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Abstract: - This paper deals with the design problem for a class of linear continuous systems with dynamics
prescribed by the system matrix of an ostensible Metzler structure. The novelty of the proposed solution lies in
the diagonal stabilization of the system, which uses the idea of decomposition of the ostensible Metzler matrix,
preserving the incomplete positivity of the system during the synthesis. The proposed approach creates a unified
framework that covers compactness of interval system parameter representation, Metzler parametric constraints,
and quadratic stability. Combining these extensions, all of the conditions and constraints are expressed as linear
matrix inequalities. Implications of the results, both for design and for research directions that follow from the
proposed method, are discussed at the end of the paper. The efficiency of the method is illustrated by a numerical
example.
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1 Introduction
Linear time invariant systems offer many properties
for their adaptation to specific control problems and
give potential conditions under which they will be-
have in a predetermined manner. Since in practice
there are often requirements for the positivity of sys-
tem states, [1], [2], the synthesis of their control must
take into account such state restrictions. However,
the specific nature of the problem results in a design
procedure tolerating the system positiveness by ad-
ditional constraints, [3], [4], when focusing on the
dynamical systems. Concerning on a class of linear
dynamical systems with positive states, the Metzler
matrix theory, [5], due to its particular structure, pro-
vides an alternative solution in the analysis and syn-
thesis of linear positive systems, [6]. Setting the Ja-
cobian matrix to a Metzler structure for cooperative
systems, this property stays a key candidate for the
use in interval observers, [7], [8].

Because of the strong nonnegative property, there
are remarkable impacts that are valid only for lin-
ear positive systems. Above all, unlike general linear
systems, the positive systems asymptotic or quadratic
stability have to be lossless reflected by considering
linear matrix inequality (LMI) principle, using pos-
itive definite diagonal matrices, [9]. These particu-
lar forms simplify stabilization analysis and allow in
the same vein the design of structured and decentral-
ized controllers and observers, [10]. A strictly LMI-
based approach for design under Metzler constraints,

reflecting the diagonal stabilization principle (DSP),
is given in [11]. Motivated by the problem of incom-
plete positive observation and control design, addi-
tional insights into the analysis with Metzler paramet-
ric constraints is provided in [12], [13].

The LMIs compatibility in design of ostensible
Metzler systems is presented in the paper, summa-
rizing an algorithmic platform with relationships to
system stability, incomplete internal positivity and
the ostensible Metzler parametric constraints. Instead
of using algebraic techniques, the approach is based
on the Lyapunov matrix inequality and diagonal ma-
trix variables, when constructing LMIs for an equiva-
lent ostensible Metzler system matrix representation.
Generalized duality in the controller and observer de-
sign task is proven to be modifiable for uncertain li-
near incomplete positive systems with interval osten-
sible Metzler parameters. To the best of the author’s
knowledge, this approach represents a new LMI syn-
thesis method for this class of systems.

Online: In Section 2 the parametrisation princi-
ples of positive systems is outlined and in Section
3 short characterization of systems with ostensible
Metzler system matrices is presented. Design con-
ditions to ostensible interval observer synthesis are
derived in Section 4, while the approach is illustrated
by usage to a model with interval ostensible Metzler
system matrices in Section 5. The presented approach
and the application example are finally discussed in
Section 6.
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Notations: Throughout the paper xT, XT de-
notes the transpose of the vector x, and the matrix X ,
respectively, diag [ · ] marks a (block) diagonal ma-
trix, for a square symmetric matrix X ≺ 0 means
that X is negative definite matrix, In labels the n-
th order unit matrix, X−1, ρ(X) signifies the inverse
and the eigenvalue spectrum of a square matrix X ,
the maximum real part of the eigenvalues of X is de-
noted by λ0 := maxλ∈ρ(X) ℜ(λ), indicator R (R+)
marks the set of (nonnegative) real numbers, Rn×n

(Rn×n
+ ) refers to the set of (nonnegative) real matrices

and Mn×n
−+ indicates the set of matrices with Metzler

structure, for any matrix X = {xij} ∈ Rn×n
+ then

X > 0, (X ≥ 0) denotes that xij > 0 (xij ≥ 0) for
all i, j.

