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Abstract: - Thyroid homeostasis is crucial for the human body. The imbalance of thyroid homeostasis might 

cause diseases such as hypothyroidism. Humans are exposed to PFOS/PFOA frequently since they have been 

used in various industrial products. As reported that PFOS/PFOA increase the metabolic clearance rate of 

thyroid hormones, we then develop a mathematical model in terms of a system of differential equations to 

investigate thyroid homeostasis based on the changes in the levels of thyrotropin-releasing hormone, thyroid-

stimulating hormone and thyroid hormones when the effect of the exposure to PFOS and PFOA is also 

incorporated as well. The geometric singular perturbation technique is then employed to identify the possible 

dynamic behaviours obtained from the model. Numerical investigations are also presented to illustrate the 

results from theoretical analysis. Both theoretical and numerical results imply that a periodic behaviour that has 

been observed clinically in the pulsatile secretions of thyroid hormones, thyroid-stimulating hormone and 

thyrotropin-releasing hormone could be obtained from our model. In addition, the numerical experiment also 

shows that the levels of thyroid hormones and thyroid-stimulating hormone for the case when there is the effect 

of exposure to PFOS and PROA are lower than those of the case when there is no effect of the exposure to 

PFOS and PFOA which might lead to the imbalance of thyroid homeostasis. 
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1 Introduction 
Thyroid hormones (THs) secreted by the follicular 

cells of the thyroid gland are necessary for the 

differentiation of cells, and growth, and also 

regulate significant metabolisms, [1]. The release of 

thyroid hormones is regulated by the negative 

feedback control on the hypothalamus and anterior 

pituitary, [2]. When the circulating levels of thyroid 

hormones (Triiodothyronine (T3) and Thyroxine 

(T4)) are low, the secretion of thyrotropin-releasing 

hormone (TRH) from the hypothalamus will be 

increased, [2]. Then, the increase in TRH level 

stimulates the anterior pituitary gland to produce 

thyroid-stimulating hormone (TSH). The thyroid 

gland is then stimulated by the increase of TSH to 

produce thyroid hormones until levels of thyroid 

hormones in the blood return to normal levels, [2]. 

Thyroid homeostasis is crucial for the human body. 

The imbalance of thyroid homeostasis might cause 

diseases such as hypothyroidism. Hence, the balance 

of thyroid homeostasis must be kept.  

Perfluorooctane sulfonate (PFOS) and 

perfluorooctanoate (PFOA) are synthetic 

compounds in the group of per- and polyfluoroalkyl 

substances (PFASs) used in many industrial 
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applications such as firefighting foam, floor wax, 

paints, food packaging, cookware, cosmetics and 

textiles for decades, [3], [4]. Humans are exposed to 

PFAS because they accumulate in soil and waters, 

persisting for years and are difficult to eliminate, 

[3]. The contamination of PFASs in surface water, 

groundwater and soil has been reported frequently, 

[5], [6], [7]. Therefore, if the use of PFASs is 

continued, the contamination of PFASs will also 

continue and accumulate in drinking water, food and 

the environment which could lead to a global 

environmental pollutants crisis that could also 

threaten human health, [5]. Exposure to PFOA is 

related to the dysfunctions of the thyroid and cancer 

related to the kidney and testicular, [3]. On the other 

hand, exposure to PFOS is also related to a decrease 

in fertility and adverse effects on the development 

of the fetus, [3]. In children, an impaired immune 

response is also reported to be related to exposure to 

PFOS and PFOA whereas increased levels of 

cholesterol and obesity are also observed in adults, 

[3]. In this paper, we investigate the effect of 

exposure to PFOS/PFOA on thyroid homeostasis 

using mathematical modelling which has never been 

studied before. As it has been reported in, [8], PFOS 

and PFOA increase the metabolic clearance rate of 

thyroid hormones which affects thyroid homeostasis 

by reducing the circulating levels of thyroid 

hormones in diet-exposed animals, a system of 

differential equations is then developed in the next 

section based upon the changes in the levels of 

TRH, TSH, THs when the effect of PFOS and 

PFOA is incorporated.  

