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Abstract: The main purpose of this article is to use the (G'/G, 1/G)-expansion method to derive exact traveling
wave solutions of the paraxial wave dynamical model in Kerr media in the sense of the truncated M-fractional
derivative. To the best of the authors’ knowledge, the solutions of the model obtained using the expansion method
are reported here for the first time. The exact solutions are complex-valued functions expressed in terms of
hyperbolic, trigonometric, and rational functions. In order to show the physical interpretations of the solutions,
the magnitude of selected solutions is plotted in 3D, 2D, and contour plots for a range of values of the fractional-
order of the equation. With the aid of a symbolic software package, all of the obtained solutions are substituted
back into the relevant equation to verify their correctness. Obtaining the results by this technique confirms the
strength and efficacy of the method for generating a variety of exact solutions of the problems arising in applied
sciences and engineering.
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1 Introduction One of the interesting PDEs in applied sciences
and engineering is the paraxial wave dynamical equa-
Many physical phenomena arising in nature can tion model for transmission of light through optical
be modeled by nonlinear partial differential equa- fibers of Kerr media, [[14], [[15], [16], [17]. This
tions (NPDEs). For example, NPDEs have been model can be used to explain wave dynamics in
used as models in mechanics, [[l]], fiber optics, [2], optical fibers. This behavior includes optical soli-
oceanography, [3], acoustics, [@], biology, [J], and tons consisting of non-diffractive spatiotemporal and
finance, [(]]. Hence, finding solutions of NPDEs non-dispersive localized wave packets which transmit
has become important for modeling many real-world through the fiber. The paraxial wave equation in Kerr
problems. In particular, finding efficient techniques media can be written as, [[15], [[16], [L7], [18],
for deriving exact traveling wave solutions of NPDEs 2 2
has attracted the interest of many researchers. Ef- iaW fo VQV + 99 V;/ +EWPW =0, (1)
ficient methods that have been developed for ex- dy 2 ot 2 Ox
tracting exact solutions of NPDEs include the mod- where W = W (x,y,t) is the Kerr term which rep-
ified (G'/G?)-expansion method, [[7], the extended resents the bound of the complex wave, and f, g, k
generalized (G’ /G)-expansion method, [8], the tanh- are real constants. Eq. ([I}) for a monochromatic beam
coth method, [9], the Biacklund transformations, [[10], is equivalent to the nonlinear Schrodinger equation
the F-expansion method, []11]], the modified auxil- (NLSE) of a quantum particle. If f,¢ in Eq.([l])
iary equation method, [[12], and the two-variables are such that fg < 0, Eq. () becomes a hyper-
(G'/G,1/@G)-expansion method, [13]. bolic NLSE but if fg > 0, then Eq.([]) becomes
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an elliptic NLSE. In recent years, equation ([]) has
been solved using various analytical methods for its
exact traveling wave solutions as follows. In [[15]
the authors obtained solitons, elliptic function, and
other solutions of Eq. ([ll) via utilizing three analyti-
cal techniques, namely, the improved simple equation
method, the exp(—®(())-expansion method and the
modified extended direct algebraic technique. Dis-
tinct types of structures for the obtained solutions
were depicted graphically. According to [L§] some
singular, periodic, solitary wave, and rational so-
lutions of Eq.([[) were established using the Sar-
dar subequation method (SSM). The modulus, real
and imaginary plots of the solutions were demon-
strated for manifold implementations in many re-
search fields. In [L7] the modified extended map-
ping technique was employed to assemble the soli-
tons, solitary waves, and rational solutions for Eq. ([I}).
The stability of Eq. ([l]) was studied via using modula-
tional instability (MI) analysis from which all soliton
solutions of the equation were verified to be stable and
exact. Moreover, the ¢® model expansion technique
was utilized to obtain dark, bright, singular, bright-
dark, and periodic solitons for Eq. ([l) as discussed
in [|L8]. The obtained solutions were expressed in
the form of trigonometric, hyperbolic, and exponen-
tial functions. In addition, a recent literature review
for solving Eq. () by using other different techniques
and solving the fractional complex paraxial wave dy-
namical model with Kerr media in the sense of the
conformable fractional derivative with respect to time
can be found in [[19], and, [20], respectively.

However, a truncated M-fractional derivative,
[21], [22], [23], has recently attracted considerable
attention from many research scholars. Many par-
tial differential equations equipped with the truncated
M-fractional derivatives have been solved for their
exact traveling wave solutions which can be found
in [24], [25], [26], [27], [28]. An application of such
a derivative to the paraxial wave equation in Kerr me-
dia for formulating a novel equation is our major mo-
tivation. Consequently, it is very interesting to obtain
exact solutions of the resulting equation.

In this article, we adapt Eq. () by replacing its
classical partial derivatives with the truncated M-
fractional derivatives. The new equation can be writ-
ten as:

im0 W+ g w07 (ORI
+ G mdii, (wfw) + kwPw =0, @
0<B<I,

where m@ffx, m@fj’y and maf/ﬂ are the truncated M-

fractional partial derivatives of order 5 with respect
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to x,y, and ¢, respectively, which will be defined
in sectionf]. The main aim of this paper is to use
the (G'/G,1/G)-expansion method to extract exact
traveling wave solutions of Eq. (]) so that new solu-
tions and their physical behaviors are revealed here
for the first time. The remaining parts of this article
are organized as follows. Section[J includes the defi-
nition of the truncated M-fractional derivative and its
characteristics. The main steps of the (G'/G,1/G)-
expansion method are also described in this section.
The application of the expansion method to Eq. () is
described in section|. Graphical representations of
chosen exact solutions are shown in sectiond. The
conclusions of this research are discussed in the final
section.

2 Methoddology

In this section, a definition of the truncated M-
fractional derivative, its important properties and a
description of the (G’/G,1/G)-expansion method
are presented. They are required for constructing ex-
act traveling wave solutions of Eq. ().

2.1 Truncated M-fractional derivative and
its properties

Definition 2.1 The truncated Mittag-Leffler function

with one parameter is defined as, [21)], [22], [23],

n

Z I(yn+1)’

n=0

mE“/(Z) 3)

where v > 0 and z € C.

