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1 Introduction
Several domains are modeled by dynamic or station-
ary systems, [1], the sentinel theory,  2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13], is an important tool for the iden-
tification of some system data based on control the-
ory, [14, 15, 16, 17], control plays an interesting role
in resolving the different systems in the different do-
mains.

Bellow we Present the organization of our mem-
ory.

In the first section, we present a description of the
HUM method for solving the problem of the control-
lability system.

In the second section, we present the standard
optimal control theory and we consecrated to study
the notion of no-regret control and low-regret of dis-
tributed system, [18, 19, 20].

Finally, we conclude by comparison between the
HUM method and the low regrets control method.

2 Hilbert Uniqueness Method
The construction of the Hilbertian spaces adapted to
the building of the system according to the criteria of
the specific uniqueness of the homogeneous system
associated with it, and the method adopted for that
is Hibert Uniqueness Method (HUM), the following
algorithm describes the basics of applying the HUM
method to solving the problem of exact system con-
trollability.

The basic idea is the following :
Assuming that the system is exactly controllable,

characterize the control that minimizes the associated
cost function among the set of admissible controls by
an optimality system.

2.1 Exact controllability and penalization
2.1.1 Orientation
Let be Ω a bounded domain of Rn, n ≥ 1, at the
border Γ of class C2.

We consider the wave equation

y”−∆y = 0, (1)

in Q = Ω× [0, T ] with T > 0 fixed.
We assume that we can act on the system through

the intermediary of the control v = v(x, t) on the edge
Σ = Γ× [0, T ], so that

y = v, (2)

on Σ. Let the initial data be

y(x, 0) = y0(x); y′(x, 0) = y1(x), (3)

on Ω. Let x0 ∈ Rn,m(x) = x− x0 and

R(x0) = max |m(x)| , x ∈ Ω̄.

Consider the usual partition of the boundary
Γ(x0) = x ∈ Γ/m(x).v(x) > 0,
Γ∗(x

0) = Γ\Γ(x0),
and
Σ(x0) = Γ(x0)× [0, T ] ,
Σ∗(x

0) = Σ/Σ(x0).
Let be the exact controllability of the following

equation.
If T > T (x0) = 2R(x0) for each pair of initial

data (y0, y1) ∈ L2(Ω) × H−1(Ω), there is a control
v ∈ L2(Σ(x0)), such as the solution y = y(v) in
(1− 3) checked y(T, v) = y

′
(T, v) = 0.

The fact that the control v is defended Σ(x0)must
be interpreted as meaning y = v in Σ(x0), y = 0 in
Σ∗(x

0).
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For each pair of initial data we have
{
y0, y1

}
∈

L2(Ω)×H−1(Ω).
The set of admissible controls
Uad =

{
v ∈ L2(Σ(x0)); y(T, v) = y

′
(T, v) = 0 |Ω

}
,

contains an infinity of elements.
We will now show that the control given by HUM

is that realizes the minimum of the cost function
J(v) = 1

2

∫
Σ(x0)

|v|2 dΣ,

on all admissible controls Uad we will next char-
acterize the control v using the optimality system.

2.2 Characterization of control
Theorem 1 For each pair of initial data

{
y0; y1

}
∈

L2 (Ω) ×H−1(Ω), the control v ∈ L2(Σ(x0)) given
by HUM is the one that minimizes the cost function
J(v) on all admissible controls Uad.

2.2.1 First step
We consider the minimization problem

inf J(v), v ∈ Uad (4)

the (4) problem is an optimal control problem with
constraint.

Theorem 2 By a penalization method we define the
function
Jϵ(v, z) = 1

2

∫
Σ(x0) |v|

2 dΣ + 1
2ε

∫
Q(z

′′ −
∆z)2dxdt,

with ε > 0,v ∈ L2(Σ(x0)) and z = z(x, t) a
function such as
z′′ −∆z ∈ L2(Q),
z(0) = y0, z′(0) = y1 in Ω,

zχΣ(x0) = v, (5)

z = 0 in Σ∗(x
0), z(T ) = z′(T ) = 0 in Ω,

recess for each v ∈ Uad the function y = y(v) of
(1− 3) verifies these condition.

