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Abstract: The main purpose of this article is to use the (G′/G, 1/G)-expansion method to derive exact traveling
wave solutions of the paraxial wave dynamical model in Kerr media in the sense of the truncated M-fractional
derivative. To the best of the authors’ knowledge, the solutions of the model obtained using the expansion method
are reported here for the first time. The exact solutions are complex-valued functions expressed in terms of
hyperbolic, trigonometric, and rational functions. In order to show the physical interpretations of the solutions,
the magnitude of selected solutions is plotted in 3D, 2D, and contour plots for a range of values of the fractional-
order of the equation. With the aid of a symbolic software package, all of the obtained solutions are substituted
back into the relevant equation to verify their correctness. Obtaining the results by this technique confirms the
strength and efficacy of the method for generating a variety of exact solutions of the problems arising in applied
sciences and engineering.
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1 Introduction
Many physical phenomena arising in nature can
be modeled by nonlinear partial differential equa-
tions (NPDEs). For example, NPDEs have been
used as models in mechanics, [1], fiber optics, [2],
oceanography, [3], acoustics, [4], biology, [5], and
finance, [6]. Hence, finding solutions of NPDEs
has become important for modeling many real-world
problems. In particular, finding efficient techniques
for deriving exact traveling wave solutions of NPDEs
has attracted the interest of many researchers. Ef-
ficient methods that have been developed for ex-
tracting exact solutions of NPDEs include the mod-
ified (G′/G2)-expansion method, [7], the extended
generalized (G′/G)-expansion method, [8], the tanh-
coth method, [9], the Bäcklund transformations, [10],
the F-expansion method, [11], the modified auxil-
iary equation method, [12], and the two-variables
(G′/G, 1/G)-expansion method, [13].

One of the interesting PDEs in applied sciences
and engineering is the paraxial wave dynamical equa-
tion model for transmission of light through optical
fibers of Kerr media, [14], [15], [16], [17]. This
model can be used to explain wave dynamics in
optical fibers. This behavior includes optical soli-
tons consisting of non-diffractive spatiotemporal and
non-dispersive localized wave packets which transmit
through the fiber. The paraxial wave equation in Kerr
media can be written as, [15], [16], [17], [18],

i
∂W

∂y
+
f

2

∂2W

∂t2
+
g

2

∂2W

∂x2
+ k|W |2W = 0, (1)

where W = W (x, y, t) is the Kerr term which rep-
resents the bound of the complex wave, and f, g, k
are real constants. Eq. (1) for a monochromatic beam
is equivalent to the nonlinear Schrödinger equation
(NLSE) of a quantum particle. If f, g in Eq. (1)
are such that fg < 0, Eq. (1) becomes a hyper-
bolic NLSE but if fg > 0, then Eq. (1) becomes
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an elliptic NLSE. In recent years, equation (1) has
been solved using various analytical methods for its
exact traveling wave solutions as follows. In [15]
the authors obtained solitons, elliptic function, and
other solutions of Eq. (1) via utilizing three analyti-
cal techniques, namely, the improved simple equation
method, the exp(−Φ(ζ))-expansion method and the
modified extended direct algebraic technique. Dis-
tinct types of structures for the obtained solutions
were depicted graphically. According to [16] some
singular, periodic, solitary wave, and rational so-
lutions of Eq. (1) were established using the Sar-
dar subequation method (SSM). The modulus, real
and imaginary plots of the solutions were demon-
strated for manifold implementations in many re-
search fields. In [17] the modified extended map-
ping technique was employed to assemble the soli-
tons, solitary waves, and rational solutions for Eq. (1).
The stability of Eq. (1) was studied via using modula-
tional instability (MI) analysis from which all soliton
solutions of the equationwere verified to be stable and
exact. Moreover, the ϕ6 model expansion technique
was utilized to obtain dark, bright, singular, bright-
dark, and periodic solitons for Eq. (1) as discussed
in [18]. The obtained solutions were expressed in
the form of trigonometric, hyperbolic, and exponen-
tial functions. In addition, a recent literature review
for solving Eq. (1) by using other different techniques
and solving the fractional complex paraxial wave dy-
namical model with Kerr media in the sense of the
conformable fractional derivative with respect to time
can be found in [19], and, [20], respectively.

