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Abstract: - This research paper studies a thermal power plant model with an Artificial Neural Network that 

contributes to the accuracy improvement of actual measurement data. Neural Networks process the paradigm of 

algebraic expressions, and their training occurs via a Feed-Forward Back Propagation algorithm implemented 

in a MATLAB environment. The applied training case in a thermal power plant in Paracha includes three 

different algorithms, the Levenberg-Marquadt, the Scaled Conjugate Gradient, and the Bayesian 

Regularization, considering less number of samples to achieve more reliable results. The outcome highlights 

Bayesian Regularization Networks' superiority in accuracy and performance compared to Levenberg-Marquadt 

and the Scaled Conjugate Gradient. The regression analysis estimates the relationship between input-

independent and output-dependent variables, forecasts the energetic data, and highlights the benefits of the 

Bayesian Regularization method in the energy sector. 
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1 Introduction 
In recent years, the construction of thermal plants 

has experienced a decrease in terms of capital 

costs, installation time, and the availability of fuel 

resources. Despite these factors, the currently 

operational power stations still account for 

approximately 65% of global energy production, 

[1]. Recently, the electricity generation from 

thermal power plants presents some concerns, such 

as the low-efficiency value and significant thermal 

energy losses. Optimising thermal power 

performance is adopted to overcome these issues 

by introducing novel modelling techniques such as 

Fuzzy Logic, Neural Networks, Artificial Neural 

Networks (ANNs), Simulated Neural Networks 

(SNNs), and regression analysis, [2]. 

 Neural Networks are widely recognised as one 

of the leading methods for advancements in 

thermal power. They can effectively address and 

model the nonlinear interactions among 

thermodynamic input and output parameters. As a 

result, they can accurately predict the output power 

generation and thermal power plant efficiency 

across different operating conditions, [3]. Neural 

Networks was initially introduced in 1944 by 

Walter McCullough and Walter Pitts, researchers 

from the University of Chicago. They later joined 

the Massachusetts Institute of Technology in 1952 

to explore the modelling of human-brain 

interactions using limited computing capabilities. 

However, with the advancement of computing 

power over time, Neural Networks have become 

capable of effectively handling more complex and 

high-dimensional datasets, [4].  

The research paper aims to apply Neural 

Networks to predict thermal power production in a 

thermal power plant. The study optimises thermal 

power performance by introducing novel training 

cases like the Levenberg-Marquadt (LM), the 

Scaled Conjugate Gradient (SCG), and the 

Bayesian Regularization (BR).  

The benefits of the paper lie in its potential to 

improve the efficiency, cost-effectiveness, 

simulation simplicity, and environmental impact of 

power plants by employing advanced Neural 

Network models for thermal power production 

forecasting. The findings and insights presented in 

this paper can be valuable to academia and industry 

professionals in the energy sector. 

 

 

2 Literature Review 
Researchers across various real-world engineering 

applications, including the solar sector, have widely 

adopted Neural Networks. For instance, [5], 

highlighted its usage in this domain. Additionally, 

other researchers have utilised Neural Networks to 

forecast the impact of solar power on islands, [6]. 

The forecasting of the energy produced via the 

Neural Networks toolbox using MATLAB R2017b 
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over the various databases from solar power plants 

has also been highlighted, [7].  

Researchers in the thermal power plants sector 

proposed models for many input and output 

datasets over long periods with encouraging results. 

The modelling of the power output in a Combined 

Cycle Power Plant (CCPP) has also been predicted 

with accurate results, considering the steam 

turbine’s relative humidity, atmospheric pressure, 

ambient temperature, and exhaust vacuum as input 

parameters, [8]. Various Machine Learning (ML) 

methods are compared using the regression analysis 

technique to predict the power output at full 

working conditions of a base load-operated CCPP, 

[9]. The highlighted aspect was the demonstration 

of the validity and reliability of ANNs in assessing 

the impact of ambient temperature on power 

generation and fuel consumption in a 

straightforward gas turbine power plant, [10]. 