2 Internal System Positivity
This section considers a class linear time-invariant
systems described by:

Ξ : q̇(t) = Aq(t) + Bu + Dd(t)
y(t) = Cq(t) (1)

where q(t) ∈ Rn
+, y(t) ∈ Rm

+ are positive, d(t) ∈
Rd

+ is positive and bounded, B ∈ Rn×r
+ , C ∈ Rm×n

+ ,
D ∈ Rn×d

+ are nonnegative and A ∈ Mn×n
−+ is Met-

zler. Then Ξ is noted as internally positive.
A strictly Metzler matrix A ∈ Mn×n

−+ is charac-
terized by its negative diagonal elements and by its
strictly positive off diagonal elements. Consequently,
a strictly Metzler A is so limited by n2 parametric
constraints

aii < 0, aij > 0, i ̸= j, ∀ i, j ∈ ⟨1, n⟩ (2)
and, to guaranty (2) in design, DSPs have to be used.

Theorem 1 (Metzler matrix parametrisation, [11]).
Let A ∈ Mn×n

−+ be strictly Metzler, then the following
two expressions for parametrization are equivalent.

(i) A =
n−1∑
h=0

A(ν, ν + h)LhT

(ii) A =
n−1∑
h=0

LhA(ν + h, ν)
(3)

where for A = {aij} ∈ Mn×n
−+ , h = 0, . . . , n − 1,

AΘ(ν, ν + h) =
diag [a1,1+h· · · an−h,n an−h+1,1· · · an,h]

(4)

AΘ(ν + h, ν) =
diag [a1+h,1· · · an,n−h a1,n−h+1· · · ah,n]

(5)

L =
[

0T 1
In−1 0

]
(6)

L ∈ Rn×n is the circulant permutation matrix, [14].

Remark 1 If a strictly Metzler A ∈ Mn×n
−+ is repre-

sented in the following circulant rhombic forms

(i) AΘ =

−a11 a12 · · · a1n−a22 · · · a2n a21
. . .

...
...

. . .
−ann an1 · · · an,n−1



(ii) AΘ =



a11
a21 a22...

...
. . .

an1 an2 · · · ann
a12 · · · a1n

. . .
...

an−1,n


(7)

then diagonals of (7(i)), (7(ii)) imply the diagonal
matrix structure (4), (5), respectively.

Evidently, (2) can be interpreted as

(i)
{

A(ν, ν + h) ≺ 0, h = 0
A(ν, ν + h) ≻ 0, h = 1, . . . , n − 1

(ii)
{

A(ν, ν + h) ≺ 0, h = 0
A(ν + h, ν) ≻ 0, h = 1, . . . , n − 1

(8)

or, equivalently,

(i)
{

LhA(ν, ν + h)LhT ≺ 0, h = 0
LhA(ν, ν + h)LhT ≻ 0, h = 1, . . . , n − 1

(ii)
{

LhA(ν, ν + h)LhT ≺ 0, h = 0
LhA(ν + h, ν)LhT ≻ 0, h = 1, . . . , n − 1

(9)
since for any Z = diag [z1 z2 · · · zn], Z ∈ Rn×n

+ , the
following circular shift operation

Ldiag [z1 · · · zn] LT = diag [zn z1 · · · zn−1] (10)
doesn’t change its definiteness.

Theorem 2 , [15]. Consider the autonomous closed
loop control structure

q̇(t) = (A − BK)q(t) = Acq(t) (11)
where A ∈ Mn×n

−+ , B ∈ Rn×r
+ , K ∈ Rr×n

+ .
Using the set of diagonal matrices AΘ(ν, ν +h) ∈

Rn×n
+ , as well as Bl ∈ Rn×n

+ , K l ∈ Rn×n
+ , Khl =

LhTK lL
h ∈ Rn×n

+ constructed such that

K =

kT
1...

kT
r

 , B = [b1 · · · br] (12)

K l = diag
[
kT

l

]
= diag [kl1 · · · kln]

Bl = diag [bl] = diag [bl1 · · · bln]
(13)

then the closed-loop system matrix Ac = A−BK ∈
Mn×n

−+ can be parameterized as

Ac =
n−1∑
h=0

(
AΘ(ν, ν + h) −

r∑
l=0

BlK lh

)
LhT (14)
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Theorem 3 , [16]. Consider the autonomous ob-
server dynamics