However, a truncated M-fractional derivative,
[21], [22], [23], has recently attracted considerable
attention from many research scholars. Many par-
tial differential equations equipped with the truncated
M-fractional derivatives have been solved for their
exact traveling wave solutions which can be found
in [24], [25], [26], [27], [28]. An application of such
a derivative to the paraxial wave equation in Kerr me-
dia for formulating a novel equation is our major mo-
tivation. Consequently, it is very interesting to obtain
exact solutions of the resulting equation.

In this article, we adapt Eq. (1) by replacing its
classical partial derivatives with the truncated M-
fractional derivatives. The new equation can be writ-
ten as:

im∂
β,γ
M,yW +

f

2
m∂

β,γ
M,t

(
m∂

β,γ
M,tW

)
+
g

2
m∂

β,γ
M,x

(
m∂

β,γ
M,xW

)
+ k|W |2W = 0,

0 < β ≤ 1,

(2)

where m∂
β,γ
M,x,m∂

β,γ
M,y and m∂

β,γ
M,t are the truncated M-

fractional partial derivatives of order β with respect

to x, y, and t, respectively, which will be defined
in section 2. The main aim of this paper is to use
the (G′/G, 1/G)-expansion method to extract exact
traveling wave solutions of Eq. (2) so that new solu-
tions and their physical behaviors are revealed here
for the first time. The remaining parts of this article
are organized as follows. Section 2 includes the defi-
nition of the truncated M-fractional derivative and its
characteristics. The main steps of the (G′/G, 1/G)-
expansion method are also described in this section.
The application of the expansion method to Eq. (2) is
described in section 3. Graphical representations of
chosen exact solutions are shown in section 4. The
conclusions of this research are discussed in the final
section.

2 Methoddology
In this section, a definition of the truncated M-
fractional derivative, its important properties and a
description of the (G′/G, 1/G)-expansion method
are presented. They are required for constructing ex-
act traveling wave solutions of Eq. (2).

2.1 Truncated M-fractional derivative and
its properties

Definition 2.1 The truncated Mittag-Leffler function
with one parameter is defined as, [21], [22], [23],

mEγ(z) =

m∑
n=0

zn

Γ(γn+ 1)
, (3)

where γ > 0 and z ∈ C.

Definition 2.2 Let f : [0,∞) → R be a function.
Then, the truncated M-fractional derivative of f of
order β is defined by, [21], [22], [23],

mD
β,γ
M,tf(t) = lim

τ→0

f
(
tmEγ(τt

−β)
)
− f(t)

τ
, (4)

where 0 < β ≤ 1 and γ > 0. If the limit in (4) ex-
ists, then we say that the function f is β-truncated M-
fractional differentiable, or shortly, β-differentiable.

Moreover, if f is β-differentiable on (0, a), a >

0 and limt→0+

(
mD

β,γ
M,tf(t)

)
exists, then we define

mD
β,γ
M,tf(0) = limt→0+

(
mD

β,γ
M,tf(t)

)
. Some use-

ful properties of the truncated M-fractional derivative
are as follows, [21], [25], [29], [30], [31], [32]. Let
f(t), g(t) be β-differentiable functions for all t > 0,
β ∈ (0, 1], and γ > 0. Then, we have

(1) mD
β,γ
M,t(λ) = 0, ∀λ ∈ R.
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(2) mD
β,γ
M,t(af(t) + bg(t)) = amD

β,γ
M,tf(t)

+ bmD
β,γ
M,tg(t), ∀a, b ∈ R.

(3) mD
β,γ
M,t (f(t)g(t)) = f(t)mD

β,γ
M,tg(t)

+ g(t)mD
β,γ
M,tf(t).

(4) mD
β,γ
M,t

(
f(t)

g(t)

)
=
g(t)mD

β,γ
M,tf(t)− f(t)mD

β,γ
M,tg(t)

(g(t))2
,

where g(t) ̸= 0.

(5) mD
β,γ
M,t(f ◦ g)(t) = f ′(g(t))mD

β,γ
M,tg(t)

when f is differentiable at g(t).

(6) If, in addition, f is differentiable,
then mD

β,γ
M,t(f(t)) =

t1−β

Γ(γ+1)
df(t)
dt .