 

 

2 Model Development and Analysis 
Here, we let X, Y and Z represent the concentrations 

of TRH, TSH and THs in blood at time T, 

respectively. We propose the following 

mathematical model in terms of a system of 

differential equations to investigate the effect of 

PFOS and PFOA on thyroid homeostasis.  

 

1 2
12
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 
                 (1)  
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6 22
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
                         (3) 

 

where we assume the positive values for all 

parameters in the system of equations (1)-(3).  

Equation (1) accounts for the rate of change of 

TRH’s level in blood at time T. The feedback 

control of TRH on its secretion from the 

hypothalamus is presented by the first term on the 

right of (1) while the increase in the secretion of 

TRH due to the stimulation of THs is presented by 

the second term and the rate at which TRH is 

removed from the system is presented by the third 

term.  

Equation (2) accounts for the rate of change of 

TSH’s level in blood at time T. The secretion of 

TSH from the anterior pituitary gland due to the 

stimulating effect of TRH, the feedback control of 

TSH on its secretion from the anterior pituitary 

gland and the secretion of TSH due to the level of 

this is presented by the first term on the right of 

equation (2). The metabolic clearance rate of TSH 

due to the exposure to PFOS and PFOA is presented 

in the second term while the rate at which TSH is 

removed from the system is presented in the third 

term.  

Equation (3) accounts for the rate of change of 

THs’s level in blood at time T. The feedback control 

of THs on its secretion from the thyroid gland is 

presented by the first term on the right of equation 

(3). The secretion of THs from the thyroid gland due 

to the level of TSH is presented by the second term 

while the rate at which THs are removed from the 

system is presented by the third term.  

It has been reported that the half-life of TRH and 

TSH are approximately 6 minutes, [9], and 60 

minutes, [10], respectively. The half-life for THs is 

approximately 1 day, [11], and 6-7 days, [10], for T3 

and T4, respectively. Therefore, TRH, TSH and THs 

have the fastest, intermediate and slowest dynamic 

behaviour, respectively, and hence, the geometric 

singular perturbation technique which has been 

widely used to analyze the system with different 

speeds of dynamic behaviours, [12], [13], [14], [15], 

[16], can be applied to analyze the system 

theoretically. By scaling the variables and 

parameters of the system by small positive values   

and   as follows: 

 

 

*
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  (6) 

This means that x  possesses the fastest 

dynamics, y possesses the intermediate dynamics 

and z possesses the slowest dynamics. Next, let us 

investigate the manifold  I = 0 ,  J = 0  and 

 K =0  in detail. 

The manifold  I = 0      

By setting equation (4) equals to zero, we obtain  

                
 

1 2
1 2

1 2

c c z
d

k x x k z
 

 
           

Note that this equation does not depend on y and 

hence, the manifold  0I   is parallel to the y-axis. 

The intersection of the manifold  0I   and the x-

axis on the  ,x z -plane occurs at the point for 

which   

    
 
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1

1

4
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2
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It also attains the relative maximum along the line  

                      ,M Mx x z z    

where 
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2 2

1
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c k
d
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The manifold  J = 0  

By setting equation (5) equals to zero, we obtain          

y = 0 and  

 

  
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Therefore, the manifold  0J  consists of two 

parts. The nontrivial manifold  ,z r x y  intersects 

the trivial manifold y = 0 along the curve that is 

asymptotic to the line 1z z  where 

 

 
3 4 4 5 6 2

1

5 6 2

c c k k c d
z

k c d

 



.  