An ANNs-based modelling analysis in various 

engineering applications, including simple power 

cycles, gives encouraging results, [11]. An 

interesting adoption of Neural Networks in the 

modelling, monitoring, and performance analysis 

of a combined heat and power plant is studied, 

[12]. The implementation of Neural Networks in a 

Combined Heat and Power (CHP) model applied to 

micro gas turbines with optimum results has also 

been achieved, [13]. A control methodology of a 

CCPP plant using a linearisation model technique 

was highlighted, [14]. The modelling and 

optimisation of a thermal power plant‘s Nitrogen 

Oxide (NOx) emissions have been accomplished by 

implementing a Neural Network, which accurately 

predicts these emissions, [15]. The adoption of a 

Back-Propagation (BP) Neural Network model to 

control the drum level of a thermal power plant is 

achieved successfully, [16]. In [17], the author 

conducted a study on the modelling and 

optimisation of a Combined Gas And Steam 

(COGAS) power plant. The study involved 

implementing a Multi-Layer Perception (MLP) 

model, which resulted in an efficiency above 60%. 

Additionally, a novel configuration was explored as 

part of the study.  

The performance of an industrial gas turbine can 

be accurately modelled using ANNs by considering 

the relative humidity, ambient pressure, and 

ambient temperature as input parameters. This 

modelling process requires 10.000 to achieve 

satisfactory results, [18]. Furthermore, using Neural 

Networks to model the hourly demonstrates 

significant improvements in the two-fold approach 

and Mean Square Error (MSE). Moreover, the 

application of ANNs in modelling the electrical 

output power of a COGAS power plant 

demonstrates significant improvements in the two-

fold approach and MSE, with enhancements of 

3.176 and 0.99675, respectively, [19]. Moreover, 

the implementation of Neural Networks in 

predicting the failure rates of power equipment in a 

power plant, which directly affects its performance, 

has been accomplished, [20]. Using Neural 

Networks to model an industrial oil-fired boiler 

plant system has also produced promising 

outcomes, [21]. 

The compressor’s map has been successfully 

predicted by employing Neural Networks, 

improving efficiency by reducing measured data 

noise and enhancing data quality, [22], [23]. 

Comparing the efficiency of ANNs and 

Autoregressive Moving Average Exogenous 

(ARMAX) time series models in a steel thermal 

plant, where various input variables were 

considered, it was determined that ANNs involved 

its implementation in a Combined Cooling, Heating 

and Power (CCHP) plant to accurately predict the 

exergy efficiency, overall exergy destruction rate, 

and performance prognosis of a tri-generation 

power plant, yielding precise results, [24]. The 

successful utilisation of Neural Networks in 

controlling the combustion process of a western 

Balkan power plant has led to improved overall 

performance and precise results, [25]. Additionally, 

in the MATLAB R2017b environment, ANNs have 

been employed to optimise the economic 

generation and planning of the integrated Nigerian 

power network, which comprises seventeen 

stations, [26], [27]. This optimisation process aims 

to minimise operational costs and includes an 

economic generation model proposal. 

A study of load forecasting in power plants 

using Neural Networks occurred, with encouraging 

outcomes. Furthermore, a hybrid model that 

combines ANNs with a fuzzy logic exergy-

controlling model for a CHP system has been 

examined to predict its performance accurately, 

demonstrating favourable outcomes, [28]. 

Additionally, a comparative analysis between the 

MLP and Radial Basis Functions (RBF) was 

carried out to identify fault analysis in gas turbines, 

concluding that RBF outperforms Neural Networks 

MLP, [29]. The adoption of Neural Networks for 

reducing indirect thermal losses in a thermal power 

plant with encouraging results has been studied, 

[30]. A depiction of another technique is presented, 

which utilised the ANNs method to predict the 

performance of coal-based thermal power plants. 

The process was validated through successful and 

reliable experiments, ensuring minimal errors and 
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producing robust results, [31]. An alternative 

approach is suggested for simulating 

thermodynamic systems in power plants, utilising 

ML and soft computing techniques, [32], [33]. This 

approach has shown promising and precise output 

power results. The methodology of the Neural 

Networks to be followed is discussed below. 

 

 

3 Methodology 
This research study entails the design of a Neural 

Networks model, which follows a set of steps 

outlined in the flow chart presented in Figure 1. 

Subsequent sections will elaborate on each stage in 

detail.  

 

 

 

Fig. 1: Flowchart of building a Neural Network 

 

3.1 Data Collection 
Thermal power plants rely on specific inputs and 

outputs to function effectively. Among the primary 

input variables crucial for their operation are the 

fuel flow, water flow, and base load, among others. 

