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Abstract: The generalized Liénard type differential equation is studied together with the two-point linear 
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multiplicity, the polar coordinates approach is used. The multiplicity results are based on the comparison 
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be non-oscillatory. The existence of the latter is required. It is shown also, that these conditions are fulfilled 
for a relatively broad class of equations. Some examples are constructed, which are supplied by comments and 
illustrations. 
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1 Introduction  

Boundary value problems (BVPs) for ordinary 
differential equations appear often in theoretical 
studies, [1], [2], [3], [4], and mathematical 
modelling of real-world processes. The existence 
of solutions is the main question. The existence of 
a solution should be confirmed before performing 
some numerical experiments. The linear theory 
provides answers to the main theoretical questions 
as to the existence and uniqueness of a solution. 
Nonlinear problems can be more difficult. The 
existence of a solution should be proved in many 
cases. Moreover, multiple non-similar solutions 
can appear in many practically oriented studies. 

The answers typically should be obtained for 
particular cases, where the general theory does not 
provide recommendations. The equations of 
Liènard type can be double-nonlinear 
(nonlinearities at f(x) and g(x) as in (1)) and there 
is space for rich dynamics of solutions. The 
classical Liènard equation is well-studied 
qualitatively, focusing on periodic solutions and 
bifurcations. The generalized Liènard type 
equations are general, and the behavior of 
solutions may be quite different. Generalized 
equations of Liénard type have been studied in the 
works, [5], [6], [7]. 

In the articles, [2], [8], have studied the 
boundary value problems of the form 𝑥′′ + 𝑎𝑥 −
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𝑏(𝑡)𝑥𝑛 = 0,  𝑥(0) = 𝑥(𝑇) = 0  or 𝑥′(0) =

𝑥′(𝑇) = 0, where n is a positive integer (most 
results concern the cases n = 2, n = 3, n = 5). The 
exact estimates of the number of solutions were 
obtained for autonomous equations of the form 
𝑥′′ + 𝑎𝑥 − 𝑏𝑥𝑛=0 and some results (mostly of a 
computational nature) were stated for the case of 
𝑏 = 𝑏(𝑡) being piece-wise constant function, [9]. 
The phase plane method was used extensively. 
Equations of the form: 

  
𝑥′′ + 𝑓(𝑥)𝑥′ + 𝑔(𝑥) = 0   (1) 

 
are a classical object for investigation. The Liènard 
and Van-der-Pol equations fall into this class. Both 
arose from practice. Equations of the form (1) are 
rich in oscillatory behaviors. They are known to 
have (under suitable conditions) isolated periodic 
solutions. The problem of estimating the number 
of limit cycles for the case of polynomial functions 
f(x) and g(x) has attracted the attention of 
prominent researchers. In contrast, equation (3) 
can be reduced to a conservative equation. The 
comparison of equations (3) and the shorter 
equation: 
 

𝑥′′ + 𝑔(𝑥) = 0.       (2) 
 
was made in the work, [10]. We focused on the 
case 𝑔(𝑥) = 𝑎𝑥 − 𝑏𝑥3 , a > 0, b > 0, and 
considered two-point boundary conditions for both 
equations. We intended to compare the number of 
solutions to the respective BVPs. For this, we 
made use of the special change of variables 
resulting in eliminating the middle term in (1). 
This technique was proposed, [11], when studying 
isochronous problems. An equation in new 
variables has a simpler form and can be (formally) 
integrated. This transformation keeps the trivial 
solution. This is important because, in various 
sources devoted to the study of multiple solutions 
of BVP, the following idea was exploited. Imagine 
that the oscillatory behavior of solutions can be 
measured around the trivial solution. If a 

comparison can be made with solutions far away 
from the trivial one, some conclusions can be 
made about the number of solutions for two-point 
boundary value problems. After the reduction of 
equation (1) to form (2) using the 
above-mentioned variable change, another 
comparison can be made, namely, the equation in 
question versus the reduced equation. This 
approach will be considered in the next sections. 
In the article, [10], the equation: 
 

𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑔(𝑥) = 0      (3) 
 
was considered together with the two-point 
boundary conditions of the Dirichlet and Neumann 
type. The existence of solutions and estimates of 
the number of solutions were in focus. The 
behavior of solutions, and as a consequence, the 
number of solutions heavily depends on the 
function f(x). Three types of f(x) were considered, 
and for all cases, the comparison was made of the 
number of solutions to certain BVP for equation (3) 
and Newtonian equation (2). The main conclusion 
made in, [10], is that generally, the number of 
solutions to the Dirichlet and Neumann problems 
for equation (3) is not less than that for equation 
(2). In this article, we consider more general the 
Sturm-Liouville-type conditions of the form: 
 

𝑎1𝑥(0) − 𝑏1𝑥′(0) = 0,

𝑎2𝑥(1) + 𝑏2𝑥′(1) = 0,
     (4) 

 
where all four coefficients are nonnegative but at 
least one coefficient in any equation is not zero. Of 
course, the Dirichlet and Neumann boundary 
conditions 𝑥(0) = 𝑥(1) = 0,  𝑥′(0) = 𝑥′(1) = 0  
are included. After the division of the first line in 

(4) by √𝑎1
2 + 𝑏1

2 one obtains the first condition in 

the form 𝑐𝑜𝑠 α 𝑥(0) − 𝑠𝑖𝑛 α 𝑥′(0) = 0, where 

 α = 𝑎𝑟𝑐𝑡𝑎𝑛 (
b1

a1
) ∈ [0,

π

2
]. Similarly, the second 

condition in (4) can be written in the form 
𝑐𝑜𝑠 β𝑥(1) − 𝑠𝑖𝑛 β 𝑥′(1) = 0,  
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where 𝑡𝑎𝑛 𝛽 = 𝑏2/𝑎2,   𝛽 ∈ [𝜋/2, 𝜋]. 
 
For instance, the boundary conditions: 

𝑥(0) − 𝑥′(0) = 0,

𝑥(1) + 𝑥′(1) = 0 
 

 
will be written as: 

𝑐𝑜𝑠 (
𝜋

4
) 𝑥(0) − 𝑠𝑖𝑛(𝜋/4) 𝑥′(0) = 0,

𝑐𝑜𝑠 (
3𝜋

4
) 𝑥(1) − 𝑠𝑖𝑛 (

3𝜋

4
) 𝑥′(1) = 0.

 

 
Therefore, our objects of investigation in this 
paper are equations (1) and (3) given together with 
the boundary conditions of the form: 
 

 
𝑐𝑜𝑠 𝛼 𝑥(0) − 𝑠𝑖𝑛 𝛼 𝑥′(0) = 0,

𝑐𝑜𝑠 𝛽 𝑥(1) − 𝑠𝑖𝑛 𝛽 𝑥′(1) = 0,
  (5) 

 
where α∈[0, π/2], β∈[π/2, π]. The Dirichlet and 
Neumann boundary conditions are included.  

In this article, we study equations of the type: 
   

𝑥′′ + 𝑓(𝑥)𝑥′ + 𝑔(𝑥) = 0 and 
𝑥′′ + 𝑓(𝑥)𝑥′2 + 𝑔(𝑥) = 0.    

 
We are interested in the existence of solutions and 
the multiplicity. Tools from the general theory, as 
well as some specific instruments, are used. 
Visualizations in a phase plane are helpful to 
understand and explain results. 
 