 

Note that  1 0z   if  

             3 4 4 5 6 2c c k k c d    (8) 

 

Moreover, on the  ,x z -plane, the nontrivial 

manifold  ,z r x y  intersects the x-axis at the 

point for which 2x x  and z = 0 where 
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Note that 2 0x   if the inequality (8) holds. In 

addition, the intersection of the nontrivial manifold 

 ,z r x y  and the  ,x y -plane occurs along the 

curve 
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whenever 0x  . Therefore, the nontrivial manifold 

 ,z r x y  obtains its relative maximum at the 

points for which , mx y y   and  

 

 

  
 3 4 5

4 6 22
6 2 3 5

1 m

m
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c c c y
z z k c d

c d k k y





 
    

    

 while   is any positive constant.  

 

The manifold  K = 0  

By setting equation (6) equals to zero, we obtain 

         
2

3 3 6 7

8 8 6

d z d k z c
y v z

c z c k

 
 


  (9) 

We can see that this equation does not depend on x 

and hence, the manifold  y v z  is parallel to the 

x-axis. In addition,  y v z  intersects the z-axis at 

the point for which y = 0, and 2z z  where 

           
 

2

3 6 3 6 7 3

2

3

4
0

2

d k d k c d
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Moreover,    
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whenever 0z   and hence  v z  is an increasing 

function and has no relative maximum or relative 

minimum for 0z  .    

 The different dynamic behaviours of 

solutions of the system of equations (4)-(6) could be 

expected when the locations of the manifolds 

   0 , 0I J   and  0K   are different.   

Theorem 1 For sufficiently small   and  , suppose 

that 

 2 1,x x                            (10) 

,S my y             (11) 

2 1z z              (12) 

 

and the inequality (8) holds then a limit cycle exists 

and a periodic solution occurs for the system of 

equations (4)-(6). 

Given that the inequalities (8) and (10)-(12) 

identified in Theorem 1 are satisfied, the manifolds 

     0 , 0 , 0I J K    will be positioned as 

shown in Figure 1 (Appendix). Starting from the 

point O as located in Figure 1 (Appendix), a 

transition in the direction of decreasing x with the 

fast speed, since 0I   here, will bring the solution 

trajectory to the fast manifold  0I   where a point 

P is reached. Since 0J   here, an intermediate 

transition develops along the manifold  0I   in 

the direction of decreasing y until the point Q on the 

stable branch of  0I J   is reached. A transition 

in the direction of decreasing z at a slow speed then 

develops along  0I J   until it reaches the point 

R for which the manifold loses its stability. A jump 

with an intermediate speed in the direction of 

increasing y from the point R will then bring the 

solution trajectory to the other stable branch of

 0I J   where the point T is reached. A slow 

transition will develop in the direction of increasing 

z, since 0K   here, from the point T to the point U. 

A transition of the solution trajectory then brings the 

system to the other stable branch of  0I J   

where the point V is reached. This is followed by a 

slow transition which brings the system from the 

point V to the point R resulting in a closed cycle 

RTUV and hence, the system of equations (4) - (6) 

exhibits a limit cycle and a periodic solution then 

occurs. 

 

Theorem 2 For sufficiently small   and  , suppose 

that 

                          1 4 mx x x  ,             (13) 

 

then the steady state  1 4 2,0,S x z  of the system of 

equations (4)-(6) is stable. 

Given that the inequality (13) identified in 

Theorem 2 are satisfied, the manifolds 

     0 , 0 , 0I J K    will be positioned as 

shown in Figure 2 (Appendix).  In Figure 2 

(Appendix), starting from the in front of the 

manifold  0I   at a point O which is above the 

manifold  0J  . A fast transition in the direction 

of decreasing x will bring the solution trajectory to a 

point P on the fast manifold  0I   since 0I   

here. Since 0J   here, the transition in the direction 

of decreasing y at intermediate speed develops along 

the manifold  0I   until it reaches the point Q on 

stable branch of  0I J  . Here 0K  , a 

transition at a slow speed in the direction of 

decreasing z then develops along this curve until it 

reaches the equilibrium point  1 4 2,0,S x z  where 

0I J K   .  
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Therefore, the washout equilibrium point 

 1 4 2,0,S x z  is stable in this case and the solution 

trajectory tends toward 1S  as time passes.  