Definition 2.2 Let f : [0,00) — R be a function.
Then, the truncated M-fractional derivative of f of
order 3 is defined by, [21], [22], [23],

7+ 8Y)) —
m DA, f(t) = lim f (tnBy (7t77)) f(t)j

T—0 T

“4)

where 0 < 8 < 1 and~ > 0. If the limit in () ex-
ists, then we say that the function f is S-truncated M-
fractional differentiable, or shortly, 5-differentiable.

Moreover, if f is S-differentiable on (0,a), a >
0 and lim;_,p+ (meﬁ f (t)) exists, then we define

mDJBV’[:th(O) = limy_,o+ (mD]B\/tf(t)> . Some use-

ful properties of the truncated M-fractional derivative
are as follows, [21]], [25], [29], [3Q], [B1], [32]. Let
f(t), g(t) be p-differentiable functions for all ¢ > 0,
B € (0,1],and v > 0. Then, we have

(1) mDi7,(A) =0, YA ER.
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@) m D7y (af(t) + bg(t) = am DYy, (1)
+bmDi (1), Ya,b € R.

(3) mDY, (F(R)g(t)) = F(£) mDyh9(2)
+g(t) mDYLF (D).
By @
@ w24 (535
g m DI f () = () mDi7g(t)
(9(t))? ’

where g(t) # 0.
(5) mDyH(f 0 9)(1) = F'(9(0)m DY 9(1)
when f is differentiable at g(¢).

(6) If, in addition, f is differentiable,
then 1, D17 (f(1)) = iy

L(y+1) dt -
Utilizing the definition 2.2, the truncated M-fractional
partial derivative of u = u(x, t) with respect to ¢ > 0
of order 3 € (0, 1] is defined as

mOpu(z, t)

— i © (z, tm By (t77)) — u(m,t).

T—0 T

)

2.2 The (G'/G,1/G)-expansion Method
Consider the following nonlinear partial differential
equation in three independent variables ¢, x, and y:

a7 /B? 67 a7 6’
F (’LL, maMl“’ maM:yzua maMTyu’ maM?; (man/xu) )
a, J, B, s, _
maMZﬁ (maM'Tyu) 7m8M:Yx (maM'Tyu) 7) =0,

where 0 < «, 3,0 < 1, and ,,,0%; u, maﬁf

T

(6)

u, and

m@?\}gyu are the truncated M-fractional partial deriva-
tives of a dependent variable v with respect to inde-
pendent variables ¢, x, and y. F'is a polynomial of
the unknown function u = wu(x,y,t) and its various
partial derivatives in which the highest order deriva-
tives and nonlinear terms are involved. Employing
the following traveling wave transformation, [30]

u(z,y,t) = U(§),
kz? 1y et (7
=T H|{—+—=—+—+4d
where k, [, ¢, and d are constants to be determined
later, we can reduce Eq. (6) to the following ODE in
U=U():

PU,UU",..) =0, (8)
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where P is a polynomial of U(¢{) and its various
derivatives in which the prime notation (') repre-
sents the derivative with respect to £. Before we can
provide the key steps of the (G'/G,1/G)-expansion
method, it is necessary to give the following informa-
tion, [[13], [33], [34], [B5], [36]. Consider the follow-
ing second-order linear ODE:

G"(§) + AG(&) = p, )

where A\, p are constants. Denoting the functions ¢
and ¢ as

G'(6) _ 1
a9 oy
we can transform equations (f]) and ([L0) into the fol-

lowing system of two nonlinear ordinary differential
equations

¢ =—¢" + = A W =—gy. (1)

The solutions of Eq. (9) can be separated into the fol-
lowing three cases.

Case 1: If X < 0, then the general solution of (§) is
of the form

G(€) = Arsinh (£v=X)

¢(§) = (10)

(12)

+ Ay cosh (5\/—)\) + B

A

and we have the following relationship
—-A
2 2

== -2 A 13
V=g (G e, ()

where A; and A, are arbitrary constants and o
A2 . A2

1 2- )
Case 2: If A\ > 0, then the general solution of (§) can
be written as

G(€) = Avsin(¢VD) + Az cos (€VA) + L a4

and we have the following associated relation

A 2((;52_2/'“/}—'—)\)7

2 _
11[} - )\20'2—/.L (15)

where Ay and A, are arbitrary constants and oo
A2 + A3

Case 3: If A = 0, then the general solution of (§) can
be displayed as

G(6) = 56 + A1 + Ay, (16)
and the corresponding relation is
1
- (¢ 2w, 17
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where A and Ay are arbitrary constants.

The main steps of the (G'/G,1/G)-expansion
method, [[13], [33], [34], [35], [36], can be described
as follows.

Step 1. Assume that the solution to Eq. (§) can be
expressed in terms of a polynomial of the two vari-
ables ¢ and 1) as follows

N N
UE) =ao+ Y a;¢! +> b ', (18)
j=1

=1

where ag,aj, and b;,j = 1,2,..., N, are constants
to be found later with a%; + b% # 0 and where the
functions ¢ = ¢(&) and ¢ = () are implicitly as-
sociated to Eq. () through the relations in Eq. (L0).

Step 2. We determine the value of the positive
integer N in Eq. ([L§) by balancing the highest order
derivative and the nonlinear terms in Eq. (§). Denot-
ing the degree of U (&) by Deg[U(&)] = N, we can
calculate the degree of other terms in the equation us-
ing the following relations

o[22
s (19)
Deg [0 (T ) | = N+ +a)

Step 3. Replacing the solution form ([L§) with
the known value of N into Eq. () with the assistance
of Eq. ([L]) and Eq. ([13)), we can convert the function
P in Eq. (B) into a polynomial in ¢ and v in which
the degree of 1 is one. Equating each coefficient
of the resulting polynomial to zero, we obtain a sys-
tem of algebraic equations. These algebraic equations
can then be solved using the Maple software pack-
age to obtain values for the unknowns ag, a;, b, 7 =
1,2,...,N,k,l,c,d, u, \(< 0). Therefore, the exact
solutions of Eq. () can be obtained in terms of hyper-
bolic functions by using Eq. (12) and the transforma-
tion in Eq. ().

