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Abstract: - Apart from the effects on the lungs, COVID-19 caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) also has effects on bone metabolism including the bone remodelling process. The 
bone remodelling process involves bone formation by bone-forming cells (osteoblasts) and bone resorption by 
bone-resorbing cells (osteoclasts). The infection with SARS-Cov-2 decreases the inhibiting effects of 
Angiotensin-converting enzyme 2 (ACE2) on osteoclastic reproduction and inhibits the osteogenic ability of 
osteoblasts which might lead to the imbalance in the bone remodeling process. In this study, we modify the 
system of differential equations to investigate the effects of Covid-19 on bone formation and bone resorption. 
The geometric singular perturbation method is utilized to analyze the modified model theoretically. To 
illustrate the theoretical results, numerical investigations are also demonstrated. The results indicate that the 
oscillations in the numbers of osteoclastic cells and osteoblastic cells observed in the clinical evidence could 
still be expected when the effects of SARS-Cov-2 are incorporated, however, the oscillations occur at the 
higher level of the number of osteoclasts and hence more bone loss might occur when infected with Covid-19.  
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1 Introduction 
The bone remodelling process aims to shape and 
sculpt the skeleton during growth, to repair micro-
damaged bones that occur from everyday stress and 
also to regulate calcium homeostasis, [1], [2], [3]. It 
is a significant life-long process, the skeleton is 
replaced almost 100% in the first year of life while 
the bone remodelling process of the skeleton occurs 
approximately 10% per year in adults, [4], [5], [6]. 
The process involves two types of bone cells, bone 
tissue will be removed by bone resorbing cells, 
osteoclasts (OCs), and new bone cells will be 
formed by bone-forming cells, osteoblasts (OBs), 
[7]. If the net bone resorption is over the net bone 
formation after the completion of a bone 
remodelling cycle, an imbalance will then occur 
leading to the increase of bone loss and hence, 
osteoporosis might be expected, [4], [5], [6].   
 COVID-19 is a contagious disease caused by 
the SARS-CoV-2. The interaction of SARS-CoV-2 

and ACE2 receptors expressed on cellular targets 
such as alveolar cells of lungs and bone cells 
enhances the production of inflammatory cytokines, 
[8]. Also, the binding of SARS-CoV-2 and the 
ACE2 receptors on osteoclastic cells induces the 
differentiation of osteoclasts, [8]. However, it has 
been observed that SARS-CoV-2 also enhances the 
levels of angiotensin II by downregulating the 
expression of ACE2 and then induces inflammatory 
conditions, [9]. Moreover, angiotensin II enhances 
the differentiation of OCs by enhancing the 
expression of RANKL on OBs and hence, 
accelerates the development of osteoporosis in the 
rat model, [10]. On the other hand, the binding of 
inflammatory cytokines and cytokine receptors 
inhibits the osteogenic ability of osteoblasts and 
hence, bone loss might be increased, [8].  

In, [11], the mathematical model developed to 
investigate the bone remodelling process is as 
follows. 
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where P is the PTH concentration above the basal 
level, C is the number of active osteoclastic cells 
and B is the number of active osteoblastic cells, [1]. 
 Many researchers, [12], [13], [14], [15], [16], 
[17], [18], [19], also investigated the effects of 
involving hormones such as estrogen, parathyroid 
hormone, vitamin D and calcitonin using 
mathematical modelling. Mathematical models in 
various forms were developed such as a system of 
differential equations, a system of delay-differential 
equations and an impulsive system of differential 
equations. However, the effects of the inflection 
with SARS-Cov-2 on the bone remodelling process 
have never been taken into account. Therefore, the 
mathematical model developed by, [11], is modified 
in this paper to investigate bone resorption and bone 
formation when the effects of the infection with 
SARS-Cov-2 are also incorporated and the modified 
model is then analyzed theoretically so that we 
obtain the conditions for which different dynamics 
behaviour can be occurred.  
 