ė(t) = (A − JC)e(t) = Aee(t) (15)
where A ∈ Mn×n

−+ , C ∈ Rm×n
+ , J ∈ Rn×m

+ .
Using the set of diagonal matrices AΘ(ν+h, ν) ∈

Rn×n
+ , as well as C l ∈ Rn×n

+ , J l ∈ Rn×n
+ , J lh =

LhTJ lL
h ∈ Rn×n

+ constructed such that

J = [j1 · · · jm] , C =

cT
1...

cT
m

 (16)

J l = diag [jl] = diag [jl1 · · · jln]
C l = diag

[
cT

l

]
= diag [cl1 · · · cln] (17)

then the observer matrix Ae = A − JC ∈ Mn×n
−+

can be parameterized as

Ae =
n−1∑
h=0

Lh(
Ai(ν + h, ν) −

m∑
l=0

J lhC l

)
(18)

To generalize the above results, the parameteriza-
tions duality can be found.

Theorem 4 Used parameterisations (14) and (18)
are dual of each other.

Proof: The proof is by direct verification. For
parametrisation (18), the matrix transpose implies( n−1∑

h=0
Lh(

AΘ(ν + h, ν) −
r∑

l=0
J lhC l

)T

=
n−1∑
h=0

(
AT

Θ(ν + h, ν) −
m∑

l=0
CT

l JT
lh

)
LhT

(19)

Constructing by (ii) AΘ from (7) a rhombic ma-
trix (ii) AT

Θ for the transposed matrix AT, then

(ii) AT
Θ =



a11
a12 a22...

...
. . .

a1n a2n · · · ann
a21 · · · an1

. . .
...

an,n−1

 (20)

and, evidently, for h = 0, . . . , n − 1
AT

Θ(ν + h, ν) = AΘ(ν, ν + h) (21)
Thus, with these changes of diagonal matrices

AT
Θ(ν + h, ν) ⇐ AΘ(ν, ν + h)

CT
l ⇐ Bl, JT

lh ⇐ K lh

(22)

it can get the equivalent dual formulation, which is
the same as (14). This concludes the proof.

All presented theoretical coberings result from the
principle of diagonal stabilization of positive Metzler
systems. The interested readers can find more details
on this topic in the papers, [11], [15], [16].

3 Incomplete System Positivity
The system is described by (1), where B ∈ Rn×r

+ ,
C ∈ Rm×n

+ , D ∈ Rn×d
+ are nonnegative matrices

but A ∈ Mn×n
−⊙ is ostensible Metzler. Since A is

not strictly Metzler, such a system Ξ is not internally
positive, which means that only some of its state vari-
ables are non-negative.

Definition 1 The matrix A ∈ Mn×n
−⊖ is ostensible

Metzler if all diagonal elements of A are negative,
at least one of the off-diagonal of elements is nega-
tive, while the number of non-negative off-diagonal
elements A is predominant.

When working with the system Ξ (1), covering the
ostensible Metzler matrix A ∈ Mn×n

−⊖ , the proposed
idea of the parametrization is to separate A so that

A = Ap + Am, A = {aij}n
i,j=1 (23)

where Ap ∈ Mn×n
−+ is strictly Metzler and Am ∈

Rn×n
− is element-wise negative and Hurwitz. The ba-

sic implication is related to the next theorem.

Theorem 5 , [17]. If for X, Y ∈ Rn×n it can be set
Y = cX + dIn with scalars c, d ∈ R, c ̸= 0 and
In ∈ Rn×n, then eigenvalues η k, k = 1, . . . , n of Y
are

η k = cλk + d (24)

where λk runs over the eigenvalues of X and the
eigenvectors of X and Y are identical.

Theorem 6 , [12]. If there are positive scalars η, δ ∈
R+ such that for ostensible Metzler A ∈ Mn×n

−⊖
there exists a strictly Metzler Ap ∈ Mn×n

−+ satisfying
(23) as well as an element-wise negative and Hurwitz
Am ∈ Rn×n

− thus hold

Ap = Ad + A+ + ηΣ + pIn = A◦
p + pIn (25)

Am = A◦
m − pIn, A◦

m = A− − ηΣ (26)

λo = max
k

(
λ+

k | λ+
k = real(λk) > 0

)
(27)

Ad = diag [−a11 −a22 · · · − ann] (28)

Σ =


0 1 · · · 1 1
1 0 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 0

 ,

λk ∈ ρ(A◦
m)

p = λo + δ

Ad + pIn ≺ 0
(29)

A+ =


0 a+

12 · · · a+
1,n−1 a+

1n

a+
21 0 · · · a+

2,n−1 a+
2n

...
...