Step 4. Similar to Step 3, substituting the result
from Eq. (1§) into Eq. (§) with the aid of Eq. (1 1]) and
Eq. (13) for A > 0, we can obtain the exact solutions
of Eq. (6) by using the transformation (). The ob-
tained exact solutions in this step are written in terms
of trigonometric functions.

Step 5. In the same manner as Step 3, substituting
the result from Eq. ([1§) into Eq. (§) with the aid of
Eq. (1)) and Eq. ([L7) for A = 0, we can obtain the
traveling wave solutions of Eq. () with the help of
the transformation (7). The resulting exact solutions
in this step are obtained in terms of rational functions.

Remark 1: Particularly, if the balance number N
in Step 2 is not a positive integer, then some special
transformations must be applied for U () in (§) so that
the equation (§) can be converted into a new equation
of'anew variable. For example, if N = % is a fraction
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in the lowest terms, then U (§) = Ve (&) is inserted in
(B). Consequently, the new equation, written in terms
of V'(£), has a positive integer balance number, [37].

Remark 2: When applied, the (G'/G,1/G)-
expansion method can provide three types of exact
solutions including hyperbolic, trigonometric, and ra-
tional function solutions.

Remark 3: The (G'/G,1/G)-expansion method
can be reduced to the (G’/G)-expansion method by
some special setting, [37]. Thus, the (G'/G,1/G)-
expansion method is more effective and more general
than the (G’/G)-expansion method.

3 Implementation of the

(G'/G, 1/G)-expansion Method
In this section, we obtain exact traveling wave solu-
tions of Eq. (B)) by using the (G’/G,1/G)-expansion
method. First, we assume that the exact solution of
(@) has the form

W(z,y,t) = U(x)e”, (20)

where U is areal-valued function of y, i = /—1, and

I'(v+1
X = (VB )(dwg +doy” + pt?),

I'(v+1) @D

B

where dy, ds, p, s1, s2, T, and w are real constants,
the order 0 < [ < 1, and the parameter v > O.
Substituting the solution form (20) into the proposed
problem (P) and then separating the real and imagi-
nary parts of the resulting equation, we obtain the fol-
lowing equations:

£ = (512° 4 s99” + 77 + w),

Re: (fp2 + gd%)U”(x) —(fr*+gst +2s2) U (x)

+2kU3 (x) = 0, (22)

Im: (d2+ fpT +gdis1) U (x) =0. (23)
Since U’ (x) in Eq. (23) is not zero, we have

do = —(fp7 + gdis1). (24)

Next, balancing the terms U” and U? in Eq. (22)) via
the formulas in (|19), we obtain N = 1 and the solu-
tion form of Eq. (22) is then

U(x) = ao+a1¢(x) + b1y (x),

where ag, a1, and by are constant coefficients which
will be determined later such that af + b2 # 0. As
explained in equations ([[2), (14), and ([L6), there are
three cases for the functions ¢ () and 1 () in (29)
depending on the sign of \.

(25)
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Case 1 (Hyperbolic function solutions): if ) <o,

we substitute Eq.(23) with Eqgs.(L1) and ([13) into
Eq.(22) and then the left-hand side of Eq. (22) be-

comes a polynomial in ¢(x) and ¥(x). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in A, u, w, p, T, ag, a1, b1, d1, s1, and so:
¢ 2 NP AYa — 4 FApPAZALa
+ 2 A2 Aday 4+ 29\t Afayd?
—4g A2 A2a d2 + 29\t Aard?
+2kMAlad — 4EN A2 AL}
+2kX AJad + 4 2207 Aday
— 4 NP % Aday + 4 g\t A2ayd?
— 4 g\ Alayd? + ARN P ATad
—4kN? % Adad — 6 kN3 A2a b3
+6 k/\3A2a1b% +2 futp’a;
+2gptard? + 2kptal — 6 kX plarb?
pu— ()7
$? = 6 kA Ataga? — 12 kAT A2 A2apa?
+ 6 kA AJaga? + fN3up? Alby
— fX3up?A3by + g\ A2y ds
— g\ A2b1d? + 12 kN2 p? A2aga?
—12kN 2 Aaga? — 6 kA3 A2agh?
+ 6 kX3 A2agb? + f 3 p?hy
+ g\ p3bid? + 6 kptaga? — 46302k
— 6k plagh? =0,
¢*p 2 fANIpP AT — 4 PN PR AT AR,
+ 2 A2 Ay + 29Nt AT d2
— 4 g\ A2 A2 d2 + 2 g\t AShy d3
+ 6 kX ATa2by — 12N A2 A2,
+ 6 kA AJatby + 4 fA2 P p® A%hy
— 4 fN2 P p? Adby + 4 g2 A2byds
— A gN2 P A2b 2 + 12 kN2 2 A2a3h,
— 12kN? 2 A2a2b) — 2kN3A%D3
+ 2kN3A263 + 2 futp?by 4 2 gutb1d3
+ 6 kuta2by — 2kX %03 = 0,
b 2fNp?Ata; — 4 FA°p? A2 A2a
+2 fA°p2Aja; + 29N’ Afayd?
— 4 g\ A2 A2a,d2 + 29N Ajard3
— A2 A%a + 2 FAMT2 A2 Alay
— fXY2A%a; — gMt Atars?
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+ 29 M1 A2 A3a,57 — gA\tAja,s?

+ 6 kX Ataday — 12 kA1 A3 A3a2a,

+ 6 kM AJadar +4 FA3 P p? Alay

— 4 N3P p? Aday + 4 g\t A2ard?

— 4 g 3P Alayd? — 2 NP2 A2ay

+ 2 A2 ASay — 29Nt Aday st

+ 29222 A2ay 53 — 6 kAT AZa b2

+ 6 kA A2a b2 + 12 kN 2 A2aday
—12k\? 2A2a0a1 —2)\ Alalsg

+ 4/\4A%A arss — 2\ A2a132

+2 faptp?ar + 29X ptard?