 
2 A Modified Mathematical Model 

and Geometric Singular Perturbation 

Analysis 
In what follows, X stands for PTH concentration 
above the basal level at time T, Y stands for the 
number of active osteoclasts at time T and Z stands 
for the number of active osteoblasts at time T. The 
system of differential equations developed by, [11], 
is modified here to investigate the effects of SARS-
Cov-2 on bone resorption and bone formation as 
follows.   
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Here, all parametric values in the system of 
equations (1)-(3) are assumed to be positive.  

As described in, [11], the change in PTH 
concentration in blood above the basal level is 
represented by equation (1). PTH is assumed to be 
secreted from the parathyroid gland with the rate 
presented by the first term on the right-hand side of 
equation (1) which decreases when the number of 
active osteoclasts increases so that the calcium 
levels in blood is maintained to be within the normal 
range, [11]. PTH is assumed to be removed from the 
system as represented by the last term of equation 
(1), [11]. 

In equation (2), as described in [11], It has been 
observed that the reproduction of osteoclasts is 
stimulated by PTH, [20], [21], [22]. However, it has 
also been observed in, [19], as well that osteoclastic 
reproduction is inhibited if the level of PTH 
increases further, the saturation expression 

2 3
2

2

a a X

k X




 is then assumed for the stimulating effect 

of PTH on the osteoclastic reproduction as 
presented in the first term of the right-hand side of 
equation (2), [11].  

When infected with COVID-19, SARS-Cov-2 
will bind with ACE2 receptors on osteoclastic cells 
and induce the differentiation of osteoclasts, [8]. 
Moreover, the number of ACE2 receptors available 
for binding with ACE2 is then decreased resulting in 
the decrease of the inhibiting effect of ACE2 on 
osteoclastic reproduction, [23], [24]. Therefore, the 
number of osteoclastic cells will be increased. 
Moreover, SARS-CoV-2 also enhances the levels of 
angiotensin II by downregulating the expression of 
ACE2, [9]. Angiotensin II then enhances the 
differentiation of OCs by enhancing the RANKL 

expression on OBs, [10]. Therefore, the term 4

3

a Y

k Y

is assumed on the first term of the right-hand side of 
equation (2) to account for the effect of COVID-19 
on the reproduction of osteoclastic cells. Noted that 
the effects of both PTH and the infection with 
COVID-19 on osteoclastic reproduction require the 
osteoclast differentiation factor (ODF) and its 
receptor on osteoclastic cells, [19], the term YZ is 
then also presented. Active osteoclastic cells are 
assumed to be removed from the system as 
presented by the last term on the right-hand side of 
equation (2), [11].  

In equation (3), as described in [11], PTH has 
been observed to stimulate osteoblastic reproduction 
and the first term on the right-hand side is then 
assumed to account for PTH stimulating effect on 
osteoblastic reproduction, [11]. Moreover, PTH has 
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also been observed to inhibit osteoblastic 
reproduction and the second term on the right-hand 
side is then assumed to account for PTH inhibiting 
effect on osteoblastic reproduction, [11]. On the 
other hand, the interaction of SARS-CoV-2 and 
ACE2 receptors enhances the production of 
inflammatory cytokines, [8]. Since the binding of 
inflammatory cytokines and cytokine receptors 
inhibits the osteogenic ability of osteoblasts, [8], the 
number of osteoblastic cells will then decrease when 
infected with COVID-19 and hence the third term 
on the right-hand side is presented to account for the 
effect of Covid-19 on the reproduction of 
osteoblastic cells. Active osteoblastic cells are 
assumed to be removed from the system by the last 
term on the right-hand side, [11]. 

The changes in the levels of PTH in the blood 
occur within minutes to control the calcium levels in 
the blood while the bone resorption process takes 
approximately 2 weeks and the bone formation 
process takes approximately 3 months, [25], [26]. 
Hence, we assume that the dynamics of PTH, OCs 
and OBs are fastest, intermediate and slowest, 
respectively. We then analyze our modified model 
by utilizing the geometric singular perturbation 
technique. Firstly, we scale the variables of the 
system by two small dimensionless positive 
parameters   and  . The new parameters are 
introduces as follows.  
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This means that, PTH possesses a faster time 

response than osteoclasts, while, osteoblasts have 
slowest dynamics provided that   and   are small 

which is consistent with the clinical evidence, [19], 
[25], [26]. 