Utilizing the definition 2.2, the truncatedM-fractional
partial derivative of u = u(x, t) with respect to t > 0
of order β ∈ (0, 1] is defined as

m∂
β,γ
M,tu(x, t)

= lim
τ→0

u
(
x, tmEγ(τt

−β)
)
− u(x, t)

τ
.

(5)

2.2 The (G′/G, 1/G)-expansion Method
Consider the following nonlinear partial differential
equation in three independent variables t, x, and y:

F
(
u,m∂

α,γ
M,tu,m∂

β,γ
M,xu,m∂

δ,γ
M,yu,m∂

α,γ
M,t

(
m∂

β,γ
M,xu

)
,

m∂
α,γ
M,t

(
m∂

δ,γ
M,yu

)
,m∂

β,γ
M,x

(
m∂

δ,γ
M,yu

)
, ...
)
= 0,

(6)
where 0 < α, β, δ ≤ 1, and m∂

α,γ
M,tu, m∂

β,γ
M,xu, and

m∂
δ,γ
M,yu are the truncated M-fractional partial deriva-

tives of a dependent variable u with respect to inde-
pendent variables t, x, and y. F is a polynomial of
the unknown function u = u(x, y, t) and its various
partial derivatives in which the highest order deriva-
tives and nonlinear terms are involved. Employing
the following traveling wave transformation, [30]

u(x, y, t) = U(ξ),

ξ = Γ(γ + 1)

(
kxβ

β
+
lyδ

δ
+
ctα

α
+ d

)
,

(7)

where k, l, c, and d are constants to be determined
later, we can reduce Eq. (6) to the following ODE in
U = U(ξ):

P (U,U ′, U ′′, . . .) = 0, (8)

where P is a polynomial of U(ξ) and its various
derivatives in which the prime notation (′) repre-
sents the derivative with respect to ξ. Before we can
provide the key steps of the (G′/G, 1/G)-expansion
method, it is necessary to give the following informa-
tion, [13], [33], [34], [35], [36]. Consider the follow-
ing second-order linear ODE:

G′′(ξ) + λG(ξ) = µ, (9)

where λ, µ are constants. Denoting the functions ϕ
and ψ as

ϕ(ξ) =
G′(ξ)

G(ξ)
, ψ(ξ) =

1

G(ξ)
, (10)

we can transform equations (9) and (10) into the fol-
lowing system of two nonlinear ordinary differential
equations

ϕ′ = −ϕ2 + µψ − λ, ψ′ = −ϕψ. (11)

The solutions of Eq. (9) can be separated into the fol-
lowing three cases.
Case 1: If λ < 0, then the general solution of (9) is
of the form

G(ξ) = A1 sinh
(
ξ
√
−λ
)

+A2 cosh
(
ξ
√
−λ
)
+
µ

λ
,

(12)

and we have the following relationship

ψ2 =
−λ

λ2σ1 + µ2
(
ϕ2 − 2µψ + λ

)
, (13)

where A1 and A2 are arbitrary constants and σ1 =
A2

1 −A2
2.

Case 2: If λ > 0, then the general solution of (9) can
be written as

G(ξ) = A1 sin(ξ
√
λ) +A2 cos

(
ξ
√
λ
)
+
µ

λ
, (14)

and we have the following associated relation

ψ2 =
λ

λ2σ2 − µ2
(
ϕ2 − 2µψ + λ

)
, (15)

where A1 and A2 are arbitrary constants and σ2 =
A2

1 +A2
2.

Case 3: If λ = 0, then the general solution of (9) can
be displayed as

G(ξ) =
µ

2
ξ2 +A1ξ +A2, (16)

and the corresponding relation is

ψ2 =
1

A2
1 − 2µA2

(
ϕ2 − 2µψ

)
, (17)
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where A1 and A2 are arbitrary constants.
The main steps of the (G′/G, 1/G)-expansion

method, [13], [33], [34], [35], [36], can be described
as follows.

Step 1. Assume that the solution to Eq. (8) can be
expressed in terms of a polynomial of the two vari-
ables ϕ and ψ as follows

U(ξ) = a0 +

N∑
j=1

ajϕ
j +

N∑
j=1

bjϕ
j−1ψ, (18)

where a0, aj , and bj , j = 1, 2, . . . , N, are constants
to be found later with a2N + b2N ̸= 0 and where the
functions ϕ = ϕ(ξ) and ψ = ψ(ξ) are implicitly as-
sociated to Eq. (9) through the relations in Eq. (10).