The term 1
2ε

∫
Q(z

′′−∆z)2dxdt is a penalty term.

We consider the optimal control problem

inf Jε(v, z), (6)

for each ε > 0 there exist a unique solu-
tion {uε, zε} of this problem, i.e. Jε(uε, zε) =
inf Jε(v, z).

2.2.2 Second step
Note that the sequence (uε)ε⟩0 is bounded in
L2(Σ(x0)).

Let v ∈ Uad and y = y(v) the solution of the
problem (1− 3) associated. The couple {v, y(v)} is

admissible for theminimization problem (6) for every
ε > 0 and so
J

ε
(uε, zε) ≤ Jε(v, y(v)).

But as y(x) verifies
y′′ −△y = 0 in Q.
We see that
Jε(v, y(v)) = J(v),∀ϵ > 0,
so
Jε(uε, zε) ≤ J(v), ∀ϵ > 0,
and this for each v ∈ Uad , so we have
Jε(uε, zε) ≤ inf J(v), ∀ε > 0.
Especially
J(uε) ≤ inf J(v), ∀ϵ > 0.
And, if we put
fϵ =

1√
ε
(z′′ε −△zε).

We have (fε) bounded in L2(Q).

2.2.3 Third step
Quite to extract subsequences we will have
uε→0 v̂ in L2(Σ(x0)) weak.
We moreover∥∥z”ε −△zε

∥∥
L2(Q) ≤ C

√
ε, ∀ε > 0.

We fined (zε) bounded in
L∞(0, T, L2(Ω)) ∩W 1.∞(0, T,H−1(Ω)),
on particular

∥zε∥L2 (Q) ≤ C, ∀ε > 0, (7)

and even it means extracting yet another sub-suite

zε→ ŷ, ε→ 0 (8)

in L2(Q) weak.
According to (5) and (8) we have
ŷ′′ −∆ŷ = 0,
ŷ = v̂ in Σ(x0), ŷ = 0 in Σ∗(x

0),

ŷ(T ) = ŷ′(T ) = 0 in Ω,
ŷ(0) = y0; ŷ′(0) = y1 in Ω,
so we have
Jϵ(uϵ, zϵ) ≥ J(uϵ), v̂ ∈ Uad,
and after the week lower semi continuity of J we

have
J(v̂) ≤ lim inf J(uε) ≤ lim inf Jε(uε, zε),
we conclude
J(v̂) = inf J(v).
We have also proved that
limJ(uε) = J(v̂), (ε −→ 0)
which, combined with (7) gives
uε −→ v̂ in L2(Σ(x0)) (strong).

2.2.4 Fourth step
Consider the sequel
Pε =

1
ε (z

′′
ε −∆zε), ∀ε > 0,

obviously
Pε =

1
εfε, ∀ε > 0,
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we say that (fε)ε>0 is bounded in L2(Q) but we
do not yet have of estimate on (Pε)ε>0.

By writing the equation of Euler associated with
the problem of minimization (6). We have∫

Σ(x0)
uϵvdΣ−

∫
Q
pϵ(ζ

′′ −∆ζ)dxdt = 0, (9)

for all solution of
ζ ′′ −∆ζ ∈ L2(Q),
ζ(0) = ζ ′(0) = ζ(T ) = ζ ′(T ) = 0
ζ = v in Σ(x0), ζ = 0 in Σ∗(x

0),
with v ∈ L2(Σx0)).
By means of the Green formula we obtain
p′′ϵ −∆pϵ = 0 in Q,
pϵ = 0 on Σ,
∂pϵ
∂ν = uϵ on Σ(x0),
in effect∫
Q pε(ζ

′′ −△ζ) dxdt =∫
Q(p

′′
ε − pε)ζdxdt

−
∫
Σ pε

∂ζ
∂vdΣ+

∫
Σ(x0)

∂pε
∂v vdΣ,

and so, after (9)∫
Σ(x0) uεv dΣ =∫
Q(p

′′
ε − pε)ζdxdt

−
∫
Σ pε

∂ζ
∂vdΣ+

∫
Σ(x0)

∂pε
∂v vdΣ,

which is equivalent.