For our system of equations (4)-(6), we now 
show that the manifolds  0f  ,  0g   and 

 0h   are shaped and located as shown in Figure 1 
(Appendix) and Figure 2 (Appendix) with some 
appropriate parametric values. 

 
Manifold  0f    

By setting 0dx

dt
  in equation (4), we obtain the 

manifold  0f   which is represented by  
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Here,  r y  is independent of z . As a result,  r y  
is also parallel to the z-axis. Moreover, the 
intersection of  r y  and the (x,z)-plane occurs 
along the straight line 
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composing of two parts, the trivial manifold 0y  , 
and the nontrivial manifold  
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We can see that on the  ,x z -plane,  
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We remark that 2x  is always positive, when all 
parameters are assumed to be positive.  
Moreover, 
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then  z v y  is an decreasing function when all 
parameters are assumed to be positive. 
On the  ,x y -plane,  
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when all parameters are assumed to be positive. 
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dt
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Here,  w x  is parallel to the y -axis because  w x  
is independent of the variable y . Also,  w x  
intersects the  ,y z -plane along the y -axis.  
Since,   
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Thus,  w x  has no relative minimum or maximum 
where all parametric values are assumed to be 
positive. Moreover,   0w x   for 0.x   Thus, 

 w x  is an increasing function in the first octant.    
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Theorem 1 Given that   and   are sufficiently 
small. A limit cycle exists for the system of 
equations (4)-(6) if the inequalities  

                   2 3 1,x x x    (7) 
                      3 4 ,y y  (8)           

and                 2 3 4 1z z z z          (9) 
hold.  
 
Note that Theorem 1 can be proven by utilizing the 
geometric singular perturbation techniques, [27], 
[28].  
 In Figure 1 (Appendix), the curve  0g h   
intersects the curve  0f g   at the point 1S  on 
the  ,x z -plane and the point 2S  is located between 
the points  2 2 2, ,x y z  and  1 1,0,x z  along the curve 

 0f g  . Note that the high, intermediate and 
slow speed transitions are represented by the three, 
two and one arrows, respectively.  
 Starting from the generic point A =  0 0 0, ,x y z  
for which  0 0 0, , 0f x y z   in Figure 1 (Appendix). 
Here, the position of point A is assumed to be as 
shown in Figure 1 (Appendix). A transition in the 
direction of decreasing x at a fast speed will bring 
the solution trajectory from point A to point B 
located on the manifold  0f  , since 0f   here. 
Since 0g   here, a transition of the solution 
trajectory with an intermediate speed in the 
direction of decreasing y  will bring the system to 
the curve  0f g   where a point C is reached. A 
transition of the solution trajectory in the direction 
of increasing z along this curve with a slow speed, 
since 0h   here, will then reach some point D on 
this curve. The stability of the submanifold will be 
lost and an intermediate transition of the solution 
trajectory will then bring the system to the other 
stable part of  0f g   where a point E is 
reached. A transition of the solution trajectory at 
slow speed in the direction of decreasing z , since 

0h   here, will bring the system to the point F in 
which the stability of the submanifold is lost again. 
An intermediate transition will then bring the 
solution trajectory to the other stable part of 
 0f g   where point G is reached. A transition 
in the direction of increasing z  with a slow speed 
will then bring the solution trajectory to point D 

again, since 0h   here, resulting in the closed orbit 
DEFG and hence, we obtain a limit cycle for our 
model of equations (4)-(6). 