. . .
...

...
a+

n−1,1 a+
n−1,2 · · · 0 a+

n−1,n

a+
n1 a+

n2 · · · a+
n−1,n−1 0

 (30)
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A− =


0 a−

12 · · · a−
1,n−1 a−

1n

a−
21 0 · · · a−

2,n−1 a−
2n

...
...

. . .
...

...
a−

n−1,1 a−
n−1,2 · · · 0 a−

n−1,n

a−
n1 a−

n2 · · · a−
n−1,n−1 0

 (31)

a+
ij =

{
aij if aij > 0
0 if aij < 0 a−

ij =
{

aij if aij < 0
0 if aij > 0 (32)

applying for all i, j ∈ ⟨1, n⟩ , i ̸= j, where ρ(A◦
m) is

the spectrum of eigenvalues of A◦
m.

It can be noted that the positive system rep-
resented by Ap ∈ Mn×n

−+ , B ∈ Rn×r
+ , C ∈

Rm×n
+ , D ∈ Rn×d

+ , can be used in a design with
Metzler parametric constraints, parametrizing analo-
gously Ap ∈ Mn×n

−+ by its rhombic representation as
presented above and using the principle of duality in
relation to specific design tasks.

If q(0) and an ostensible Metzler A ∈ Mn×n
−⊖ are

intervally given as, [18],
0 ≤ q(0) ≤ q(0) ≤ q(0) , A ≤ A ≤ A (33)

decoupling of A, A ∈ Mn×n
−⊖ , A =

{
aij

}n

i,j=1
, A =

{aij}n
i,j=1 has to be done that

A = Ap + Am, A = Ap + Am (34)

where Ap, Ap ∈ Mn×n
−+ , Am, Am ∈ Rn×n

− .
The parametrization for ostensible interval Met-

zler systems can be generalized as follows:

Corollary 1 If there are positive scalars η, η, δ, δ ∈
R+ such that for the ostensible Metzler A, A ∈
Mn×n

−⊖ there exist strictly Metzler Ap, Ap ∈ Mn×n
−+

satisfying (34) as well as element-wise negative and
Hurwitz Am, Am ∈ Rn×n

− thus hold

Ap = Ad + A+ + ηΣ + pIn = A◦
p + pIn

Ap = Ad + A
+ + ηΣ + pIn = A

◦
p + pIn

(35)

Am = A− − ηΣ − pIn = A◦
m − pIn

Am = A
− − ηΣ − pIn = A

◦
m − pIn

(36)

λo = maxk(λ+
k | λ+

k = real(λk) > 0)
λo = maxk(λ+

k | λ
+
k = real(λk) > 0)

(37)

Ad = diag [−a11 −a22 · · · − ann]
Ad = diag [−a11 −a22 · · · − ann]

(38)

λk ∈ ρ(A◦
m) λk ∈ ρ(A◦

m)
p = λo + δ p = λo + δ
Ad + pIn ≺ 0 Ad + pIn ≺ 0

(39)

where Σ is from (29) and A+, A
+, A−, A

− are con-
structed as in (30)–(32).

4 Ostensible Interval Observer
Using all the interval system parameters listed above,
in relation to the system input and output related data,
the interval observer equations are

q̇
e
(t) = Aeqe(t) + Bu(t) + Jy(t)

q̇e(t) = Aeqe(t) + Bu(t) + Jy(t) (40)

where q
e
(t) ∈ Rn, qe(t) ∈ Rn are respectively

the lower and the upper system state vector esti-
mates. Thus, using the observer parameters in (40)
J ∈ Rn×n

+ , Ae, Ae ∈ Mn×n
+⊙ with connection to sys-

tem (1) it evident that
Ae = A − JC, Ae = A − JC (41)
y(t) = Cq(t), y

e
(t) = Cq

e
(t)

y(t) = Cq(t), ye(t) = Cqe(t)
(42)

Using the observation errors, [21],
e(t) = q(t) − q

e
(t), e(t) = q(t) − qe(t) (43)

and substituting the system and observer equations
into (43) it follows that

ė(t) = Apee(t) + Ame(t) + Dd(t)
ė(t) = Apee(t) + Ame(t) + Dd(t)

(44)

when constructing
Ape = Ap − JC, Ape = Ap − JC

Ae = Ape + Am, Ae = Ape + Am

(45)

which predefine the conditions for interval observer
quadratic stability.