Step 2. We determine the value of the positive
integer N in Eq. (18) by balancing the highest order
derivative and the nonlinear terms in Eq. (8). Denot-
ing the degree of U(ξ) by Deg[U(ξ)] = N, we can
calculate the degree of other terms in the equation us-
ing the following relations

Deg
[
dqU(ξ)

dξq

]
= N + q,

Deg
[
(U(ξ))p

(
dqU(ξ)

dξq

)s]
= Np+ s(N + q).

(19)

Step 3. Replacing the solution form (18) with
the known value ofN into Eq. (8) with the assistance
of Eq. (11) and Eq. (13), we can convert the function
P in Eq. (8) into a polynomial in ϕ and ψ in which
the degree of ψ is one. Equating each coefficient
of the resulting polynomial to zero, we obtain a sys-
tem of algebraic equations. These algebraic equations
can then be solved using the Maple software pack-
age to obtain values for the unknowns a0, aj , bj , j =
1, 2, . . . , N, k, l, c, d, µ, λ(< 0). Therefore, the exact
solutions of Eq. (6) can be obtained in terms of hyper-
bolic functions by using Eq. (12) and the transforma-
tion in Eq. (7).

Step 4. Similar to Step 3, substituting the result
from Eq. (18) into Eq. (8) with the aid of Eq. (11) and
Eq. (15) for λ > 0, we can obtain the exact solutions
of Eq. (6) by using the transformation (7). The ob-
tained exact solutions in this step are written in terms
of trigonometric functions.

Step 5. In the same manner as Step 3, substituting
the result from Eq. (18) into Eq. (8) with the aid of
Eq. (11) and Eq. (17) for λ = 0, we can obtain the
traveling wave solutions of Eq. (6) with the help of
the transformation (7). The resulting exact solutions
in this step are obtained in terms of rational functions.

Remark 1: Particularly, if the balance number N
in Step 2 is not a positive integer, then some special
transformationsmust be applied forU(ξ) in (8) so that
the equation (8) can be converted into a new equation
of a new variable. For example, ifN = q

p is a fraction

in the lowest terms, then U(ξ) = V
q

p (ξ) is inserted in
(8). Consequently, the new equation, written in terms
of V (ξ), has a positive integer balance number, [37].

Remark 2: When applied, the (G′/G, 1/G)-
expansion method can provide three types of exact
solutions including hyperbolic, trigonometric, and ra-
tional function solutions.

Remark 3: The (G′/G, 1/G)-expansion method
can be reduced to the (G′/G)-expansion method by
some special setting, [37]. Thus, the (G′/G, 1/G)-
expansion method is more effective and more general
than the (G′/G)-expansion method.

3 Implementation of the
(G′/G, 1/G)-expansion Method

In this section, we obtain exact traveling wave solu-
tions of Eq. (2) by using the (G′/G, 1/G)-expansion
method. First, we assume that the exact solution of
(2) has the form

W (x, y, t) = U(χ)eiξ, (20)

whereU is a real-valued function of χ, i =
√
−1, and

χ =
Γ(γ + 1)

β
(d1x

β + d2y
β + ρtβ),

ξ =
Γ(γ + 1)

β
(s1x

β + s2y
β + τtβ + ω),

(21)

where d1, d2, ρ, s1, s2, τ, and ω are real constants,
the order 0 < β ≤ 1, and the parameter γ > 0.
Substituting the solution form (20) into the proposed
problem (2) and then separating the real and imagi-
nary parts of the resulting equation, we obtain the fol-
lowing equations:

Re:
(
fρ2 + gd21

)
U ′′(χ)−

(
fτ2 + gs21 + 2 s2

)
U (χ)

+2 kU3 (χ) = 0, (22)
Im: (d2 + fρ τ + gd1s1)U

′ (χ) = 0. (23)

Since U ′ (χ) in Eq. (23) is not zero, we have

d2 = −(fρ τ + gd1s1). (24)