 

Theorem 3 For sufficiently small   and  , suppose 

that 

                  2 1x x             (14) 

                 m Sy y ,             (15) 

 

and the inequality (8) holds then the system of 

equations (4)-(6) has a stable steady state  

 2 , ,S S SS x y z . 

Given that the inequalities (8), (14)-(15) 

identified in Theorem 3 are satisfied, the manifolds 

     0 , 0 , 0I J K    will be positioned as 

shown in Figure 3 (Appendix).  In Figure 3 

(Appendix), starting from the in front of the 

manifold  0I   at a point O which is above the 

manifold 0J  . A fast transition in the direction 

of decreasing x will bring the solution trajectory to a 

point P on the fast manifold  0I   since 0I   

here. A transition in the direction of decreasing y at 

intermediate speed develops along the manifold 

 0I   to the point Q on stable branch of 

 0I J  . A transition at a slow speed in the 

direction of decreasing z then brings the solution 

trajectory to point R in which the stability of the 

manifold is lost. A jump in the direction of 

increasing y at intermediate speed will then bring 

the system to the point T on the other stable branch 

of      0I J  . since 0K   here, a transition in 

the direction of increasing z at slow speed then 

brings the solution trajectory to the point 

 2 , ,S S SS x y z  where 0.I J K   Therefore, 

the equilibrium point  2 , ,S S SS x y z  is stable and 

the solution trajectory tends toward 2S  as time 

passes. 

 

 

3  Numerical Simulations 
In this section, we illustrate the theoretical results by 

carrying out numerical simulations for each case. 

All simulations are generated by MATLAB using 

the Runge-Kutta 4th-order method. 

The computer simulation shown in Figure 4 

(Appendix) is presented to illustrate the theoretical 

prediction in Theorem 1 in which a limit cycle is 

expected provided that the inequalities stated in 

Theorem 1 are all satisfied.  

We can see that the solution of the system of 

equations (4)-(6) shown in Figure 4 (Appendix) 

tends toward a limit cycle and a periodic solution 

occurs as theoretically predicted in Theorem 1.  

The computer simulation shown in Figure 5 

(Appendix) is presented to illustrate the theoretical 

prediction in Theorem 2 in which the equilibrium 

point 1S  is stable provided that the inequality stated 

in Theorem 2 is satisfied.  

We can see that the solution of the system of 

equations (4)-(6) shown in Figure 5 (Appendix) 

tends toward the equilibrium point 1S  as 

theoretically predicted in Theorem 2. 

The computer simulation shown in Figure 6 

(Appendix) is presented to illustrate the theoretical 

prediction in Theorem 3 in which the equilibrium 

point 2S  is stable provided that the inequalities 

stated in Theorem 3 are all satisfied.  

We can see that the solution of the system of 

equations (4)-(6) shown in Figure 6 (Appendix) 

tends toward the equilibrium point 2S  as 

theoretically predicted in Theorem 3. 

 

 