2.2.5 Fifth step
According to the inverse inequality we obtain

0.5× (T − 2R(x0))
{
|∇pε(0)|2 + |p′ε(0)|

2
}
≤

0.5 × R(x0)
∫
Σ(x0)

∣∣∣∂pε∂v ∣∣∣2 dΣ =
R(x0)

2

∫
Σ(x0) |uε|

2 dΣ,

the sequence (uε)ε>0
being bounded inL2(Σ(x0)),

we see that
|∇pε(0)|+ |p′ε(0)| ≤ 0, ∀ε > 0,
and according to the law of conservation of energy

,we have
pε → p in L∞((0, T,H1

0 (Ω)) ∩
W 1.∞(0, T, L2(Ω)),
pε → p on L∞((0, T,H1

0 (Ω)) weak,
p

′

ε → p
′ on L∞((0, T, L2(Ω)) weak,{

pϵ(0),p
′

ε(0)
}

→
{
p(0), p

′
(0)

}
on H1

0 (Ω) ×
L2(Ω) weak.

So the function p = p(x, t) solution of
p′′ −△p = 0 in Q,
p = 0 on Σ,
∂p
∂v = −→v on Σ(x0),

p(0) = p ; p
′
(0) = p1 in Ω.

2.2.6 Sixth step
We pose Φ = p ; Φ0 = p0 ; Φ1 = p1 and ψ = ŷ.

According to to (9) we have
Φ′′ −∆Φ = 0 in Q,
Φ = 0 on Σ,
Φ(0) = Φ0,Φ

′
(0) = Φ1 in Ω.

ψ′′ −∆ψ = 0 in Q.
ψ = ∂ψ

∂v on Σ(x0), ψ = 0 on Σ∗(x
0).

On the other hand as
ψ(0) = y0 ; ψ′

(0) = y1,
we have
Λ
{
Φ0,Φ1

}
=

{
y1,− y0

}
.

With Λ is the isomorphism between H1
0 (Ω) ×

L2(Ω) and H−1(Ω) × L2(Ω) introduced in the ap-
plication of HUM.

We thus see that the control−→v which by construc-
tion minimizes J ′(v) on Uad is the control given by
HUM since v̂ = ∂p

∂v = ∂Φ
∂v .

3 Standard optimal control of
distributed system

In this chapter, we will study the optimal control of
linear PDE’s ,( the dimension of space of solution
is infinite) We start by the presentation of the clas-
sical theory of the optimal control when we prove the
existence, uniqueness and characterization of the op-
timum and we give some examples Then we study
the optimal control for a linear system with incom-
plete data by present the notion of no-regret control
[21], and associated with low-regret control which
converges to the no-regret control, then we charac-
terize them and we give example.

3.1 Position of problem
LetY, U andZ be infinite dimensional Hilbert spaces
of states, controls and observation resp. Uad⊂ U is
a subset of admissible controls supposed non empty,
closed and convex.

f is a source function in y . Consider the (10)
well-posed abstract linear partial differential equation
:

Ay = f + Bv. (10)
Where A ∈ L (Y) is a linear partial differential

operator stationary or evolutionary (elliptic, parabolic
and hyperbolic ) makes an isomorphism on Y ′ identi-
fied toY , B ∈ L (U ,Y) is the control operator.

Our optimal control problem consists in looking
for a control function u ∈ Uad which minimizes the
following cost function

J (v) = ∥Cy(v)− yd∥2Z +N ∥v∥2U ∀v ∈ Uad,
(11)
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J is convex function from Uad ⊂ U toR∪{+∞} ,
C ∈ L (Y,Z) : the observation operator and N is a
symmetric definite positive operator bounded in U .
yd is the fixed observation in Z.
we search u solution of : find

u ∈ Uad (12)
such that J (u) = inf J (v) , v ∈ Uad

Theorem 3 ”Existence and uniqueness of optimal
control” Let Uad ⊂ U closed and nonempty, J is
lower semi continuous, bounded from below and co-
ercive on Uad. Then there exists a minimize for J on
Uad. Moreover, if J is strictly convex the minimize is
unique.