Theorem 2 Given that   and   are sufficiently 
small, if the inequalities  

                 3 2 1,x x x   (10) 
                    4 3 ,y y   (11) 

and       5 3 2 4 1z z z z z     (12) 
 
hold then the equilibrium point 2S  of the system of 
equations (4)-(6) is stable.  
 Starting from the generic point A =  0 0 0, ,x y z  
for which  0 0 0, , 0f x y z   in Figure 2 (Appendix). 
The position of A is assumed to be located as in 
Figure 2 (Appendix). Since 0f   here, a transition 
of the solution trajectory in the direction of 
decreasing x will bring the system to the manifold 
 0f   with a fast speed where a point B is 
reached. An intermediate transition of the solution 
trajectory in the direction of decreasing y on the 
curve  0f g   will bring the system to a point 
C, since 0g   here. A transition of the solution 
trajectory along this curve at slow speed in the 
direction of increasing z, since 0h  here, will then 
bring the system to some point D. The stability of 
the submanifold will be lost and an intermediate 
transition of the solution trajectory will then bring 
the system to the other stable part of  0f g   
where a point E is reached. A transition of the 
solution trajectory at a slow speed in the direction of 
decreasing z  will bring the system to the 
equilibrium point 2S  where 0f g h   . Thus, the 
equilibrium point 2S  is stable. 
 
 
3  Numerical Investigations 
In this section, we demonstrate the theoretical 
predictions by carrying out numerical investigations 
for each case. All computer simulations are 
generated by MATLAB using the Runge-Kutta 4th-
order method. 
 In Figure 3 (Appendix), numerical simulation is 
presented to demonstrate the theoretical result stated 
in Theorem 1 for which a limit cycle is expected. 
The parametric values in the system of equations 
(4)-(6) are chosen to satisfy all inequalities stated in 
Theorem 1 as follows: 1 20.05, 0.009,c c 

3 4 5 6 70.675, 0.1, 0.01, 0.005, 0.001,c c c c c    

1 2 3 4 1 20.1, 0.5, 1, 0.025, 0.1, 0.3,m m m m d d     

   3 0.01, 0.1, 0.9, 0 0.5, 0 0.1,d x y      and 

 0 0.1.z   In Figure 3 (Appendix), we can see that 
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a limit cycle exists for the system of equations (4)-
(6) and a periodic solution occurs as theoretically 
predicted in Theorem 1.  

In Figure 4 (Appendix), a numerical simulation is 
presented to demonstrate the theoretical result 
indicated in Theorem 2. The parametric values in 
the system of equations (4)-(6) are chosen to satisfy 
all inequalities stated in Theorem 2 as follows:

1 2 3 4 50.05, 0.0009, 0.882, 0.1, 0.01,c c c c c      

6 7 1 2 30.005, 0.0001, 0.1, 0.5, 1,c c m m m    

4 1 2 30.025, 0.1, 0.3, 0.01, 0.01, 0.5,m d d d      

 0 0.1,x   0 0.5,y  and  0 0.5.z   We can see 
that the equilibrium point 2S  is stable as 
theoretically predicted in Theorem 2. 

 
 

4  Discussion  
In addition to the numerical simulations represented 
in Figure 3 (Appendix) and Figure 4 (Appendix), let 
us consider an example of the computer simulations 
in Figure 5 (Appendix) for which the number of 
osteoclasts when there are no effects from SARS-
Cov-2 infection ( 4 7 0c c  ) is compared to the 
number of osteoclasts when there is the effects from 
SARS-Cov-2 infection ( 4 70.1, 0.001c c  ) when 
the other parameters are the same as the values used 
in Figure 3 (Appendix). Also, let us consider an 
example of the computer simulations in Figure 6 
(Appendix) for which the number of osteoclasts 
when there is no effects from SARS-Cov-2 infection              
( 4 7 0c c  ) is comparing to the number of 
osteoclasts when there is the effects from SARS-
Cov-2 infection ( 4 70.1, 0.0001c c  ) when the 
other parameters are the same as the values used in 
Figure 4 (Appendix). We can see that the number of 
osteoclasts in the cases when there is the effect of 
SARS-Cov-2 infection is higher than that of the 
cases when there is no effect of SARS-Cov-2 
infection in both Figure 5 (Appendix) and Figure 6 
(Appendix) whereas the number of osteoblasts in 
the cases when there is the effect of SARS-Cov-2 
infection is lower than that of the cases when there 
is no effect of SARS-Cov-2 infection in Figure 6 
(Appendix). Therefore, more bone loss might be 
expected when infected with Covid-19. 
 