4 Discussion and Conclusion 
We develop a mathematical model to investigate the 

effect of exposure to PFOS/PFOA on thyroid 

homeostasis. Theoretically, the geometric singular 

perturbation technique is utilized so that we obtain 

the conditions on the system parameters that 

differentiate various behaviours of the solutions of 

our model. Numerical simulations are provided to 

illustrate the theoretical results. Both theoretical and 

numerical results indicate that a periodic behaviour 

that has been observed in the pulsatile secretions of 

TRH, TSH and THs, [17], [18], [19], could be 

exhibited by our model when the parametric values 

are appropriated. In addition, let us consider an 

example of the computer simulations in Figure 7 

(Appendix) for the case when there is no effect of 

PFOS/PFOA            ( 6 0c  ) and the case when 

there is the effect of PFOS/PFOA ( 6 0.08c  ) while 

the other parametric values are the same that is 

1 20.15, 0.30,c c 

3 4 5 7 8 10.55, 0.80, 0.7, 0.21, 0.7, 0.95,c c c c c k     

2 3 4 5 6 10.75, 0.9, 0.5, 0.3, 0.7, 0.55,k k k k k d     

2 30.1,  0.03,  0.95,  0.035d d       with    

   0 0.1, 0 0.5,x y  and  0 2z  . We can see 
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that when there is the effect of PFOS/PFOA, the 

levels of TSH and THs are lower than those of the 

case when there is no effect of PFOS/PFOA which 

might lead to the imbalance of thyroid homeostasis 

and hence, the hypothyroidism might be expected. 

The developed model might be useful to investigate 

further the treatment of hypothyroidism due to 

exposure to PFOS and PFOA. 
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Fig. 1: The positions of the manifolds    0 , 0I J   and  0K   where all inequalities stated in            

Theorem 1 are satisfied. A solution trajectory tends toward a limit cycle where the fast, intermediate and slow 

transitions are identified by the three, two and one arrows, respectively. 
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Fig. 2: The positions of the manifolds    0 , 0I J   and  0K   where the inequality stated in Theorem 2 

are satisfied. A solution trajectory tends toward a stable equilibrium point 1S  where the fast, intermediate and 

slow transitions are identified by the three, two and one arrows, respectively. 
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Fig. 3: The positions of the manifolds    0 , 0I J   and  0K   where all inequalities stated in         

Theorem 3 are satisfied. A solution trajectory tends toward a stable equilibrium point 2S  where the fast, 

intermediate and slow transitions are identified by the three, two and one arrows, respectively. 

 

 

 

Fig. 4: A simulation result of the system of equations (4)-(6) where 1 2 30.15, 0.30, 0.55,c c c  

4 5 6 7 8 1 2 3 4 5 60.80, 0.70, 0.08, 0.21, 0.7, 0.95, 0.75, 0.90, 0.50, 0.30, 0.70,c c c c c k k k k k k          

1 2 30.55, 0.02, 0.03, 0.95, 0.035,d d d          0 0.1, 0 0.5,x y  and  0 2z  . 
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Fig. 5: A simulation result of the system of equations (4)-(6) where 1 2 30.015, 0.3, 0.55,c c c  

4 5 6 7 8 1 2 3 4 5 6 10.8, 0.7, 0.08, 0.21, 0.7, 0.95, 0.75, 0.9, 0.5, 0.3, 0.7, 0.55,c c c c c k k k k k k d           

 2 30.02, 0.03, 0.5, 0.35, 0 0.1,d d x       0 0.1,y  and  0 5z  . 

 

 

Fig. 6: A simulation result of the system of equations (4)-(6) where 1 2 30.05, 0.30, 0.55,c c c  

4 5 6 7 8 1 2 3 4 5 6 10.80, 0.4, 0.1, 0.21, 0.7, 0.95, 0.75, 0.10, 0.5, 0.3, 0.7, 0.55,c c c c c k k k k k k d           

 2 30.11, 0.03, 0.15, 0.75, 0 0.5,d d x       0 0.5,y  and  0 1z  . 
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Fig. 7: Comparison of the simulation results of the system of equations (4)-(6) for the case 6 0c   (without the 

effect of PFOS/PFOA) and 6 0.08c   (with the effect of PFOS/PFOA). Here, 
1 20.15, 0.30,c c 

3 4 5 7 8 1 2 3 4 5 6 10.55, 0.80, 0.7, 0.21, 0.7, 0.95, 0.75, 0.9, 0.5, 0.3, 0.7, 0.55,c c c c c k k k k k k d             

   2 30.1, 0.03, 0.95, 0.035, 0 0.1, 0 0.5,d d x y       and  0 2.z 
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