3.2 Optimal systems (Optimal control
characterization)

We have by a first order optimality condition
J ′ (u) (v − u) ≥ 0 ∀v ∈ Uad,
J is Gateaux-differentiable function
J ′ (u) (v − u) = lim t−1 (J (u+ t (v − u))− J (u))

for every v ∈ Uad, t −→ 0.
with a calculatation we fined
J (u+ t (v − u)) = J (u) + t2 ∥Cy (v − u)∥2z
+2t(Cy (u)− yd, Cy(v − u))Z
+t2N ∥v − u∥2

U
+ 2tN(u, v − u)U ,

which gives
t−1 (J (u+ t (v − u))− J (u))

= t ∥Cy (v − u)∥2
Z

+2(Cy (u) − yd, Cy(v − u))z + tN ∥v − u∥2
U
+

2N(u, v − u)U ,
when t→ 0 we find
J ′ (u) (v − u) = 2(C∗(Cy (u)− yd), y(v − u))Y
+2N(u, v − u)U ≥ 0, ∀v ∈ Uad.

Remark 4 A condition of the (12) from
J ′ (u) (v − u) is called the variationel inequal-
ity.

C∗ ∈ L (Z,Y) is the adjoint of C,A∗ is the adjoint
operator ofA and introduce the adjoint state p = p(u)
given by

A∗p(u) = C∗(Cy (u)− yd),
then
(C∗(Cy (u)− yd), δy(v − u))Y
= (A∗p(u), δy(v − u))Y
= (B∗p(u), (v − u))U .
Hence,
J ′ (u) (v − u) = (B∗p(u) + Nu, v − u)U ≥

0, ∀v ∈ Uad.
The optimal control problem (10, 11, 12) has a

unique solution u characterized by the following op-
timality system Ay(u) = f + Bu,

A∗p(u) = C∗(Cy(u)− yd),
(B∗p+Nu, v − u)U ≥ 0, ∀v ∈ Uad.

(13)

The equation 1 and 2 from (13) must be associated
to some appropriate boundary and initial condition.

We called the pair (u, p(u)) by the optimal pair.

Remark 5 We have no constraints on control, by
space structure of U ( if Uad = U) we deduce that
we also have J ′ (u) (v − u) ≤ 0 ∀v ∈ Uad,

and with the previous condition we get
J ′ (u) (v − u) = 0 ∀v ∈ U ,
therefore the optimality system become as follow-

ing
Ay(u) = f + Bu,
A∗p(u) = C∗(Cy(u)− yd),
(B∗p(u) +Nu, v − u)U = 0, ∀v ∈ U .

3.3 No-regret control and low-regret control
to solve distributed system with missing
data

In this section, we make an initiation to the theory of
the optimal control of problems with incomplete data,
where we introduce this leads to define the notion of
no- regret control, low regret control, [22]. Moreover,
we give existence, uniqueness , and prove that it con-
verges to the no-regret control, then we characterize
them via optimality systems and we give example.

3.3.1 Position of problem
We keep the same theorical framework as mentioned
in the last paragraphed, the difference here is the pres-
ence of missing data. For this reason, we define a new
operator β ∈ L (F,Y) where
F is a Hilbert space of uncertainties (missing data),

G is a non-empty closed subspace of F.
For f ∈ Y the abstract equation related to the con-

trol v ∈ Uad and the uncertainty g ∈ G is given by

Ay(v, g) = f + Bv + βg. (14)

The equation (14) is well posed in Y and has a
unique solution y (v, g) , which associate to her the
following cost function :

J(v, g) =∥ Cy(v, g)−yd ∥2Z +N ∥ v ∥2
U
, ∀v ∈ Uad, ∀g ∈ G.