It is need to impose Ape, Ape ∈ Mn×n
−+ to be

strictly Metzler and Hurwitz as well as to impose
Am, Am ∈ Rn×n

− to be element-wise negative and
Hurwitz when implementing for ostensible Metzler
lower and upper matrices A = Ap + Am ∈ Mn×n

−⊖ ,
A = Ap + Am ∈ Mn×n

−⊖ , whilst the matrices
Ae, Ae ∈ Mn×n

−⊖ need to be ostensible Metzler and
Hurwitz.

Note that in both cases, the necessity of the system
matrix separation approach has to be preserved.

Using the equivalent procedure for the system
parametrization, then

Ape =
n−1∑
h=0

Lh
(
Ap(ν + h, ν) −

r∑
j=0

J jhCj

)
Ape =

n−1∑
h=0

Lh
(
Ap(ν + h, ν) −

r∑
j=0

J jhCj

) (46)

when applying appropriately the rhombic diagonal
principle. These representations are captured by gen-
eralization of inequalities (9).

A statement of ostensible Metzler interval ob-
server design procedure is provided by the following
theorem.

Theorem 7 The matrices Aep , Aep ∈ Rn×n
−+ are

strictly Metzler and Hurwitz and the matrices Ae,
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Ae ∈ Rn×n
−⊕ are ostensible Metzler and Hurwitz if

for ostensible Metzler A = Ap + Am ∈ Rn×n
−⊕ ,

A = Ap + Am ∈ Rn×n
−⊕ and non-negative C ∈

Rm×n
+ there exist positive definite diagonal matrices

P , Rl ∈ Rn×n
+ and positive scalars µ, µ ∈ R+ such

that for h = 1, . . . , n − 1, lT = [1 · · · 1] ∈ Rn
+

P ≻ 0, Rk ≻ 0 (47) Π ∗ ∗
DTP −µId ∗

C 0 −µIm

≺ 0,

 Π ∗ ∗
DTP −µId ∗

C 0 −µIm

≺ 0

(48)

P Ap(ν, ν) −
m∑

l=1
RlC l ≺ 0

P Ap(ν, ν) −
m∑

l=1
RlC l ≺ 0

(49)

P LhAp(l + h, l)LhT−
m∑

l=1
RlL

hC lL
hT ≻0

P LhAp(l + h, l)LhT−
m∑

l=1
RlL

hC lL
hT ≻0

(50)

Π =P Ap + AT
p P + P Am + AT

mP −

−
r∑

l=1
(Rlll

TC l + C lll
TRl)

Π =P Ap + A
T
p P + P Am + A

T
mP −

−
r∑

k=1
(RkllTCk + CkllTRk)

(51)

A feasible task for J ∈ Rn×m
+ implies

J l = P −1Rl, jl = J ll, J = [j1 · · · jm] (52)

Hereafter, ∗ is the symmetric item in a symmetric
matrix.

Proof: Choosing Lyapunov function in the following
form

v(e(t)) = eT(t)P e(t) − η
t

∫
0

dT(τ)d(τ)dτ+

+ η−1 t

∫
0

eT
y (τ)ey(τ)dτ

> 0

(53)

where P ∈ Rn×m
+ is a diagonal positive definite ma-

trix and η ∈ R+ is a positive scalar, then along all
stable lover errors

v̇(e(t)) = ė
T(t)P e(t) + eT(t)P ė(t)+

+ η−1eT
y (t)ey(t) − ηdT(t)d(t)

< 0
(54)

and applying in (54) the observer error dynamics it

gets to
v̇(e(t))

= eT(t)(AT
e P + P Ae)e(t)+

+ eT(t)P Dd(t) + dT(t)DTP e(t))+
+ µ−1eT(t)CTCe(t) − µdT(t)d(t)
< 0

(55)