 
5   Conclusion 
The model developed by, [1], is modified to 
incorporate the effects of Covid-19 on the 
reproductions of osteoblastic cells and osteoclastic 

cells. The modified model is then analyzed 
theoretically using the geometric singular 
perturbation technique so that we obtain the 
conditions for which different behaviours of 
solution can be expected. Numerical simulations are 
also provided to demonstrate the theoretical results. 
The results indicate that a periodic behaviour which 
has been observed clinically in the oscillations of 
the number of osteoclasts and osteoblasts, [19], as 
well as the pulsatile secretions of PTH, [29], could 
also be exhibited by our model.  In addition, the 
simulation results in Figure 5 (Appendix) and 
Figure 6 (Appendix) indicate that the number of 
osteoclasts in the cases where there is the effect of 
SARS-Cov-2 infection is higher than that of the 
cases when there is no effect of SARS-Cov-2 
infection whereas the number of osteoblasts in the 
cases when there is the effect of SARS-Cov-2 
infection are lower than that of the cases when there 
is no effect of SARS-Cov-2 infection and hence, 
more bone loss can be expected when infected with 
Covid-19. The modified model in this paper might 
be modified further to investigate treatments for 
osteoporosis patients when infected with COVID-
19.   
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Fig. 1: The manifolds    0 , 0f g   and  0h   where all conditions in Theorem 1 are satisfied. Here, the 
fast, intermediate, and slow transitions of the trajectories are represented by three arrows, two arrows, and one 
arrow, respectively. The solution trajectory tends towards a limit cycle in this case. 
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Fig. 2: The manifolds    0 , 0f g   and  0h   where all conditions in Theorem 2 are satisfied. Here, the 
fast, intermediate, and slow transitions of the trajectories are represented by three arrows, two arrows, and one 
arrow, respectively. The solution trajectory tends towards the stable equilibrium point 2S  in this case. 
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Fig. 3: A numerical simulation of the model system (4)-(6), with the parametric values satisfying all 
inequalities identified in Theorem 1. Here, 1 2 3 4 5 60.05, 0.009, 0.675, 0.1, 0.01, 0.005,c c c c c c     

   7 1 2 3 4 1 2 30.001, 0.1, 0.5, 1, 0.025, 0.1, 0.3, 0.01, 0.1, 0.9, 0 0.5, 0 0.1,c m m m m d d d x y            

and  0 0.1.z    A limit cycle exists as predicted in Theorem 1.  
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Fig. 4: A numerical simulation of the model system (4)-(6), with parametric values satisfying all inequalities 
stated in Theorem 2. Here, 1 2 3 4 5 6 7 10.05, 0.0009, 0.882, 0.1, 0.01, 0.005, 0.0001, 0.1,c c c c c c c m       

   2 3 4 1 2 30.5, 1, 0.025, 0.1, 0.3, 0.01, 0.01, 0.5, 0 0.1, 0 0.5,m m m d d d x y            and  0 0.5.z   
The equilibrium point 2S  is stable as predicted in Theorem 2. 

 
Fig. 5: Comparison of the numerical simulations of the system of equations (4)-(6) for the case when 

4 7 0c c   (without effects of SARS-Cov-2 infection) and 4 70.1, 0.001c c   (with effects of SARS-Cov-2 
infection). Here, 1 2 3 5 6 1 2 3 40.05, 0.009, 0.675, 0.01, 0.005, 0.1, 0.5, 1, 0.025,c c c c c m m m m          

     1 2 30.1, 0.3, 0.01, 0.1, 0.9, 0 0.5, 0 0.1, 0 0.1.d d d x y z          
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Fig. 6: Comparison of the numerical simulations of the system of equations (4)-(6) for the case when 

4 7 0c c   (without effects of SARS-Cov-2 infection) and 4 70.1, 0.0001c c   (with effects of SARS-Cov-2 
infection). Here, 1 2 3 5 6 1 2 3 40.05, 0.0009, 0.882, 0.01, 0.005, 0.1, 0.5, 1, 0.025,c c c c c m m m m        

1 2 30.1, 0.3, 0.01,d d d         0.01, 0.5, 0 0.1, 0 0.5, 0 0.5.x y z       
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