Next, balancing the terms U ′′ and U3 in Eq. (22) via
the formulas in (19), we obtain N = 1 and the solu-
tion form of Eq. (22) is then

U(χ) = a0 + a1ϕ (χ) + b1ψ (χ) , (25)

where a0, a1, and b1 are constant coefficients which
will be determined later such that a21 + b21 ̸= 0. As
explained in equations (12), (14), and (16), there are
three cases for the functions ϕ (χ) and ψ (χ) in (25)
depending on the sign of λ.
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Case 1 (Hyperbolic function solutions): If λ < 0,
we substitute Eq.(25) with Eqs.(11) and (13) into
Eq.(22) and then the left-hand side of Eq. (22) be-
comes a polynomial in ϕ(χ) and ψ(χ). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in λ, µ, ω, ρ, τ, a0, a1, b1, d1, s1, and s2:

ϕ3 : 2 fλ4ρ2A4
1a1 − 4 fλ4ρ2A2

1A
2
2a1

+ 2 fλ4ρ2A4
2a1 + 2 gλ4A4

1a1d
2
1

− 4 gλ4A2
1A

2
2a1d

2
1 + 2 gλ4A4

2a1d
2
1

+ 2 kλ4A4
1a

3
1 − 4 kλ4A2

1A
2
2a

3
1

+ 2 kλ4A4
2a

3
1 + 4 fλ2µ2ρ2A2

1a1

− 4 fλ2µ2ρ2A2
2a1 + 4 gλ2µ2A2

1a1d
2
1

− 4 gλ2µ2A2
2a1d

2
1 + 4 kλ2µ2A2

1a
3
1

− 4 kλ2µ2A2
2a

3
1 − 6 kλ3A2

1a1b
2
1

+ 6 kλ3A2
2a1b

2
1 + 2 fµ4ρ2a1

+ 2 gµ4a1d
2
1 + 2 kµ4a31 − 6 kλµ2a1b

2
1

= 0,

ϕ2 : 6 kλ4A4
1a0a

2
1 − 12 kλ4A2

1A
2
2a0a

2
1

+ 6 kλ4A4
2a0a

2
1 + fλ3µρ2A2

1b1

− fλ3µρ2A2
2b1 + gλ3µA2

1b1d
2
1

− gλ3µA2
2b1d

2
1 + 12 kλ2µ2A2

1a0a
2
1

− 12 kλ2µ2A2
2a0a

2
1 − 6 kλ3A2

1a0b
2
1

+ 6 kλ3A2
2a0b

2
1 + fλµ3ρ2b1

+ gλµ3b1d
2
1 + 6 kµ4a0a

2
1 − 4 b31λ

2kµ

− 6 kλµ2a0b
2
1 = 0,

ϕ2ψ : 2 fλ4ρ2A4
1b1 − 4 fλ4ρ2A2

1A
2
2b1

+ 2 fλ4ρ2A4
2b1 + 2 gλ4A4

1b1d
2
1

− 4 gλ4A2
1A

2
2b1d

2
1 + 2 gλ4A4

2b1d
2
1

+ 6 kλ4A4
1a

2
1b1 − 12 kλ4A2

1A
2
2a

2
1b1

+ 6 kλ4A4
2a

2
1b1 + 4 fλ2µ2ρ2A2

1b1

− 4 fλ2µ2ρ2A2
2b1 + 4 gλ2µ2A2

1b1d
2
1

− 4 gλ2µ2A2
2b1d

2
1 + 12 kλ2µ2A2

1a
2
1b1

− 12 kλ2µ2A2
2a

2
1b1 − 2 kλ3A2

1b
3
1

+ 2 kλ3A2
2b

3
1 + 2 fµ4ρ2b1 + 2 gµ4b1d

2
