . + wnnxn)− bnxn.

(1)
Each dependent variable is associated with
a neuron. It accepts signals from other neu-
rons and elaborates its signal which is sent

to a network, [4]. In such systems, peri-
odic solutions, quasi-periodic solutions, and
also chaotic solutions are possible. This
article uses the Lyapunov exponents and
the Kaplan-Yorke formula to determine the
chaotic solutions of the system (1).

2 Lyapunov exponents

and Kaplan-Yorke di-

mension

Lyapunov exponents are a useful tool to
distinguish between regular and chaotic dy-
namics. The generally accepted convention
is to write the Lyapunov exponents in de-
scending order

λ1 ≥ λ2 ≥ . . . λn.

Lyapunov exponent measures how quickly
an infinitesimally small distance between
two initially close states grows over time

F t(x0 + ε)− F t(x0) ≈ εeλt.

The left-hand side is the distance between
two initially close states after t steps, and
the right-hand side is the assumption that
the distance grows exponentially over time.
The exponent λ measured for a long period
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of time is the Lyapunov exponent. Each
indicator can be interpreted as indicator of
the rate of stretching (if λ > 0), small dis-
tances grow indefinitely over time. If λ < 0,
small distances don’t grow indefinitely, i.e.,
the system settles down into a periodic tra-
jectory, [5].
Some facts about Lyapunov exponents:

• The number of Lyapunov exponents is
equal to the number of phase space di-
mensions, or the order of the system of
differential equations, [6], [7].

• The largest Lyapunov exponent of a
stable system does not exceed zero, [8].

• A hyperchaotic system is defined as a
chaotic system with at least two pos-
itive Lyapunov exponents. Combined
with one null exponent and one nega-
tive exponent, the minimal dimension
for a hyperchaotic system is four, [9].

• A strictly positive maximal Lyapunov
exponent is often considered as a defi-
nition of deterministic chaos.

Knowing the Lyapunov exponents allows us
to conclude how the system develops over
time. Often enough to know the sign the
highest exponent, and the sum of the Lya-
punov exponents.
In 1979, the Kaplan-Yorke formula was pro-
posed to estimate the fractal size - in terms
of Lyapunov exponents, [10], [11],[12].

DKY = j +
1

|λj+1|
j∑

j=1

λj (2)

with j representing the index such that

j∑
i=1

λj > 0,

j+1∑
i=1

λj < 0.

The result obtained by this formula is
called the Kaplan-Yorke dimension or the
Lyapunov dimension. A valuable advan-
tage of this dimension is that in order to

calculate it, one needs to know only the
spectrum of Lyapunov exponents of the
given attractor, [13].

Definition 2.1. A chaotic system is a
deterministic system that exhibits irregular
and unpredictable behavior, [8].

Definition 2.2. An attractor is the limit-
ing trajectory of the representing point in
the phase space, to which all initial modes
tend [14].

Each attractor has a basin of attraction
that contains all the initial conditions which
will generate trajectories joining asymptot-
ically this attractor [15].

Definition 2.3. A chaotic attractor is an
attractor that exhibits sensitivity to initial
conditions, [16].

Proposition 2.1. In dynamical systems
that include three or more equations, there
may be even more unusual attractors, which
are commonly called strange or chaotic
attractors.

Floris Takens (1940-2010) a Dutch math-
ematician known for contributions to the
theory of differential equations, the theory
of dynamical systems, chaos theory and
fluid mechanics. Introduced the concept
of a “strange attractor”. He was the first
to show how chaotic attractors could be
learned by neural networks [17].

Proposition 2.2. It is possible to find a
chaotic attractor in differential systems pre-
senting chaotic behavior [18], [19].

2.1 The six-dimensional sys-
tems

Consider the system
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



x′1 = tanh(w11x1 + w12x2 + w13x3 + w14x4 + w15x5 + w16x6)− b1x1,
x′2 = tanh(w21x1 + w22x2 + w23x3 + w24x4 + w25x5 + w26x6)− b2x2,
x′3 = tanh(w31x1 + w32x2 + w33x3 + w34x4 + w35x5 + w36x6)− b3x3,
x′4 = tanh(w41x1 + w42x2 + w43x3 + w44x4 + w45x5 + w46x6)− b4x4,
x′5 = tanh(w51x1 + w52x2 + w53x3 + w54x4 + w55x5 + w56x6)− b5x5,
x′6 = tanh(w61x1 + w62x2 + w63x3 + w64x4 + w65x5 + w66x6)− b6x6

(3)

and the regulatory matrix

W =




0 −1 0 1 0 0
1 0 0 1 0 0
1 1 0 −1 0 0
0 −1 1 0 0 0
1 −1 0 −1 −1 0
1 0 −1 0 0 −1




.