(15)
as usual, we are concerned with the optimal con-

trol of (14) and (15) is to search u solution of

inf J(v, g), ∀g ∈ G, v ∈ Uad

when G is an infinite dimensional space the prob-
lem (14) has no sene, this problem is solved in, [23],
they using many notion like no-regret control and
pareto control, [24], there equivalents is proved in, [25].
We take

inf (g ∈ GsupJ(v, g)) , v ∈ Uad,
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but G is an infinite dimensional space we can get
g ∈ GsupJ(v, g) = +∞ and by the way the problem
has no sense. So, to avoid this difficulty, we introduce
the concept of “No-regret control”.

Remark 6 If G = {0} then J(v, g) = J(v, 0).
Therefore, the problem (14) becomes a standard op-
timal control problem :

find u ∈ Uad such that, J (u) = inf J (v) , v ∈
Uad.

To avoid difficulties arise whenwe get sup(v, g) =
+∞, g ∈ G, we take only controls such that ∀v ∈
Uad :
J(v, g) ≤ J(0, g), ∀g ∈ G
J(v, g)− J(0, g) ≤ 0, ∀g ∈ G.
Thus, we can say that sup (J(v, g)− J(0, g)) , g ∈

G exists.

3.4 No-regret control
Definition 7 We say that u ∈ Uad is a no-regret con-
trol for (14) and (15) if u solves

inf (sup (J (v, g)− J(0, g))) , v ∈ Uad, g ∈ G.
(16)

Remark 8 of course , the next problem is defied only
for controls such that

sup (J (v, g)− J(0, g)) <∞, g ∈ G.

Lemma 9 For every u ∈ Uad and g ∈ G we have :

J(v, g)−J(0, g) = J(v.0)−J(0, 0)+2 (S(v), g)G′,G ,
(17)

where S(v) = β∗ξ(v) and ξ(v) defined for v ∈
Uad by

A∗ξ(v) = C∗C(y(v, 0)− y(0, 0)).

A is a linear operator in Y, so :
y(v.g) = y(v, 0) + y(0, g)− y(0, 0),
y(0, g) = y(0, 0) + y(0, g)− y(0, 0),
with y(v, 0) and y(0, g) are a solution of (14)when

g = 0 and v = 0 resp.
By the definition of J(v, g) one obtain
J(v, g) = J(v, 0) + ∥C(y(0, g)− y(0, 0)∥2Z
+2(Cy(v, 0)− yd, C(y(0, g)− y(0, 0)))Z ,
and
J(0, g) = J(0, 0) + ∥C(y(0, g)− y(0, 0))∥2Z
+2(C(y(0, 0)− yd, C(y(0, g)− y(0, 0)))Z ,
then
J(v, g)− J(0, g) = J(v, 0)− J(0, 0)
+2(C∗C(y(v, 0)− y(0, 0)), y(0, g)− y(0, 0))Y .
Introduce an adjoint state ξ(v) given byA∗ξ(v) =

C∗C(y(v, 0)− y(0, 0)) to write

J(v, g)−J(0, g) = J(v, 0)−J(0, 0)+2(S(v), g)G′,G

(18)
where S(v) = β∗ξ(v), the last equation leads to

(18).

Remark 10 1. By (18) you can see that condition
(17) holds iff v ∈ k, where
K = {v ∈ Uad, (S(v), g) = 0∀g ∈ G} ,
is a closed subspace of U . Then, u is a no-regret

control iff u ∈ k.
2. The notion of no-regret control could be gener-

alized to no-regret control related to any a fixed con-
trol u0 ∈ Uad, i.e , we want controls v s.t

J(v, g) ≤ J(u0,g) ∀ g ∈ G

Definition 11 we say that u ∈ Uad is a no-regret con-
trol related to u ∈ Uad for (14)-(15) if u solve

inf sup(J(v, g)− J(u0,g).