1

+ 6 kµ4a21b1 − 2 kλµ2b31 = 0,

ϕ : 2 fλ5ρ2A4
1a1 − 4 fλ5ρ2A2

1A
2
2a1

+ 2 fλ5ρ2A4
2a1 + 2 gλ5A4

1a1d
2
1

− 4 gλ5A2
1A

2
2a1d

2
1 + 2 gλ5A4

2a1d
2
1

− fλ4τ2A4
1a1 + 2 fλ4τ2A2

1A
2
2a1

− fλ4τ2A4
2a1 − gλ4A4

1a1s
2
1

+ 2 gλ4A2
1A

2
2a1s

2
1 − gλ4A4

2a1s
2
1

+ 6 kλ4A4
1a

2
0a1 − 12 kλ4A2

1A
2
2a

2
0a1

+ 6 kλ4A4
2a

2
0a1 + 4 fλ3µ2ρ2A2

1a1

− 4 fλ3µ2ρ2A2
2a1 + 4 gλ3µ2A2

1a1d
2
1

− 4 gλ3µ2A2
2a1d

2
1 − 2 fλ2µ2τ2A2

1a1

+ 2 fλ2µ2τ2A2
2a1 − 2 gλ2µ2A2

1a1s
2
1

+ 2 gλ2µ2A2
2a1s

2
1 − 6 kλ4A2

1a1b
2
1

+ 6 kλ4A2
2a1b

2
1 + 12 kλ2µ2A2

1a
2
0a1

− 12 kλ2µ2A2
2a

2
0a1 − 2λ4A4

1a1s2

+ 4λ4A2
1A

2
2a1s2 − 2λ4A4

2a1s2

+ 2 fλµ4ρ2a1 + 2 gλµ4a1d
2
1

− fµ4τ2a1 − gµ4a1s
2
1 − 6 kλ2µ2a1b

2
1

+ 6 kµ4a20a1 − 4λ2µ2A2
1a1s2

+ 4λ2µ2A2
2a1s2 − 2µ4a1s2 = 0,

ϕψ : − 3 fλ4µρ2A4
1a1 + 6 fλ4µρ2A2

1A
2
2a1

− 3 fλ4µρ2A4
2a1 − 3 gλ4µA4

1a1d
2
1

+ 6 gλ4µA2
1A

2
2a1d

2
1 − 3 gλ4µA4

2a1d
2
1

+ 12 kλ4A4
1a0a1b1 − 24 kλ4A2

1A
2
2a0a1b1

+ 12 kλ4A4
2a0a1b1 − 6 fλ2µ3ρ2A2

1a1

+ 6 fλ2µ3ρ2A2
2a1 − 6 gλ2µ3A2

1a1d
2
1

+ 6 gλ2µ3A2
2a1d

2
1 + 12 kλ3µA2

1a1b
2
1

− 12 kλ3µA2
2a1b

2
1 + 24 kλ2µ2A2

1a0a1b1

− 24 kλ2µ2A2
2a0a1b1 − 3 fµ5ρ2a1

− 3 gµ5a1d
2
1 + 12 kλµ3a1b

2
1

+ 12 kµ4a0a1b1 = 0,

ψ : fλ5ρ2A4
1b1 − 2 fλ5ρ2A2

1A
2
2b1

+ fλ5ρ2A4
2b1 + gλ5A4

1b1d
2
1

− 2 gλ5A2
1A

2
2b1d

2
1 + gλ5A4

2b1d
2
1

− fλ4τ2A4
1b1 + 2 fλ4τ2A2

1A
2
2b1

− fλ4τ2A4
2b1 − gλ4A4

1b1s
2
1

+ 2 gλ4A2
1A

2
2b1s

2
1 − gλ4A4

2b1s
2
1

+ 6 kλ4A4
1a

2
0b1 − 12 kλ4A2

1A
2
2a

2
0b1

+ 6 kλ4A4
2a

2
0b1 − 2 fλ2µ2τ2A2

1b1

+ 2 fλ2µ2τ2A2
2b1 − 2 gλ2µ2A2

1b1s
2
1

+ 2 gλ2µ2A2
2b1s

2
1 − 2 kλ4A2

1b
3
1

+ 2 kλ4A2
2b

3
1 + 12 kλ3µA2

1a0b
2
1

− 12 kλ3µA2
2a0b

2
1 + 12 kλ2µ2A2

1a
2
0b1

− 12 kλ2µ2A2
2a

2
0b1 − 2λ4A4

1b1s2

+ 4λ4A2
1A

2
2b1s2 − 2λ4A4

2b1s2
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− fλµ4ρ2b1 − gλµ4b1d
2
1 − fµ4τ2b1