In the context of this paper, the system's output 

parameter of interest is the superheater 

temperature. Notably, these selected input and 

output parameters are well-suited and 

comprehensive for the efficient operation of the 

thermal power plant under investigation.  

The data was collected from Paricha Thermal 

Power Station Jhasi with 210 MW plant capacity 

for the present analysis. Table 1 shows the actual 

data of the 210 MW plant, [34]. 

 

3.2 Pre-Processing Data 
The subsequent stage involves pre-processing, the 

collected data to prepare it for feeding into the 

Neural Network model. During this phase, the 

numerical data is carefully organised and formatted 

based on the information presented in Table 1, [32]. 

This comprehensive breakdown of the data 

includes the relevant input and output parameters 

obtained from a sample population of 45 

measurements. It encompasses various parameters 

such as the Fuel Feed Mass Rate (FFMR) in kg/hr, 

the Feed Water Flow Rate (FWFR) in kg/hr, the 

Base Load (BL) in kW/hr, and the Superheater 

Temperature (SH) in Kelvin. The population set 

presented in Table 1 is divided into training and 

testing portions to facilitate effective training and 

testing of the Neural Network. The division is 

implemented using the Neural Network Toolbox 

available in MATLAB R2017b, which automatically 

handles the partitioning process. However, it is 

worth noting that due to the predictive limitations 

of the MATLAB software, a reduced number of 20 

samples (see Table 2) from the dataset is 

thoughtfully selected to ensure a reasonable best-

fitting of the actual data. 

 

 

 

 

Table 1. Data from the thermal power plant 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Sample 
FFMR (Input) 

(kg/hr) 

 FWFR (Input) 

(kg/hr) 

BL (Input) 

(kW/hr) 

 SH Temperature 

(Output) (K) 

1 149.06 591.99 195.81 520.11 

2 149.21 615.96 199.17 517.15 

3 150.41 595.69 197.29 524.08 

…. …….. …….. …….. …….. 

43 154.54 576.41 189.2 513.59 

44 153.59 567.62 183.71 519.22 

45 154.98 577.25 184.59 524.33 
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Table 2. Sample of actual data 
 

 

 

 

 

 

 

 

 

 

 

 

3.3 Building Network 
The design process involves various stages, such as 

the architecture of the Neural Networks, the 

number of neurons, layers, training functions, and 

the learning algorithms. The Neural Networks 

toolbox for the respective test case is implemented 

in this case study, building the network 

automatically with MATLAB R2017b software's 

Graphical User Interface (GUI) capabilities. 

 

3.4 Training Network  
The ANN model is supplied with the pre-processed 

input and target data in the training stage. The 

model automatically adjusts its weight biases 

during learning to align the output data with the 

target values. The choice of the learning algorithm, 

such as back-propagation, conjugate gradient, or 

Bayesian regularisation, significantly influences the 

speed and accuracy of the training process. To 

ensure the efficiency and generalisation of the 

model, an appropriate training algorithm is 

carefully selected, and parameters are through 

iterative refinement. This iterative training 

approach allows observing the model's 

performance, convergence, and prediction 

accuracy. 

 

3.5 Testing Network 
The network database's testing process and 

performance evaluation focus on metrics such as 

the Root Mean Square Error (RMSE) and the Mean 

Bias Error (MBE). The RMSE is utilised to express 

the accuracy of short-term forecasted data. At the 

same time, the MBE provides insights into the 

model's performance by indicating the average 

deviation between predicted and actual data. The 

network's performance is validated if the results 

meet the desired criteria. However, the network 

will retrain and retest if the results are 

unsatisfactory. 

 

 

 

4 Results 
The Neural Network Toolbox in MATLAB R2017b 

GUI capabilities of the Input/Output fitting tool 

uses three different available training algorithms 

such as the Scaled Conjugate Gradient (SCG), the 

Levenberg Marquardt (LM), and the Bayesian 

Regularization (BR) is applied and analyzed in the 

following subsections. The theoretical background 

analysis of these training algorithms is omitted. 