Unfortunately, the main difficulty with no-regret
control arises when we want to characterize the set
k, for this reason we shall approximate the no-regret
control by a sequence of controls called low regret
controls

3.4.1 Characterization of the no-regret control
The optimality system of no-regret control is given by
:

Ay = f +Bu,
A∗ζ = C∗Cy (u, 0)− yd,
Aρ = βλ, λ ∈ G,
A∗p = C∗ (Cy (u, 0)− yd) + C∗Cρ,
(B∗p+Nu, v − u)U ≥ 0 ∀v ∈ Uad.
where y (u, 0) = y, ξ(u) = ξ.

3.5 The low-regret control
One through to relax (16) by making some quadratic
perturbation on J(0, g), in other words, we search
controls v such that
J(v, g) ≤ J(0, g) + γ ∥g∥2G , γ > 0, g ∈ G.

Definition 12 We say that uγ ∈ Uad is a low -regret
control for (14)-(15) if u solves

inf sup(J(v, g) − J(0, g) − γ ∥g∥2G), γ > 0, v ∈
Uad, g ∈ G.

So we have the equivalence
inf(J(v, 0)− J(0, 0)+

sup(2(S(v), g)G − γ ∥g∥2G)),
v ∈ Uad, g ∈ G.
Legendre transform, for
sup(2(S(v), g)G−γ ∥g∥2G) =

1
γ ∥S(v)∥

2
G , g ∈ G.

then
inf J ′(v), v ∈ Uad
where
J ′(v) = J(v, 0)− J(0, 0) + 1

γ ∥S(v)∥
2
G .

Now, we can define the low-regret by

Definition 13 We say that uγ ∈ Uad is a low-regret
control for (14) and (15) if u solves

inf sup(J(v, g)− J(0, g)− γ ∥g∥2G , γ > 0),
v ∈ Uad, g ∈ G.
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Theorem 14 ”Low-regret control: existence and
uniqueness” The problem (14) and (17) with (18)
has a unique solution uγ .

Theorem 15 The unique low-regret control uγ is con-
verge weakly when γ→ 0 to the unique no-regret con-
trol u in Uad.

Let uγ be a low-regret control in Uad then for all
v ∈ Uad
J ′ (uγ) ≤ Jγ (v) ,

J (uγ , 0)− J (0, 0) + 1
γ ∥β

∗ζ (uγ)∥2G
≤ J (v, 0)− J (0, 0) + 1

γ ∥β
∗ζ (v)∥2G , ∀v ∈ Uad,

by implies
J (uγ , 0) +

1
γ ∥β

∗ζ (uγ)∥2G
≤ J (v, 0) + 1

γ ∥β
∗ζ (v)∥2G , ∀v ∈ Uad,

we choose v = 0 to find
J (uγ , 0) +

1
γ ∥β

∗ζ (uγ)∥2G = constant,
then
∥uγ∥U ≤ C,
∥Cy (uγ , 0)∥Z ≤ C,
∥β∗ζ (uγ)∥G ≤ √

γC,
where C is a constant independent of γ.
(uγ) is bounded in Uad then we can extract a sub-

sequence still be denoting (uγ) converges weakly to
u ∈ Uad.

It’s clear that for every v ∈ Uad
J (v, g)− J (0, g)− γ ∥g∥2G ≤
J (v, g)− J (0, g) , ∀g ∈ G,
i.e,
J (v, g)− J (0, g)− γ ∥g∥2G ≤
sup (J (v, g)− J (0, g)) , ∀g ∈ G,
from another side we have
J (uγ , g)− J (0, g)− γ ∥g∥2G
≤ J (v, g)− J (0, g)− γ ∥g∥2G ,
so
J (uγ , g)− J (0, g)− γ ∥g∥2G
≤ sup (J (v, g)− J (0, g)) , ∀g ∈ G,
when γ tend to 0 we obtain
J (u, g)− J (0, g) ≤
sup (J (v, g)− J (0, g)) , ∀g ∈ G,
which means that
sup (J (u, g)− J (0, g))
= inf {sup (J (v, g)− J (0, g))} .
In conclusion, u is a no-regret control.