— futrlay — gptarst — 6 kN pPab?

+ 6ku a0a1 - 4)\2u A1a182

+ 4)\2,u A2a152 — 2u a189 =0,

oY —3 A\ up*Atar + 6 fA pp? AT Aday

— 3\ p2A2a1 —3gA uAlald%
+ 6 g\t A2A3a1d2 — 3 g\t Ajard?
+ 12 kM Atagarby — 24 kA* A2 A2a0a1by
+ 12 kM Adagarby — 6 FA% 3 p? A%ay
+6 fA2u3p? A3a; — 6 g\ P A2ayd?
+6 g)\2u3A2a1d1 +12kX3 1 A2, b2
— 12N A3a1b% 4 24 kX2 p? A2agar by
— 24 kN?p? Aaparby — 3 fu’pla
— 3g,u5a1d% + 12k ,u?’alb%
+ 12 ku4agalbl =0,

W f)\5 2A4 2f>\5 2A2A2b
+ fA5 P2 Ay + gA\P Ay d?
— 2g\5 A2 A2b1d3 + g\S Agbyd3
— N2 ATD + 2 FAYT2 AT ARD,
— fNT2ALD, — gAt A 2
+ 29\ AT AD 57 — g\ AShy s?
+ 6 kM Aladby — 12X A2 A3a2b,
+ 6 kM AJadby — 2 FARUPT2ATY
+ 2 A% ASh) — 2 g\ P ATy s3
+ 2g\2 2 Adbys? — 2 kN A3
+ 2kNAZY + 12 kX3 A2 agh?
— 12X AJagb? + 12 kN2 2 ATadby
—12kN2 2 A2a2b; — 2 X4 Ay sy
+4M A2 A2b 50 — 201 ASby sy
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— fAptp%b1 — gA ptbrd] — futth
— gutbs? + 6 kX203 + 12 k) plagh?
+ 6 kputadby — 4 N2 A2byso

+4 )\2/1,214317182 — 2/1,417182 =0,
¢" = fATRAfag + 2 FAMTP AT ASag

— A2 A%ag — g\ Alags?
+ 29X\ A2 A2ags? — g\t Adags?
=+ 2 ]{)\41410/0 4 k/\4A2A2a0

+2kMAJad + A p? A2hy
— [N p? A3by + g\ ATbrd]
— g\ AZb1d? — 2 2P Aag
+ 2 A2 A2ag — 2 gN2 12 A2ags?
+ 2902 u? Adagst — 6 kAT A2agb?
+ 6 kAT A3a0b? + 4 kN Al
— 4 kN2 Adad — 2 M Atagsy
+ 4)\4A%A apss — 2\ A2a082
+ PPy +g)\2 Sbyd?

— fu'r?a0 — gptaost — 46}k
— 6 kA2 pPagh? + 2 kpt ao
- 4)\2,u A1a052 +4)\2 I A2a052

-2 ,u apsz = 0.
(26)
Solving the above algebraic system using the Maple
package program, we get the following results.
Result 1

A=\ u=00w=w,p=p, 7=7, a9 =0,

[ fp2+ gd
a; = + M()I_Odl_dh
k (27)

dy=—(fp7+gdisi), s1 = si1,
2
sp=fAp*+ghdi — - — =L,

where \(< 0), f, g, k,d1, p, s1, T, w are arbitrary
constants such that & (fp? + gd%) < 0. From Egs.

([12), 20), (23), and (27), we get the solution of Eq.
(R) as:

W(z,y,t) =

I \/T—i—gd% (A1 cosh x \/—7/\) v/—X 4+ Agsinh (X \/—7/\) V=X
k Ay sinh (x vV/=X) + Az cosh (x V=)

x e,
(28)
where A1, Ao arbitrary constants and

_ M (dlxﬁ

== —(pr+gd181)y5+pt6),
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f:w<51m6+(f)\pQ—&-g)\d?—%sz—%gs?>yB+‘rtB+w>.
Result 2

_ kbi
(fp2+gd%) o1’
pr,T:T,a():O, CL1:0, b1:b17

p=0w=uw,

(29)
di =dy, dy = = (fp7 + gdis1),
o1 (fT%+ gs3) + kb2
§1 = 81, 82 = — )
20‘1
where 01 = A2 Agandfv g, ka dlvpv S1, T, W, bla

Ay, Ay are arbltr constants such that A < 0. From
Egs. ([12), (R0), (%) and (29), we obtain the exact

solution of Eq. (B) as follows:

W(z,y,t) =
b1 ;
x e
Ay sinh (x vV=X) + Ap cosh (x V=N
(30)
where
T'(v+1
X = (75) (dwﬁﬁ — (fpr+gdis1)y’ +,0tﬁ> ;
£ = M s1xP — a1 (fT2 +gsf) +kb% yﬁ +7tP fw.
13 201
Result 3
4kb?
A= —————— u=0,w=wp=p,
o1 (fp? + gd3)
2 d2
T =T,00 :0,a1 == —pr—i];gly

by =b1,dy =dy,da=—(fpT+ gdisi), s1 = s1,

oo 1 (fr%+ gs?) — 2kb}
2 201 5

(1)
where 0y = A?—A2and f, g, k, d1, p, 51, T, w, b1,
Aj, Ay are arbitrary constants such that A < 0 and

k (fp® +gd?) < 0. From Egs. (12), (20), (3), and
(B1)), we obtain the exact solution of Eq. (B) as fol-
lows:

W(z,y,t) =
n /_fp2+gd% Aj cosh (x V=X) V=X + Az sinh (x V=X) V=X
4k Ajq sinh (X \/j)\) + A cosh (X \/T/\) + &

b1 i€
+Alsinh(X /,/\)+A2005h(x\/f)\)+§}><e ,

(32)

where
I(y+1
ot (dllﬁ — (fp7+gdis1)y® +pt5),
B
ERACESY (slch B <0'1 (fr2 +gs2) — 2kb2{> S 4ot +w> '
B 201
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Result 4

A=\p=pw=w,p=p 7=1,a =0,

fr* + gd?