2   Existence  

Suppose all functions in (1) and (3) are continuous. 
Sometimes continuous differentiability is needed, 
but these cases are commented on consequently. 
Since the highest degree of the first order 
derivative in (1) and (3) is two, the Bernstein 
condition (the quadratic growth with respect to x′), 
which ensures boundedness of the first derivative 
of a solution, is always fulfilled. The existence of a 
solution to the Dirichlet problem: 
 

𝑥(𝑎) = 𝐴, 𝑥(𝑏) = 𝐵     (6) 
 
follows immediately, if the upper and lower 
functions 𝛽(𝑡) and 𝛼(𝑡) exist such that: 
 
𝛼(𝑎) ≤ 𝐴 ≤ 𝛽(𝑎), 𝛼(𝑏) ≤ 𝐵 ≤ 𝛽(𝑏), 𝛼(𝑡) ≤ 𝛽(𝑡) (7) 
 
and the inequalities: 
 

𝛼′′ + 𝑓(𝛼) 𝛼′2 + 𝑔(𝑎) ≥ 0,           (8) 
 

𝛽′′ + 𝑓(𝛽) 𝛽′2 + 𝑔(𝛽) ≤ 0         (9) 
 

hold in the interval [a,b] (Theorem 4 and Remark 
1 in, [12].  

This criterion is effective in many cases. For 
instance, let the function g(x) be an odd-degree 
polynomial with the principal term −x2n+1. Then 
any sufficiently large positive constant 𝛽 serves 
as the upper function (𝛽′′ + 𝑓(𝛽) 𝛽′2 + 𝑔(𝛽) =

𝑔(𝛽) ≤ 0) and, consequently, − 𝛽  is the lower 
function. On the other hand, it is difficult often to 
find 𝛼  and 𝛽  such that 𝛼 < 𝛽  in the interval 
[a,b]. For instance, the problem 𝑥′′ = −(𝜋 +

1)2𝑥, 𝑥(0) = 0 = 𝑥(1)  has only he trivial 
solution 𝑥(𝑡) ≡ 0.  However, the functions 
𝛼 and 𝛽,  satisfying (8) and (9) other than the 
trivial solution, do not exist. This was shown in, 
[12]. As to multiple solutions for BVPs, the 
method of upper and lower functions can be used, 
if pairs of upper and lower functions can be 
constructed. These are rare cases.  

The following result follows from known 
existence theorems and uses the specific form of 
the equations (1) and (3). 
 

Theorem 1. Suppose 𝑥𝑔(𝑥) < 0  for x such that 
|x|≥ 𝑀 > 0. Then the BVPs (1), (4) and (3), (4) 
have solutions. 
 
The proof follows from the fact that the functions 

𝛼 = −𝑀 and 𝛽 = 𝑀 are the lower and the upper 
functions for these problems. It is essentially that 
the straight line 
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𝑐𝑜𝑠 𝛼 𝑥(0) − 𝑠𝑖𝑛 𝛼 𝑥′(0) = 0 
 
either is vertical or connects the segments{𝑥 =

−𝑀, 𝑥′ < 0}  and {𝑥 = 𝑀, 𝑥′ > 0},  while the 
straight line 𝑐𝑜𝑠 𝛽 𝑥(1) − 𝑠𝑖𝑛 𝛽 𝑥′(1) = 0   
either is vertical or connects the segments 
{𝑥 = −𝑀, 𝑥′ > 0}  and {𝑥 = 𝑀, 𝑥′ < 0}.  It is 
also taken into account, that both equations (1) and 
(3) satisfy the Bernstein condition (at most the 
quadratic growth with respect to 𝑥′ in both 
equations). 
 

3   Multiplicity  

Let us pass to polar coordinates using formulas: 
 

{
𝑥(𝑡) = 𝑟(𝑡) sin 𝜑(𝑡)

𝑥′(𝑡) = 𝑟(𝑡) cos 𝜑(𝑡)
        (10) 

 
the polar system for the equation (3) is: 
 

{
𝜑′(𝑡) = cos2 𝜑(𝑡) + 𝑓(𝑥)𝑟(𝑡) sin 𝜑(𝑡) cos2 𝜑(𝑡) +

1

𝑟(𝑡)
𝑔(𝑥)𝑠𝑖 𝑛 𝜑(𝑡) ,

𝑟′(𝑡) =
1

2
𝑟(𝑡) sin 2𝜑(𝑡) − 𝑓(𝑥)𝑟2(𝑡) cos3 𝜑(𝑡) − 𝑔(𝑥) cos 𝜑(𝑡).