− gµ4b1s
2
1 + 6 kλ2µ2b31 + 12 kλµ3a0b

2
1

+ 6 kµ4a20b1 − 4λ2µ2A2
1b1s2

+ 4λ2µ2A2
2b1s2 − 2µ4b1s2 = 0,

ϕ0 : − fλ4τ2A4
1a0 + 2 fλ4τ2A2

1A
2
2a0

− fλ4τ2A4
2a0 − gλ4A4

1a0s
2
1

+ 2 gλ4A2
1A

2
2a0s

2
1 − gλ4A4

2a0s
2
1

+ 2 kλ4A4
1a

3
0 − 4 kλ4A2

1A
2
2a

3
0

+ 2 kλ4A4
2a

3
0 + fλ4µρ2A2

1b1

− fλ4µρ2A2
2b1 + gλ4µA2

1b1d
2
1

− gλ4µA2
2b1d

2
1 − 2 fλ2µ2τ2A2

1a0

+ 2 fλ2µ2τ2A2
2a0 − 2 gλ2µ2A2

1a0s
2
1

+ 2 gλ2µ2A2
2a0s

2
1 − 6 kλ4A2

1a0b
2
1

+ 6 kλ4A2
2a0b

2
1 + 4 kλ2µ2A2

1a
3
0

− 4 kλ2µ2A2
2a

3
0 − 2λ4A4

1a0s2

+ 4λ4A2
1A

2
2a0s2 − 2λ4A4

2a0s2

+ fλ2µ3ρ2b1 + gλ2µ3b1d
2
1

− fµ4τ2a0 − gµ4a0s
2
1 − 4 b31λ

3kµ

− 6 kλ2µ2a0b
2
1 + 2 kµ4a30

− 4λ2µ2A2
1a0s2 + 4λ2µ2A2

2a0s2

− 2µ4a0s2 = 0.
(26)

Solving the above algebraic system using the Maple
package program, we get the following results.
Result 1
λ = λ, µ = 0, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±
√

−fρ
2 + gd21
k

, b1 = 0, d1 = d1,

d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = fλ ρ2 + gλ d21 −
fτ2

2
− gs21

2
,

(27)

where λ(< 0), f, g, k, d1, ρ, s1, τ, ω are arbitrary
constants such that k

(
fρ2 + gd21

)
< 0. From Eqs.

(12), (20), (25), and (27), we get the solution of Eq.
(2) as:
W (x, y, t) =

±

√
−
fρ2 + gd21

k

((
A1 coshχ

√
−λ
)√

−λ+A2 sinh
(
χ
√
−λ
)√

−λ

A1 sinh
(
χ
√
−λ
)
+A2 cosh

(
χ
√
−λ
) )

× eiξ,
(28)

where A1, A2 arbitrary constants and

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β
+

(
fλ ρ

2
+ gλ d

2
1 −

1

2
fτ

2 −
1

2
gs

2
1

)
y
β
+ τt

β
+ ω

)
.

Result 2

λ =
kb21(

fρ2 + gd21
)
σ1
, µ = 0, ω = ω,

ρ = ρ, τ = τ, a0 = 0, a1 = 0, b1 = b1,

d1 = d1, d2 = − (fρ τ + gd1s1) ,

s1 = s1, s2 = −
σ1
(
fτ2 + gs21

)
+ kb21

2σ1
,

(29)

where σ1 = A2
1−A2

2 and f, g, k, d1, ρ, s1, τ, ω, b1,
A1, A2 are arbitrary constants such that λ < 0. From
Eqs. (12), (20), (25), and (29), we obtain the exact
solution of Eq. (2) as follows:

W (x, y, t) =

b1

A1 sinh
(
χ
√
−λ
)
+A2 cosh

(
χ
√
−λ
) × eiξ,

(30)
where

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β −
(
σ1

(
fτ2 + gs21

)
+ kb21

2σ1

)
yβ + τtβ + ω

)
.