— 4y LTI

“ ik
- i\/ (fp? + gd})\201 + (fp* + gdi)1?
! ) ’

di =dy,da=—(fpT+gdis1), s1 = s1,

1 1
Sg = 1)\ (f,o2 +gd%) -3 (fT2 —i—gs%) ,
(33)
where 01 = A? — A2 and \(< 0), i, f, g, k, d1, p,
s1, T, w, A1, Ao are arbitrary constants such that
k fp2+gd%) < O0and by € R. From Egs. (12),

), (29), and (B3)), we obtain the exact solution of
Eq. (R) as follows:

W(z,y,t) =
" /_fp2+gdf Ay cosh (x V=X) V=X 4+ Az sinh (x vV=X) V=X
4k Aq sinh (X \/7)\) + Ay cosh (X \/T)\) + &

(fp2+9d3)A201+(fp2+gd3)u?
kX } ie
+ ) X e,

(A1 sinh (X \/TA) + A, cosh (X \/—7)\) + %

(34)
where

_Th+1)

5 (dlzﬁ—(fpf+gd181)y5+pt’3)-,

= w&lwﬁ + GA (fp2 +gdf) - % (fT2 +98f) )yﬂ +7t? +w>.

Case 2 (Trigonometric function solutions):

If X\ > 0, we substitute Eq.(23) with Eqs.([L1]) and ([L3)
into Eq. (.) so that the left-hand side of Eq.(22) be-
comes a polynomial in ¢(x) and ¥(x). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in A, u, w, p, 7, ag, a1, b1, d1, s1, and so:

¢ 2 NP ATy + 4 FApPAZ Alay
+2 fAYp2 Ajay + 2 g\t Atad?
+ 4 g N A2 A2a1d3 + 2 g\ Ajayd?
+2kA Ata} + 4 kX A2 ASa}
+2kX ASad — 4 22 p? Aday
— 4 N2 p? Aday — A g\l Alayd?
— 49X 2A 2a0d? — 4 kNP2 Adad
— 4 kNP A3at + 6 kAP Afap b
+ 6 kX3 A2a102 + 2 futp?ay
+ 2gptards + 2 kptad — 6 kX plaib? =0,
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: 6 kA Alaga? + 12 kN A3 Adapa?

+ 6 kX ASaga? — fN3u p? A2,

— X3 p?A3by — g\ A2bd3

— g\ A3b1dt — 12 kNP2 A2aga?

— 12kXNp2 A2aga? + 6 kA3 A2agb?

+ 6 kA3 A3agb? + fA up?hy

+ gA 1Py d? + 6 kptaga?

— 4 kN2 b3 — 6 kX plagh? = 0,

2 fALP2 AT + 4 FA P2 AT AL,

+2 fA P2 ASDy + 2 g\ AThd2

+ 4 g\t A2 AZD1d3 4 2 g\ ASh d3

+ 6 k)\4A10/1b1 + 12 k‘A4A2A20,1b1

+ 6 kX ASa3by — 4 FA2 2 p? A%hy

— 4 NP PP Ay — 4 g2 A2 dd
— 4 g\t AShyd? — 12 kN2 p? AZaihy

— 12kX2p2 A2a2b + 2kN3 A28

+2EN3 AT + 2 fut p°by

+ 2gptb1d? 4 6 kpta2b,

— 2k 1203 = 0,

c 2 N p2ATay + 4 A5 pRAZ A3,

+2 A5 p? Ajar + 29N Alards
+ 4 g\ AT A2a1d3 4 2 g\S Ajay d?
— A2 A%a) — 2 FAMT2AZ Alay
— X2 A%a; — g\ Alay st
—2gX\1A2A2a,5% — gA\tAjays?
+ 6 kA Atadar + 12 kA1 AT A3aka,
+ 6 kM AJaday — 4 FN3 P p? Alay
— 4 N3P p? Aday — 49\t A3a,d?
— 4g)\3,u2A2a1d2 +2 A2 Alay
+ 2 A2 A0 + 29022 A2ay s2
+ Qg)\2 2A2a151 +6k\ A2 a1b2
+ 6 kN Adarb? — 12\ A2aday
—12kN? 2 A302a; — 2 M  Alay sy
— 4N A2 A2a150 — 201 Aday so
+2fA ,ﬁp ay + 2 g\ ptayd?
— futt?ar — gptars] — 6 kX pPar by
+ 6 k,u a0a1 +4 )2 2A1a152
+ 4)\2M2A2a152 — 2p a1s9 =0,
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o — 3\ pzA‘fal —6 A\ p2A2A2a1
— 3 X\ ptASar — 39\t Atad?
— 6 g\ AT A3a1d? — 39\ Ajard?
+ 12 kM Atagar by + 24 kX A2 Aaparby
+ 12X AJagarby + 6 FA% 13 p? A2ay
+6 FA2p3p? Asar + 6 g\ P A2ayd3
+6g\2uP Adard? — 12kN3p A2a b?
—12kN3p A3a b2 — 24 kXN 2 A2agarby
— 24 kN2 A3agarby — 3 fuPpla
— 3gp’ardi + 12k pPar b3
+ 12 k:,u4aoa1b1 =0,

¥ fASPRATDL + 2 FASp2 AT AZDy

+ fA5 2 Aby + gA\o Albyd?
+ 29N A2 A2b1d3 + gN\° ASbd3

— fATRALL — 2 fAYT AT ASDy
— fAI2 450 — gA\tATL s?
—2g\1A2A%b 57 — g\ AShy s2

+ 6 kAT Atadby + 12 kM AT AZadby
+ 6 kAT Aadby + 2 FAZ AT A,
+ 2 fN2U2 T2 AZh) + 29N Adhy 53
+ 2902 % A3by st + 2 kN ALY
+ 2kATAZDS — 12 kX3 A2agh?
— 12kN3p A3agh? — 12 kN2 p2 A2a3by
—12EN2 2 A2a2b; — 2 X ATy so