(11) 

 
The boundary conditions (5) in polar coordinates 
are: 
 

𝜑(0) = 𝛼, 𝜑(1) = 𝛽 + 𝜋𝑘, 𝑘 = 0,1, … . (12) 
 

In the work, [8], multiplicity results were 
formulated in terms of the variational equations for 
the Dirichlet and Neumann boundary conditions. 
We wish to do the same for the boundary 
conditions (5), or, equivalently, (11). 

First, let us introduce the variational equations 
for the nonlinear equations (1) and (3), with 
respect to the trivial solution 𝑥 ≡ 0. 

The variational equations for (1) and (3), 
provided that the trivial solution exists (the 
necessary condition for this is 𝑔(0) = 0) are: 

 
𝑦′′ + 𝑓(0)𝑦′ + 𝑔𝑥(0)𝑦 = 0  (13) 

 
and 

 
𝑦′′ + 𝑔𝑥(0)𝑦 = 0,    (14) 

 
respectively. Introduce the polar coordinates for 
the variational equations using the formulas: 
 

𝑦 = 𝜌(𝑡) sin 𝛳(𝑡), 𝑦′ = 𝜌(𝑡) cos 𝛳(𝑡).  
 
The following results are true. 
 

Theorem 2. Let the following conditions for the 
equation (1) hold: 

1) 𝑔(0) = 0; 
2) 𝛳(0) = 𝛼, 𝛳(1) ∈ (𝛽 + 𝜋𝑖, 𝛽 + 𝜋(𝑖 + 1)),  

where 𝛳(𝑡)  corresponds to the 

variational equation (13), i=0,1, …; 
3) there exists a solution x(t) of the Cauchy 

problem (1), ϕ(0)=α such that ϕ(1)< β. 
 

Then there exist at least i nontrivial solutions 
of the BVP (1), (5).  
Sketch of the proof. The variational equation 
around the trivial solution of equation (1) (it exists 
due to the condition 1)) is equation (13). Consider 
it in polar coordinates together with the initial 
conditions 𝛳(0) = 𝛼, 𝜌(0) = 1.  It follows from 
condition 2) that the angular function 𝛳(𝑡) attains 
the values of the form 𝛽 + 𝜋𝑘 at least i times. 
Look at the main equation (1) written in the polar 
coordinates (10). For small r(t) solutions behave 
similarly to the solutions of the variational 
equation. Therefore, the polar function 𝜑(𝑡) takes 
i values of the form 𝛽 + 𝜋𝑘 while r(0) is small. 
Increase r(0) until the value R corresponds to the 
solution x(t) from condition 3). The angular 
function 𝜑(𝑡)  changes continuously, and 𝜑(1) 
is in the interval (𝛽 + 𝜋𝑖, 𝛽 + 𝜋(𝑖 + 1)) for r(0) 
small enough, while 𝜑(1) is less than 𝛽   for 
large enough values r(0). Therefore 𝜑(1) takes 
all the intermediate values from 𝛽  to 𝛽 + 𝜋𝑖. 
Therefore i nontrivial solutions of the BVP (1), (5) 
appear.  
Remark. If the additional condition similar to 
condition 3) is added with the text replacement 
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“ϕ(0)=α+ 𝜋  such that ϕ(1)< β+ 𝜋" then the 
additional i solutions to the BVP are obtained by 
considering the initial value 𝜑(0) = 𝛽 + 𝜋  and 
repeating the reasoning.  
Theorem 3. Let the following conditions for the 
equation (3) hold: 

1) 𝑔(0) = 0; 
2) 𝛳(0) = 𝛼, 𝛳(1) ∈ (𝛽 + 𝜋𝑖, 𝛽 + 𝜋(𝑖 + 1)),  

where 𝛳(𝑡)  corresponds to the 

variational equation (14); 
3) there exists a solution x(t) of the Cauchy 

problem (3), ϕ(0)=α such that ϕ(1)< β. 
Then there exist at least i nontrivial solutions of 
the BVP (3), (5).  
 