The equality (55) can be compactly written con-
structing a common notation ed(t) as follows

eT
ed(t) =

[
eT(t) dT(t)

]
(56)

then there is a reasonable ground to conclude that the
following have to yield

v̇(eed(t)) = eT
ed(t) Π◦eed(t) < 0 (57)

where, evidently,

Π◦ =
[
AT

e P +P Ae+µ−1CTC P D

DTP −µIrd

]
≺ 0 (58)

After applying the property of Schur complement
with relation to the element µ−1CTC thenP Ae + AT

e P ∗ ∗
DTP −µId ∗

C 0 −µIm

 ≺ 0 (59)

and it can be set
P Ape = P (Ap − JC)

= P Ap −
m∑

k=1
P jkcT

k

= P Ap −
m∑

k=1
P JkllTCk

(60)

where vector l ∈ Rn
+ is used to uncover the diagonal

matrix structures.

Thus, (59) implies (48), (51) when using the sub-
stitutions

P Jk = Rk, Ae = Ape + Am (61)

According to the parametrization, pre-multiplying
the left side by P and post-multiplying the right side
by LhT then, with J lh = LhTJ lL

h ∈ Rn×n
+ , (9),

(46) gives
n−1∑
h=0

(
P LhAp(ν + h, ν)LhT −

r∑
l=0

P J lL
hC lL

hT)
(62)

and using (61) then (62) implies for h = 0 the lower
part of (49) and for h > 0 (62) implies the lower part
of (50).

Since analogously can be set the LMIs working on
e(t), this closes the proof.
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5 Illustrative Example
The considered system (1), (2) is built on the param-
eters of linearized dynamic model of F-404 engine,
[19], with A ≤ A

A =

−1.4600 0 2.4280
−0.8357 −2.4 −0.3788

0.3107 0 −2.1300

 , D =

1
1
1


A =

−1.4600 0 2.4280
−0.3357 −1.4 −0.3788

0.3107 0 −2.1300

 , CT =

1 0
0 0
0 1


B =

0.4182 5.2030
0.3901 −0.1245
0.5186 0.0236


and the derived design parameters are

Ad = diag [−1.46 −2.4 −2.13]
Ad = diag [−1.46 −1.4 −2.13]

A+ = A
+ =

 0 0 2.4280
0 0 0

0.3107 0 0

 , l =

1
1
1


A− =

 0 0 0
−0.8357 0 −0.3788

0 0 0

 , Σ =

0 1 1
1 0 1
1 1 0


A

− =

 0 0 0
−0.3357 0 −0.3788

0 0 0

 , L =

0 0 1
1 0 0
0 1 0


With A◦

m = A− − ηΣ, A
◦
m = A

− − ηΣ, where
η = 0.005 then

A◦
m =

 0 −0.0050 −0.0050
−0.8407 0 −0.3838
−0.0050 −0.0050 0


A

◦
m =

 0 −0.0050 −0.0050
−0.3407 0 −0.3838
−0.0050 −0.0050 0


ρ(A◦

m) = {−0.0808 0.0150 0.0758}
ρ(A◦

m) = {−0.0627 0.0050 0.0577}

and λ0 = 0.0758, λ0 = 0.0577.
To define D-stability regions it is set δ = 0.003,

δ = 0.03, which define p = λ0 + δ, p = λ0 + δ the
Hurwitz matrices Am = A◦

m−pIn, Am = A
◦
m−pIn

and the strictly Metzler Ap = Ad + A+ + ηΣ + pIn,
Ap = Ad + A

+ + ηΣ + pIn so that Ap ≤ Ap,

Am =

−0.0788 −0.0050 −0.0050
−0.8407 −0.0788 −0.3838
−0.0050 −0.0050 −0.0788


Am =

−0.0807 −0.0050 −0.0050
−0.3407 −0.0807 −0.3838
−0.0050 −0.0050 −0.0777



ρ(Am) = {−0.1596 −0.0738 −0.0030}
ρ(Am) = {−0.1504 −0.0827 −0.0300}

Ap =

−1.3812 0.0050 2.4330
0.0050 −2.3212 0.0050
0.3157 0.0050 −2.1512


Ap =

−1.3723 0.0050 2.4330
0.0050 −1.3123 0.0050
0.3157 0.0050 −2.1423


Using Ap, Ap it can be found that the matrix vari-

ables, which provide a solution by SeDuMi, [20], are

P = diag [2.2680 3.3453 2.4098] ,
R1 = diag [1.4454 0.0062 0.2474] , γ = 4.2335
R2 = diag [2.8826 0.0060 1.1582] , γ = 4.4557