— 4N A2 AZb1 sy — 201 ASbyso
— fAptpPbr — gAptbyd}
— frtr%by — gutbis? + 6 bINZkp?
+ 12X paoh? + 6 ku'tadb
+4 )\2,u2A%b132 +4 )\QMQA%blsg
— 2,u4b152 =0,

@ — fAI2ATag — 2 FAMT2 A2 Ay
— fAT2 Aty — gAtAlaps?
— 29X\ A2 A2a057 — gA\TAjaps?
+2kA ATad + 4 kAT A2 A3l
+2kMAJad — A p® A%hy
— [N p? ASby — g\ ATbids
— g\ AZbd? 4+ 2 FA2 P2 A2
+ 2 22 A2ag + 2 g\t Aags?
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+ 2902 % Alagst + 6 kAT A2agb?
+ 6 kA AZagh? — 4 kN*pP A3ad
— 4 kN 2 A3ad — 201 Afagss
- 4)\4A2A2a082 224 A2a032
A2 2b1+g)\2 3hyd2
— futrt?ag — gptags? — 4b3)\3k‘u
— 6 kX2 pPagh? + 2 kptad + 4 NP A2agss
+ 4A2u2A%a052 — 2 ptagsy = 0.

(35)

Solving the above algebraic system using the Maple
package program, we get the following results:
Result 1

A=Ap=0w=w,p=p, 7=1,0a0=0,

/ 2 d?
ap ==+ _%a b1207d1:d17

dy=—(fp7T+gdisi), s1 = s1,

1 1
= AP+ ghdi = 5 fr* = 5 gsi,
(36)
where \(> 0), f, g, k dl, p, 81, T, w are arbitrary
constants such that & (fp? + gdz) < 0. From Egs.

([14), 20), (29), and (B), we get the solution of Eq.
(2) as follows:

2 d2
Wi,y 1) = - 1290

(A1 cos (Xﬁ) VA — Assin ()mﬂ) \A)
Aj sin (X\A) + As cos ()mﬂ)

X

x e,
(37)
where A1, A re arbitrary constants and
_T(y+1) 8
=5 (4w
P(v+1)
B

1 1
X <slxﬁ+(f)\p2+g)\d%—2f7'2—gsf) yﬁ—i—Ttﬂ—&—w).

— (fpr +gdis1)y® + ptﬁ)

€=

2

Result 2
kb2
)‘:_—lauzoaw:va:p7
02 (fp2+gd%)
T=7,0a0=0,a1=0,b; = b1, dy =di,
dy = —(fp7 +gdis1), s1 = s1,

02 (fr%+ gs?) — kb3
2 20_2 )

(3%)
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where 0g = A2+ A2and f, g, k, d1, p, 51, T, w, b1,
Aq, Ay are arbltra% constants such that A > 0. From

Eqgs. ( ), (20) ), and (B§), we obtain the exact
solution of Eq. () as follows:
b1 i€
W(z,y,t) = xe",
Aq sin (X \&) + As cos (X ﬁ)
(39
where
I(v+1
= ('yﬁ ) <d1$ﬁ — (fpr +gdis1)y° +Ptﬁ> ;
‘= L(y+1)
B
2 2 _kb2
x(slxﬂ—m(ﬁ- +981) 1y5+7tﬂ+w>.
20‘2
Result 3
)‘:Avﬂzuaw:va:f%’r:'ra ap =0,
f0* + gdi
=44/ 22 I
ai Ak )
b ] (fp% + gd?) X203 — (fp? + gd?) 2
L 4k ’
di =dy, dy = —(fp7'+gd181), s1 = s1,
A
52 =7 (fp +9d2) -5 (fT +951)
(40)
where 09 = A2 + A2 and \(> 0), i, f, g, k, d1, p,

$1, T, w Ajq, Ay are arbitrary constants such that
/-c p +gd2) < 0and b; € R. From Egs. (14),

), (29), and (#0), we obtain the exact solution of
Eq (@) as follows:

W (z,y,t)

Ay cos (xVA) VA = Agsin (xvA) VA
Aysin (xVX) + Az cos (xVA) + 4
\/ p*tgdt)Voa—(fp*tgdi)s

Ay sin (xf) + Ay coS xf }

X

+

(41)
where

1
(dlxﬁ—(fp7+gd181)yﬁ+ptﬁ),

N —

A
X <51$ﬂ + (Z (fPQ + gd%) -
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Case 3 (Rational function solutions): If A = 0,
we substitute Eq.(23) with Eqgs.(L1}) and ( into
Eq.(22), so that the left-hand side of Eq. Eq.(22) be-
comes a polynomial in ¢(x) and ¢(x). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in u, w, p, T, ag, a1, b1,d1, s1, and sa:

¢ 8 fup?Aar — 8 fup? AT Asay
+ 2 fp?Alay + 8 gu? Alayd?
— 8gu A2 Agayd? +2gAtard?
+ 8ku’A3a3 — 8kp A2 Ayad
+2kAfa} — 12 kp Asar b3
+6kAja1b] =0,

¢ 24kp?Adaga? — 24 kp A? Asapa?
+ 6 kAtaga? + 2 fu?p* Asby
— fup®A3by + 2 gy Agbyd?
— g Afbidi® — 12 kp Azapb?
+ 6kA2agb? — 4 kpbd =0,
d*p - 8 fup?Alby — 8 fup? A2 Ash,

+2 fp2 Atby + 8 gu A3byd3
— 8gp A2 Agbid? + 2 gAtD d3
+ 24 kp? A3a3by — 24 kp A2 Asalhy
+6kAlatby — 4ku Asb3
+2kA%S =0,

¢ —Afutr?Ada; +4 fur?A?Asay

— friAlay — Agp*Ajay st
+4gu A2 Agars? — gAtarss
+ 24 k:uQAQaOal 24 ku A%Agagal

+ 6kAlaka; — 8 u?Aday sy
+ 8#14%142(1182 — 2A%a132 =0,
¢+ —12 fuip® ASar + 12 f1iP p? AT Asan

— 3 fup’Atar — 12 gy’ Asard;
+ 12 gp® AR Asard? — 3 g Alards
+ 48 k‘u2A%aoa1b1 — 48 kp A%Agaoalbl
+ 12 kAfagarby + 24 kp? Aza b3
—12kp A2a b? =0,

Vo — 4 futp® Aoby + 2 futp? AThy
— 4 fuPT? A% + 4 fuT? A2 Aghy
— fr2Alb, — 4 guPAgbid?
+2gp? ATbid} — 4 gp® ASby st
+4gu A2 Agbys? — gAtbs3
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+ 24 kp? A2a2by — 24 kp A2 Asalby
+ 6 kAladby + 24 kp® Asagh?
—12kp A2aob? + 8 ku’b?