The proof can be conducted similarly to the 
proof of Theorem 2. 

In the authors' previous work, the difference 
between these two results was discussed 
considering the Dirichlet boundary conditions. 

 

4   Corollaries 

Let the equation (3) be: 
𝑥′′ + 𝑓(𝑥)𝑥′2 + (𝑎𝑥 − 𝑏𝑥3) = 0,  (15) 

 
where f(x) is either a positive constant or x. 
 

Theorem 4. Let the following condition for the 
equation (15) hold: 
 

𝛳(0) = 𝛼, 𝛳(1) ∈ (𝛽 + 𝜋𝑖, 𝛽 + 𝜋(𝑖 + 1)),  

where 𝛳(𝑡) corresponds to the variational 

equation 𝑦′′ + 𝑎𝑦 = 0. 

 
Then there exist at least i nontrivial solutions 

of the BVP (15), (5).  
Proof. The condition 1) of Theorem 3 is fulfilled. 
Condition 3) of Theorem 3 is fulfilled also since 
there exists the homoclinic solution with slowly 
changing angular function 𝛳(𝑡) . This function 
with 𝛳(0) = 𝛼 for the time [0,1] does not reach 
the value 𝛳(1) = 𝛽 > 𝛼. We assume that α is in 

the interval [0, 𝜋) or β is in the interval (
𝜋

2
, 𝜋]. 

So the Neumann problem is excluded. 
 

If equation (3) has a phase portrait similar to 
Figure 5, where two heteroclinic trajectories form 
a bounded region, a result similar to Theorem 4, 
can be formulated. Such cases are multiple.  

 

5   Conclusion 

Equations of the for (3) may have regions, 
surrounded by two heteroclinic or one homoclinic 
trajectories. These regions may have complicated 
structures, containing the hierarchy of embedded 
period annuli, [13]. In simple cases, inside there is a 
unique critical point of the type center. Trajectories 
near this critical point rotate, and this rotation can 
be described in terms of the linearized variational 
equation. On the other hand, trajectories passing by 
the boundary, slow down and this behavior may be 
very different from the behavior near the critical 
point. In such cases, boundary value problems may 
have multiple solutions. Our examples above are of 
this kind. The Dirichlet and Neumann-type 
problems have multiple solutions for the 
appropriate choice of parameters in the equations.  
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APPENDIX 

We provide here some visual descriptions of 
equations of the form (3), which can be studied by 
the above-used approach. It is significant that 
following the half-ray 𝛳(0) = 𝛼 (the first of the 
boundary conditions) one meat a trajectory 
entering a saddle point. Then slowly changing 
solutions of equation (3) exist in the vicinity of 
such trajectory. For the estimates of the number of 
solutions to BVPs the properties of the equations 
of variations are also essential. 

Consider equation (15) with different 
functions 𝑓(𝑥) , let us represent the phase 
portraits. 
The phase portrait of equation (15), a = 50, b = 25, 
f (x) =µ = 1 is depicted in Figure 1.  
 

 
Fig. 1: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x) =µ = 1. 

 

The phase portrait of equation (15), a = 50, b = 

25, 
f (x) =(x2 – 1) is depicted in Figure 2. 
 

 
Fig. 2: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x)= x2 – 1. 
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The phase portrait of equation (15), a = 50, b = 

25, f (x) =1-x3 is depicted in Figure 3. 
 

 

Fig. 3: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x)= 1-x3. 

 

The phase portrait of equation (15), a = 50, b = 

25, f (x) =ex is depicted in Figure 4. 
 

 
Fig. 4: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x)= ex. 

 

The phase portrait of equation (15), a = 50, b = 

25, f (x) =x is depicted in Figure 5. 
 

 
Fig. 5: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x)= x. 

 

The phase portrait of equation (15), a = 50, b = 

25, 
f (x) =x2 is depicted in Figure 6. 
 

 
Fig. 6: The phase portrait of x´´+f(x)x´2+(ax− bx3)=0, a = 

50, b = 25,  f (x)= x2. 
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