(4)
The initial conditions are

x1(0) = 1.1; x2(0) = 0.5; x3(0) = 1.1;

x4(0) = −1; x5(0) = −1; x6(0) = −1. (5)

Parameters are b1 = b2 = b3 = b4 = b5 =
b6 = 0.042.
The graph of the system (3) with the
regulatory matrix (4) is considered in
Figure 1.

Figure 1: The graph of the system (3) with
the regulatory matrix (4).

The projections of 6D trajecto-
ries on three-dimensional subspace
(x1, x4, x5) are in Figure 2. Solutions
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) of the
system (3) with the regulatory matrix (4)
are shown in Figure 3.
The dynamics of Lyapunov exponents are
shown in Figure 4.
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Figure 2: The projection of 6D trajectories to
3D subspace (x1, x4, x5), b = 0.042.
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Figure 3: Solutions
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) of
the system (3) with the regulatory matrix
(4), b = 0.042.

Lyapunov exponents are λ1 = 0.03; λ2 =
0.00; λ3 = −0.07; λ4 = −0.13; λ5 = −0.15
and λ6 = −0.24.

λ1 + λ2 > 0;

λ1 + λ2 + λ3 < 0.
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Figure 4: The dynamics of Lyapunov expo-
nents.

The Kaplan-Yorke dimension is

DKY = 2 +
λ1 + λ2

|λ3| = 2.29.

The presence of a positive λ1 indicates the
chaotic nature of the dynamics. Lyapunov
exponents λ3, λ4, λ5 and λ6 are negative
and are responsible for compression phase
volume and the approximation of phase
trajectories to the attractor. An estimate of
the Kaplan-Yorke dimension from spectrum
of Lyapunov exponents gives for a given
attractor DKY = 2.29.
Let change the value of the element w11

from 0 to 1 of the regulatory matrix (4).
The graph of the system (3) with the regu-
latory matrix (4), w11 = 1, is considered in
Figure 5.

Figure 5: The graph of the system (3) with
the regulatory matrix (4), w11 = 1.

The projections of 6D trajecto-
ries on two-dimensional subspace
(x5, x6) are in Figure 6. Solutions
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) of
the system (3) with the regulatory matrix
(4), w11 = 1, are shown in Figure 7.
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Figure 6: The projection of 6D trajectories to
2D subspace (x5, x6), b = 0.042.
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Figure 7: Solutions
(x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)) of
the system (3) with the regulatory matrix
(4),w11 = 1, b = 0.042.

The dynamics of Lyapunov exponents are
shown in Figure 8.
Lyapunov exponents are λ1 = 0.00; λ2 =
−0.03; λ3 = −0.04; λ4 = −0.05; λ5 = −0.54
and λ6 = −0.64.
λ1 = 0; λ2 < 0 the system (3) with the
regulatory matrix (4), w11 = 1, has periodic
solutions.
In dissipative dynamical system, the values
of all Lyapunov exponents should sum
to a negative number, [6],[7] . The sys-
tem (3) with the regulatory matrix (4),
w11 = 1, is a dissipative dynamical system
λ1 + . . . + λ6 < 0.
Let change the value of the element w11

from 0 to −1 of the regulatory matrix (4).
The graph of the system (3) with the regu-
latory matrix (4), w11 = −1, is considered
in Figure 9.
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Figure 8: The dynamics of Lyapunov expo-
nents.

Figure 9: The graph of the system (3) with
the regulatory matrix (4), w11 = −1.

The dynamics of Lyapunov exponents are
shown in Figure 10.
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Figure 10: The dynamics of Lyapunov expo-
nents.

Lyapunov exponents are λ1 = −0.04; λ2 =
−0.36; λ3 = −0.36; λ4 = −0.40; λ5 = −1.04
and λ6 = −1.04.
λ1 < 0 the system (3) with the regulatory
matrix (4), w11 = −1 has stable fixed point.
The system (3) with the regulatory matrix
(4), w11 = −1, is a dissipative dynamical
system λ1 + . . . + λ6 < 0.

3 Conclusions

The six-dimensional system with different
regulatory matrices is considered. The three
examples are provided. Changing the value
of an element w11 changes the system (3) so-
lutions. In this paper, the periodic and the
chaotic attractor is considered. Some def-
initions and propositions about Lyapunov
exponents and Kaplan-Yorke dimension is
given. The dynamics of Lyapunov expo-
nents are shown. Visualizations of peri-
odic, chaotic solutions of the system (3) are
shown. Projections of 6D trajectories to 2D
or 3D subspaces are shown.
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