3.5.1 Characterization of the low-regret control
By a first order optimality condition we have
J ′(uγ)(v − uγ) ≥ 0, ∀v ∈ Uad,
where
J ′(uγ)(v − uγ) =
limh−1 (J (uγ + h (v − uγ))− J (uγ)),∀v ∈

Uad,
we have

h−1 (J (uγ + t (v − uγ))− J(uγ)) =

h ∥Cy(v − uγ , 0)∥2Z + hN ∥v − uγ∥2U
+h
γ ∥S (v − uγ)∥2G + 2(Cy(uγ , 0) − yd, Cy(v −

uγ , 0))Z
+2N(uγ , v − uγ)U + 2

γ (S(uγ), S (v − uγ))G,

when h→ 0 we find
J ′(uγ)(v − uγ) = 2(Cy(uγ , 0) − yd, Cy(v −

uγ , 0))Z
+2N(uγ , v − uγ)U + 2

γ (S(uγ), S (v − uγ))G.

By linearity of the operator C in Z we have
Jγ′(uγ)(v − uγ) =
2(C∗ (Cy(uγ , 0)− yd) , y(v, 0)− y (uγ , 0))Y
+2N(uγ , v − uγ)U + 2

γ (S(uγ), S (v − uγ))G,

y(v, 0)− y(uγ , 0) = y (v − uγ , 0)− y (0, 0) ,
then
J ′(uγ)(v − uγ) = 2(C∗ (Cy(uγ , 0)− yd) , y(v −

uγ , 0)− y (0, 0))Y
+2N(uγ , v − uγ)U + 2

γ (S(uγ), S (v − uγ))G.

The adjoint state
A∗ξ(uγ) = C∗C(y(uγ , 0)− y(0, 0)), then
(S(uγ), S (v − uγ))G = (ββ∗ξ(uγ), ξ(v−uγ))Y .
Introduce the state ργ = ρ(uγ) by
Aργ = 1

γββ
∗ξ(uγ),

this leads to the following equality
(Aργ , ξ(v − uγ))Y = (C∗Cργ , y(v − uγ , 0) −

y(0, 0))Y ,
introducing the new adjoint state pγ = p(uγ) by
A∗pγ = C∗(Cyγ − yd) + C∗Cργ ,
to find
(A∗pγ , y (v − uγ , 0) − y(0, 0))Y = (B∗pγ , v −

uγ)U .
Hence, the optimality condition is given by
J ′(uγ)(v − uγ) = (B∗pγ + Nuγ , v − uγ)U ≥

0, ∀v ∈ Uad.
Finally, the low-regret control is characterized by

the following optimality system :
Ayγ = f +Buγ ,
A∗ξγ = C∗C(yγ − y(0, 0)),

Aργ = 1
γββ

∗ξγ ,

A∗pγ = C∗(Cyγ − yd) + C∗Cργ ,
(B∗pγ +Nuγ , v − uγ)U ≥ 0, ∀v ∈ Uad,
where
y (uγ , 0) = yγ , ξ(uγ) = ξ

γ
.

4 Comparison between the controls
calculated through HUM and the
low regrets method

After the comprehensive and in-depth study of the
two methods, we can draw the following comparison
between the HUMmethod and the low-regret method.
The HUM method has advantages represented in If
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Uad = H the control is identifiable with the con-
joint state of systems for systems satisfying the Mi-
zohata hypotheses and the disadvantages represented
in firstly if Uad is empty this method does not work,
secondly ifUad is not empty (Slater) the method gives
a duality between the control and the conjoint state of
the systems. The advantages of the low-regret method
ensure control existence even in the empty Uad case
and it gives characterization equations for singular
systems, and the disadvantages that are not constric-
tive.

5 Conclusion
Generally, we conclude that the HUMmethod is used
for the regulars systems, and the no-regret method is
used for the singulars systems.

When Uad = H or interior non-empty (slater), we
can use the HUM method.
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