 

4.1 Training Process with LM Algorithm 
The training employs the LM algorithm to address 

the software's limitations and obtain reliable 

outcomes after unsuccessful attempts with different 

neuron configurations, a network design with 150 

neurons is utilised. Figure 2 illustrates the 

structured network for the test case. The validation 

of the best performance occurs in the first iteration 

after three epochs, as plotted in Figure 3. 

Additionally, Table 3 depicts the sample values for 

training, testing, and validation of the MSE and the 

Regression coefficient (R). The network’s 

performance in the MSE and the R. The network's 

performance in the MSE and R is 1.84e^-2 and 

9.985e^-1, respectively. 

 

 
Fig. 2: Structured Neural Network for the test case 

 

Table 3. MSE and R values for trained, validated, 

and tested samples 

 
 

 

   Sample 
FFMR (Input) 

(kg/hr) 

 FWFR (Input) 

(kg/hr) 

BL (Input) 

(kW/hr) 

  SH Temperature 

(Output) (K) 

1 149.06 591.99 195.81 520.11 

2 149.21 615.96 199.17 517.15 

3 150.41 595.69 197.29 524.08 

…. …….. …….. …….. …….. 

18 156.79 600.2 193.93 517.2 

19 156.56 592.5 193.3 518.03 

20 156.78 591.33 194.55 526.53 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.24 Vasilios Xezonakis, Efstratios L. Ntantis

E-ISSN: 2224-2856 246 Volume 18, 2023



 

 

 
Fig. 3: Error Histogram for Regression Analysis 

 

 
Fig. 4: Best validation performance of the LM 

network for 150 neurons 
 

Figure 3 depicts the error distribution graph 

and the regression analysis results of the trained 

network, highlighting the occurrences of errors 

(i.e., disparities between the target and the output). 

This analysis includes cases where the error is zero 

and instances where differences exist between the 

output and the desired target. Generally, the targets 

exhibit varying degrees of deviation from the 

expected values, ranging from minor discrepancies 

to more substantial disparities. Figure 4 depicts the 

best validation performance of the LM network 

with the assigned value of the MSE of 82.204e^-2 

in the 1st out of 3 iterations. Furthermore, novel 

computational attributes are depicted, whilst testing 

and validation performance metrics coincide.  

  

 
Fig. 5: Regression Analysis for the training data  

 

Figure 5 displays the alignment between the 

output and the target data, specifically focusing on 

the regression values, demonstrating how well the 

training samples align with the validated and tested 

examples. When regression values approach 1, it 

indicates a strong match between the output and the 

target. However, the validation and testing samples 

exhibit lower regression values, suggesting the 

network’s poor performance. 

 

4.2 Training Process with BR Algorithm  
Due to software limitations, the training process 

employed the BR Algorithm to obtain reliable 

results with different numbers of neurons. After 

unsuccessful attempts with various neuron 

numbers, a network design involving 150 neurons 

was chosen. Figure 6 illustrates that the best 

performance for this network architecture was 

validated during the 959th iteration out of one 

thousand iterations (epochs). The network achieved 

its highest performance regarding MSE, with a 

value of 2.645e^-10. Table 4 presents the 

corresponding sampling values for the MSE and 

the regression coefficient (R) across the training, 

testing, and validation sets. Figure 7 illustrates the 

error histogram and the regression analysis of the 

trained network, identifying the instances that the 

error occurs, including the zero margins and the 

differences between the output and the target. In 

most instances, the targets present a very small to a 

higher divergence between the output and the target 

values.    
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Fig. 6: Best training performance of the BR 

network for 150 neurons 

 

Table 4. MSE and R values for the trained, 

validated, and tested samples 

 

 
 

 
Fig. 7: Error Histogram for Training data 

 

In Figure 8, the alignment between the output 

and target data is visually represented, showcasing 

how closely they match each other. The regression 

value of 1, indicates a perfect fit, implying that the 

network's output accurately captures the desired 

target values. By comparing the training samples 

with the validated and tested samples, it becomes 

evident that this network performs exceptionally 

well. The network's ability to generalise beyond the 

training set is demonstrated through the high 

consistency between the predicted outputs and the 

actual target values in the validation and testing 

phases. This level of agreement reaffirms the 

network's effectiveness and reinforces its reliable 

performance in real-world scenarios. 