-8 ,uzA%blsg + 8 IUA%AleSQ

— 2A411b152 = 0,

— 4 fPr?Alao + 4 fu A2 Asag
— fr?Afag — 4 gu Alaps?

+4gu A Aga()s%
+ 8ku’A3ad — Sk A2 Asald
+2kAlal —
+ SIU/A]_AQG/()SQ -2 A1a032 =0.

(42)
— gAjaost

2
8,u A2a052

Solving the above algebraic system using the Maple
package program, we get the following results.
Result 1

p=0,w=w,p=p 7=1,0 =0,

2 d2
a1::|: _Ma blzoadlzdla
V k (43)
dy=—(fpT+gdisi), s1 = si1,
1
S2 = _5 (fTZ +93%) )

where f, g, k dl, p, S1, T, w are arbitrary constants

such that k& f p? + gd?) < 0. From Egs. (14), (%
(29), and (#3), we obtain the exact solution of Eq. (2))

as follows:
A /_fﬂz"t;gd?Al
:t—

Ax + A

where Ay, As are arbitrary constants and

L(v+1)
== (e

W(z,y,t) = x e, (44)

fpr+gdis)y’ + ptﬁ) :

L(y+1)

=75

Result 2
p=0,w=w,p=p, 7=17,0 =0,a1 =0,

2 d
b :i\/ %A di = di,

pr+gd181), S1 = 81,

S3 = (fT +951)

— (
1
D)

(45)
where f, g, k,d1, p, 51, T, w, Ap are arbitrary con-
stants such that k ( fp*+ gd2) < 0. From Egs. (.)

(@) (@) and (@) the solution of Eq. () 1S:
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[_fp? +gd1A1
:t—

Arx + As

W (z,y,t) = x e (40)

where A is an arbitrary constant and

I'(y+1
= wﬂ) (dlxﬁ — (fp7 + gdis1)y” +ptﬁ> ;
I'v+1 1
£:<75 ><slx5—2(f72+gs%)yﬁ+7tﬁ+w>.
Result 3
p=0,w=w,p=p 7=1,00 =0,

| fp*+gd
a1::|:§ % b1 = a1Aq,

—(fpr+gdis1), s1 = s1,

1
52 = =5 (sz ‘1‘93%)7

(47

where f, g, k,dy, p, sl, T, w, Ay are arbitrary con-
stants such that k(fp?+ gdz) < 0. From Egs. (16),
(20, (.) and (47), we obtain the exact solution of
Eq. () as follows:

[_fp? +gd1A1 '
W(x,y,t) = :I:— x e

Arx + As

(48)

)

where Aj is arbitrary constant and

I'(v+1
= M (dlxﬁ — (pr +gd151)y’3 +,0tﬁ> y
B
T 1 1
€= (7;_ ) (slxﬂ ~3 (fr* + gs?) Y’ + 11’ +w>.
Result 4

_ (f* +gdi) AT + 4 kb3
24 (fp? + gd3)

| fr*+gdi
i, JE T
2 k0

y W =W, p=p,

T:T,(J,O:O,al

by = by, di =di,dy = — (fpT+ gdis1),
1 1
§1 = 81, S2 = —§f7'2— 595%

(49)
where f, g, k,dy, p, s1, T, w, by, Ay, Ao are arbi-
trary constants such that k& (fp® + gdi) < 0. From
Egs. (16), (20), (23), and (#Y), we get the solution of
Eq. () as follows:

q>\11+9> e (50)

Wit = (2
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where
@ = (x (fp* +gd?) AT +2 A1 As (fp* + gd3) + 4 x kbY),

@:,/_M
k 7

Q=4b1 Az (fp* +gdi),
O = > (fp* +gd3) AT + 4 Aix Az (fp° + gd?)
+ (4 f0° + 4gdl) A3 + 4 kb1,

= w (dlﬂfﬁ — (fp7+gdis1)y’ +Ptﬁ) ;
= 7“7/;_ ) <81lﬁ - % (fT2 +98?) y’@ +7't5 —l—w).

4 Graphs of Some Exact Solutions
In this section, we show graphs of some of the
exact traveling wave solutions of the truncated M-
fractional paraxial wave dynamical model in Kerr me-
dia in Eq. (2)) that we obtained using the (G’ /G, 1/G)-
expansion method. In particular, we show the exact
solutions through 3D, 2D, and contour plots for the
following range of fractional-order values: 5 = 0.9,
B8 = 0.8, and 3 = 0.6. The exact traveling wave
solutions in Eq. (28) and Eq. (87) have been chosen
to demonstrate how their physical behavior changes
in terms of 3D, 2D, and contour plots when values
of the fractional-order 3 are altered. All figures were
obtained using the Maple software package.