J =

0.6373 1.2710
0.0018 0.0018
0.1027 0.4806


These infuse the strictly Metzler and Hurwitz ma-

trices Ape = Ap − JC, Ape = Ap − JC and
the ostensible Metzler and Hurwitz matrices Ae =
A − JC, Ae = A − JC

Ape=

−2.0185 0.0050 1.1620
0.0032 −2.3212 0.0032
0.2130 0.0050 −2.6318


Ape=

−2.0096 0.0050 1.1620
0.0032 −1.3123 0.0032
0.2130 0.0050 −2.6229


ρ(Ape) = {−1.7406 −2.3213 −2.9096}
ρ(Ape) = {−1.3122 −1.7319 −2.9007}

Ae =

−2.0973 0 1.1570
−0.8375 −2.4 −0.3806

0.2080 0 −2.6106


Ae =

−2.0973 0 1.1570
−0.3375 −1.4 −0.3806

0.2080 0 −2.6106


ρ(Ae) = {−1.8003 −2.4000 −2.9076}
ρ(Ae) = {−1.4000 −1.8003 −2.9076}

Note, the positions of negative off-diagonal ele-
ments in (A, Ae), (A, Ae) are preserved.

Simulating the defined uncertain system within
constraints A ≤ A ≤ A, q

e
(0) ≤ q(0) ≤ qe(0),

σ2
d = 0.012, where

A =

−1.4600 0 2.4280
−0.5857 −1.9 −0.3788

0.3107 0 −2.1300

 , q(0) =

0.250
3.750
0.025


and utilizing the system forced mode

u(t) = W w(t), W =
[
2 0
0 1

]
, w(t) =

[
0.352
0.076

]
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Figure 1: Convergence of the first state variable

simulation results with the initial conditions

q(0) =

0.25
3.75
0.02

 , q
e
(0) =

0.15
0.00
0.00

 , qe(0) =

0.4
0.0
0.1


are given in Figure 1. These simulation results show
the performance of the proposed interval observer,
where the black color curved line denotes the first
state variable trajectory and the blue and red curved
lines denote its upper and lower estimations. Since
the first state variable is positive, it can be seen that
its behavior is correctly intervally estimated, guaran-
teing exponential convergence of the state variable
estimation error.

6 Concluding Remarks
The main objectives in this paper are parameterisa-
tions approaches in design for ostensible Metzler sys-
tems with interval-specified dynamics and bounded
system disturbances. The diagonal matrix variables
and the proposed LMI structures reflect the key idea
to obtain auxiliary Metzler and Hurwitz matrix struc-
tures of Ap, Ap while Lyapunov function and the re-
lated LMIs form the base of the quadratic stability.
Despite the design conditions complexity, state es-
timation using ostensible Metzler interval observers
is robust to the changes covered in plant dynamics
by given interval bounds, taking into account that the
positivity of the lower positive state estimation need
to be keep.

In the synthesis it is simple to define sequentially
different D-regions of stability for Am, Am by using
the parameters p, p > 0 and so to guaranty conse-
quently that Ap ≤ Ap, when forcing interval bounds
on positive state variables, as well as to find via LMIs
the acceptable rate of convergence of estimation er-
rors. Although these tasks are parametrical depen-
dent, their interactive predefinition is possible as a
rule.

Since scalar variables µ, µ are related to the sys-
tem dependency on the parameters and can be tuned

in LMIs, they can be used for attenuation when guar-
anteing interval observer quadratic stability under un-
known disturbance.

The approach certainly requires further investiga-
tion the ostensible Metzler system matrices in depen-
dence on the un-structural set of negative off-diagonal
elements. It is worth highlighting that there are also
many unexplored theoretical and applied aspects of
problems in systems with non-strictly Metzler matrix
structures and ostensible Metzler matrix representa-
tion in control, e.g., of drones and unmanned aerial
vehicles, [22], [23], or constructing Metzler matrix
representations to match the properties of the interval
observers, [24].
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