 

 
Fig. 8: Regression Analysis for the training data 

 

4.3 Training Process with SCG Algorithm  
After unsuccessful attempts, different numbers of 

neurons were employed in this process. Its optimal 

performance was validated during the 9th iteration 

out of 15 iterations. The information is illustrated 

in Figure 9, showcasing the same structured 

network as in the previous two cases. The MSE of 

the network demonstrates exceptional performance, 

measuring at 1.14e^-10.  

 

 
Fig. 9: Best validation performance of the SCG 

network for 150 neurons 

 

Table 5 provides a comprehensive overview of 

the MSE and regression values for the sampling 

set, i.e. training, testing, and validation. 
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Table 5. MSE and R values for the trained, 

validated, and tested samples 

 
 

 
Fig. 10: Error histogram for the training data 

 

Figure 10 illustrates the trained network's error 

histogram and regression analysis, highlighting the 

errors (error = target – output) and identifying 

instances of zero margins and disparities between 

the output and the target. In most cases, the targets 

exhibit varying degrees of deviation from the 

outputs, ranging from small to more significant 

discrepancies.  
 

 
Fig. 11: Regression Analysis for the training data 

 

Figure 11 showcases a satisfactory alignment 

between the output and the target data, with R 

ranging from 0.78 to 0.89. Comparing the training 

data to the validated and tested data, it is evident 

that the network demonstrates a good fit. The 

regression values for the validation and testing 

samples are below 1 and close to 0.8, indicating a 

moderate level of performance by this network. 

4.4 Process between Training Algorithms 

Table 6 (Appendix) compares the three training 

techniques used in the current test case. Comparing 

the performance of the training methods, namely 

SCG, LM, and BR, the following observations are 

made regarding different parameters. 

Training Iterations: One noticeable difference 

between the training algorithms is the number of 

iterations required for convergence. The SCG 

algorithm demonstrates relatively fast convergence, 

reaching an acceptable level of performance in just 

15 iterations. On the other hand, the BR algorithm 

exhibits significantly longer training iterations, 

with approximately 1000 iterations needed for 

convergence. The LM algorithm falls between the 

two, requiring only 3 iterations to achieve 

satisfactory results. This observation indicates that 

the choice of training algorithm can affect 

computational efficiency and resource requirements 

during the training process.  

Mean Square Error (MSE): Evaluating MSE 

across the training, testing, and validation sets 

provides essential insights into the model's 

accuracy. The BR algorithm stands out with the 

lowest MSE value, indicating its ability to 

minimise prediction errors effectively. The SCG 

algorithm records a higher MSE value, while the 

LM algorithm falls within an average range. The 

lower MSE associated with the BR algorithm 

underscores its superior performance in capturing 

the relationships between input parameters and 

superheater temperature, leading to more accurate 

predictions. 

Regression Values: The regression values (R) 

measure how well the predicted outputs align with 

the target values. The BR algorithm exhibits 

excellent regression values close to 1, indicating 

high precision in its predictions. However, The 

SCG algorithm shows lower regression values, 

suggesting relatively poorer performance in 

predicting superheater temperature accurately. The 

LM algorithm falls in between, with regression 

values classified as very good, further affirming its 

effectiveness. 

Performance Parameter: The performance 

parameter, which incorporates various metrics such 

as MSE and regression values, assesses the training 

algorithm's effectiveness. The SCG algorithm 

achieves an acceptable performance parameter, 

suggesting it can still yield reasonably accurate 

predictions. The LM algorithm records an 

improved performance parameter, indicating 

enhanced performance over the SCG algorithm. 

Notably, the BR algorithm outperforms both, 

showcasing its ability to achieve superior accuracy 
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and reliability in short-term thermal power 

production prediction. 

Error Histogram: The error histogram 

illustrates the distribution of errors between 

predicted and target values. The SCG algorithm 

exhibits a histogram that indicates relatively poorer 

predictions, while the BR algorithm displays fewer 

errors, highlighting its ability to make more 

accurate predictions. The LM algorithm shows an 

error histogram with intermediate characteristics 

indicating moderate performance. 

The comparative analysis of the three training 

algorithms demonstrates that the LM and BR 

algorithm is more promising and effective for 

thermal power production prediction than the SCG 

method. Especially for the BR algorithm, its 

exceptional accuracy, low MSE, high regression 

values, and minimal prediction errors position it as 

the preferred algorithm for this specific predictive 

modelling task. 