In Figure [I] (Appendix), magnitudes of the exact
traveling wave solution W (z, y, t) in (28) are plotted
on the domain

Dy = {(z,5,t)|0 <2 <60, y=1, and 0 < t < 30}
for the 3D plots and on the domain
D2:{(337y7t)|0§$§60,y:1, andt:l}

for the 2D graphs. In addition, contour plots, which
represent a 3D surface by plotting (z, t) contours for
a range of fixed |W| values, are also illustrated. The
following parameter values: A = —1, u =0, ag = 0,
bh=0,f=08g=2k=08d =2 p=0.5,
S1 :5,7':2,w:3,A1 :3,A2:5,and7:1.5
are used in this figure. In particular, Figures |lf (a)-(c),
(d)-(f), and (g)-(i) (Appendix) show the 3D, 2D, and
contour graphs of magnitudes of the exact solution
W (z,y,t)in (2§) calculated at 3 = 0.9, = 0.8, and
B = 0.6, respectively. As can be observed from the
3D graphs of Figure || (Appendix), the physical be-
havior of the magnitude of solution (2§) can be char-
acterized as an anti-soliton solution. In Figure [l (Ap-
pendix), it is worth noticing that the singular point of
|W (z,t)| can be moved as the value of the fractional-
order § is changed. This is because the denomi-

nator term A; sinh (X vV —)\) + Ag cosh (X vV —)\) in
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Eq. () can be zero depending upon the value of
B, which is embedded in . For the given parame-
ter values as mentioned above, the singular point is
r ~ 12.7918 when 8 = 0.9 and ¢t = 1 as shown in
Figure [l| (b) (Appendix).

In Figure P (Appendix), magnitudes of the exact
traveling wave solution W (z, y, t) in (87) are plotted
on the domain

Ds = {(z,y,t)|0<x<10,y=1, and 0 < t < 10}
for the 3D plots and on the domain
Dy={(z,9,4)|0 <2 <10,y =1, and t = 1}

for the 2D graphs. Contour plots, which represent a
3D surface by plotting (z,¢) contours for a range of
fixed || values, are also shown. The following pa-
rameter values: A = 1, u = 0, a9 = 0, by = 0,
f=1Lg=05k=1,d =2,p=01,s =5,
T=05w=1 4, =3, A, = 5,andy = 0.8
are used in this figure. In particular, Figures [ (a)-
(¢), (d)-(f), and (g)-(1) (Appendix) display the 3D, 2D,
and contour plots of magnitudes of the exact solution
W (x,y,t) in (87) calculated at 3 = 0.9, 3 = 0.8,
and 3 = 0.6, respectively. As can be observed from
the 3D graphs of Figure ] (Appendix), the magnitude
of solution (B7) can be categorized as a singularly pe-
riodic wave solution. In Figure P (Appendix), it is
worth observing that the singular point of |W (z,1)|
can be changed when the value of the fractional-order
[ is varied. This is because the denominator term

Aj sin (X ﬁ) + As cos (X ﬁ) in Eq. (7) can be
zero depending upon the value of 5, which appears
in x. Specifically, the singular point of |W (z,1)|
. For the
given parameter values as described above, some of
the singular points are, for instance, x &~ 2.1327 and

x ~ 4.0164 when 8 = 0.9 and ¢ = 1 as shown in
Figure 2 (b) (Appendix).

is obtained when y v/ A\ = — arctan (%)

5 Conclusions

In this paper, the paraxial wave dynamical model
in Kerr media with truncated M-fractional deriva-
tives given in (@) has been symbolically solved
to obtain exact traveling wave solutions using the
(G'/G,1/G)-expansion method. Since the equation
has complex-valued solutions, we wrote exact solu-
tions as the product of a real function U () and €% as
shown in (2(). The algebraic manipulations required
to obtain the exact solutions of the function U(x)
were carried out using the Maple software package.
We found that exact solutions for U () can be written
in terms of either hyperbolic functions, trigonometric
functions, or rational functions. From these solutions
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for U(x), we finally obtained the exact traveling wave
solutions of the equation () via Eq. (20) and the trans-
formation (21)).

In [38] the authors used the modified simple
equation method (MSEM) and the auxiliary equa-
tion method (AEM) to find exact solutions of the M-
fractional paraxial wave equation with Kerr media.
Their governing equation was equipped with higher-
order truncated M-fractional partial derivatives with
respect to ¢t and z. This is slightly different from
Eq. (2) in which the composite of the truncated M-
fractional derivatives of order less than one is used.
In addition, the fractional-order 3 was not inserted as
an exponent of the independent variables x, y, and
t in their traveling wave transformation. However,
the real function U (x) of their solutions expressed in
terms of the exponential functions were found. In [39]
the truncated time M-fractional paraxial wave equa-
tion in kerr media was explored for some optical so-
lutions. The unified scheme was implemented to ob-
tain exact traveling wave solutions of the proposed
equation. As a result, the solutions were expressed in
terms of hyperbolic, trigonometric, and rational func-
tions with some free parameters. Roughly compar-
ing our results to the obtained solutions in [3§], [39],
some of the exact solutions obtained in this article
have not been derived in any previous work because
equation (B) and the used method are not the same as
in the referred literature.

From our results, the 3D, 2D, and contour plots
of magnitudes of selected solutions have been plotted
for a range of values of fractional-order 3 using the
Maple package in order to understand the effects of
changing the fractional-order on the physical behav-
ior of chosen solutions. From Figure [l| and Figure
(Appendix), an anti-soliton solution and a singularly
periodic wave solution have been found. Finally, with
the assistance of Maple, all of the exact solutions have
been verified by substituting them back into the orig-
inal equation to check their correctness. In summary,
since the (G'/G,1/G)-expansion method is an ex-
tension of the (G’/G)-expansion method and its rel-
evant methods, [40], the advantage of the proposed
method is that it is more productive, efficient, and re-
liable for generating exact traveling wave solutions of
nonlinear real-world problems modeled by NPDEs.
This work could be improved by using different frac-
tional order values for the truncated M-fractional par-
tial derivatives with respect to x, y, and ¢. A promis-
ing future work would be to compare the fractional
equation and solutions developed in this article with
real data obtained from physical phenomena.
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Fig. 1: Graphs for |W(z,y,t)| where W (z,y,t) is expressed in (2§) and obtained using the (G'/G,1/G)-
expansion method: (a)-(c) when 5 = 0.9; (d)-(f) when 8 = 0.8; (g)-(i) when 8 = 0.6.
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expansion method: (a)-(c) when 5 = 0.9; (d)-(f) when 8 = 0.8; (g)-(i) when 8 = 0.6.
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