 

 

5 Discussion 
Despite the promising outcomes, this study 

acknowledges limitations that should be considered 

when interpreting the findings. Firstly, the dataset 

used for training and testing the Neural Network 

was collected from a single thermal power plant 

with a capacity of 210 MW. This limited dataset 

may only partially capture other power plants' 

diverse operational conditions and characteristics, 

potentially impacting the model's generalizability. 

Secondly, while the selected input and output 

parameters were deemed appropriate for the current 

thermal power plant, other plants with different 

configurations may require additional or alternative 

variables for more accurate predictions. Thus, 

future research should explore the inclusion of 

additional relevant parameters to enhance the 

model's performance across different power plant 

types. 

Specific improvements can be considered to 

overcome the limitations mentioned earlier and 

further enhance the model's predictive capabilities. 

This study opens up several exciting avenues for 

future research in thermal power plant optimization 

using Neural Networks. One potential direction is 

the development of hybrid models that combine 

Neural Networks with other Machine Learning 

algorithms, such as Fuzzy Logic or Genetic 

Algorithms, to leverage the strengths of each 

approach and overcome individual limitations. 

Moreover, investigating the applicability of more 

recent and sophisticated Neural Network 

architectures, such as Convolutional Neural 

Networks (CNNs) or Long Short-Term Memory 

(LSTM) networks, could lead to improved 

performance in capturing temporal and spatial 

dependencies in the data. Furthermore, conducting 

a comparative analysis between the Neural 

Network-based model and other state-of-the-art 

prediction techniques, such as physics-based 

modelling or deep learning methods, would provide 

valuable insights into the strengths and weaknesses 

of each approach. Lastly, applying the developed 

model in real-world thermal power plant settings 

and integrating it into existing power plant 

management systems would validate its practical 

effectiveness and potential for industry adoption. 

 

 

6 Conclusions 
This paper presents an innovative approach that 

offers a methodology for predicting short-term 

thermal power production in Pariccha, eliminating 

the necessity for complex mathematical modelling 

and extensive calculations. Instead, it harnesses the 

power of the MATLAB R2017b Neural Network 

toolbox to achieve accurate predictions. The study 

compares different methods and algorithms by 

evaluating error rates and regression values. The 

findings reveal that the LM and BR algorithms 

outperform the SCG methods in terms of 

performance. The superiority of the BR training 

functions is particularly noteworthy, demonstrating 

exceptional capabilities in producing reliable 

predictions. The results of this research emphasise 

the potential and effectiveness of utilising neural 

networks and the specific algorithms mentioned, 

such as the LM method and BR, for forecasting 

thermal power production in the short term. These 

findings pave the way for more streamlined and 

efficient prediction models to assist decision-

making processes and optimise thermal power 

generation. 
 

 

NOMENCLATURE 

ANN 

ARMAX 

 

BL 

BR 

CCHP 

 

CCPP 

CHP 

CNN 

COGAS 

FWFR 

Artificial Neural Network 

Autoregressive Moving  

Average Exogenous 

Base Load 

Bayesian Regularization 

Combined Cooling, Heating  

and Power 

Combined Cycle Power Plant 

Combined Heat and Power  

Convolutional Neural Network 

Combined Gas And Steam 

Feed Water Flow Rate 
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FFMS 

GUI 

LM 

LSTM 

MBE 

ML 

MLP 

MSE 

R 

RBF 

RMSE  

SCG 

SH 

SNN  

Fuel Feed Mass Rate 

Graphical User Interface 

Levenberg-Marquardt 

Long Short-Term Memory 

Mean Bias Error 

Machine Learning  

Multi-Layer Perceptron 

Mean Square Error 

Regression Coefficient 

Radial Basis Functions 

Root Mean Square Error 

Scaled Conjugate Gradient 

Superheater Temperature 

Simulated Neural Network 
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Table 6. Comparison between training functions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SCG LM BR 

Training (iterations) 15 3 1000 

Mean Square Error Higher Acceptable Lower 

Regression Values Low Very good Excellent 

Performance Parameter Acceptable Low Very Low 

Error Histogram Bad Acceptable Good 
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