Result 3

λ =
4kb21

σ1
(
fρ2 + gd21

) , µ = 0, ω = ω, ρ = ρ,

τ = τ, a0 = 0, a1 = ±
√

−fρ
2 + gd21
4k

,

b1 = b1, d1 = d1, d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = −
σ1
(
fτ2 + gs21

)
− 2kb21

2σ1
,

(31)
where σ1 = A2

1−A2
2 and f, g, k, d1, ρ, s1, τ, ω, b1,

A1, A2 are arbitrary constants such that λ < 0 and
k
(
fρ2 + gd21

)
< 0. From Eqs. (12), (20), (25), and

(31), we obtain the exact solution of Eq. (2) as fol-
lows:
W (x, y, t) ={

±

√
−

fρ2 + gd2
1

4k

(
A1 cosh

(
χ
√
−λ
)√

−λ + A2 sinh
(
χ
√
−λ
)√

−λ

A1 sinh
(
χ
√
−λ
)
+ A2 cosh

(
χ
√
−λ
)
+ µ

λ

)

+
b1

A1 sinh
(
χ
√
−λ
)
+ A2 cosh

(
χ
√
−λ
)
+ µ

λ

}
× e

iξ
,

(32)
where
χ =

Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β −
(
σ1

(
fτ2 + gs21

)
− 2kb21

2σ1

)
yβ + τtβ + ω

)
.
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Result 4

λ = λ, µ = µ, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±
√

− fρ2 + gd21
4k

,

b1 = ±
√

(fρ2 + gd21)λ
2σ1 + (fρ2 + gd21)µ

2

4kλ
,

d1 = d1, d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 =
1

4
λ
(
fρ2 + gd21

)
− 1

2

(
fτ2 + gs21

)
,

(33)
where σ1 = A2

1 − A2
2 and λ(< 0), µ, f, g, k, d1, ρ,

s1, τ, ω, A1, A2 are arbitrary constants such that
k
(
fρ2 + gd21

)
< 0 and b1 ∈ R. From Eqs. (12),

(20), (25), and (33), we obtain the exact solution of
Eq. (2) as follows:

W (x, y, t) ={
±

√
−

fρ2 + gd2
1

4k

(
A1 cosh

(
χ
√
−λ
)√

−λ + A2 sinh
(
χ
√
−λ
)√

−λ

A1 sinh
(
χ
√
−λ
)
+ A2 cosh

(
χ
√
−λ
)
+ µ

λ

)

±


√

(fρ2+gd21)λ2σ1+(fρ2+gd21)µ2

4kλ(
A1 sinh

(
χ
√
−λ
)
+ A2 cosh

(
χ
√
−λ
)
+ µ

λ

)

}

× e
iξ
,

(34)
where

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β
+ ρ t

β
)
,

ξ =
Γ(γ + 1)

β

(
s1x

β
+
( 1

4
λ
(
fρ

2
+ gd

2
1

)
−

1

2

(
fτ

2
+ gs

2
1

))
y
β
+ τ t

β
+ ω

)
.

Case 2 (Trigonometric function solutions):
If λ > 0, we substitute Eq.(25) with Eqs.(11) and (15)
into Eq.(22), so that the left-hand side of Eq.(22) be-
comes a polynomial in ϕ(χ) and ψ(χ). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in λ, µ, ω, ρ, τ, a0, a1, b1, d1, s1, and s2:

ϕ3 : 2 fλ4ρ2A4
1a1 + 4 fλ4ρ2A2

1A
2
2a1

+ 2 fλ4ρ2A4
2a1 + 2 gλ4A4

1a1d
2
1

+ 4 gλ4A2
1A

2
2a1d

2
1 + 2 gλ4A4

2a1d
2
1

+ 2 kλ4A4
1a

3
1 + 4 kλ4A2

1A
2
2a

3
1

+ 2 kλ4A4
2a

3
1 − 4 fλ2µ2ρ2A2

1a1

− 4 fλ2µ2ρ2A2
2a1 − 4 gλ2µ2A2

1a1d
2
1

− 4 gλ2µ2A2
2a1d

2
1 − 4 kλ2µ2A2

1a
3
1

− 4 kλ2µ2A2
2a

3
1 + 6 kλ3A2

1a1b
2
1

+ 6 kλ3A2
2a1b

2
1 + 2 fµ4ρ2a1

+ 2 gµ4a1d
2
1 + 2 kµ4a31 − 6 kλµ2a1b

2
1 = 0,

ϕ2 : 6 kλ4A4
1a0a

2
1 + 12 kλ4A2

1A
2
2a0a

2
1

+ 6 kλ4A4
2a0a

2
1 − fλ3µρ2A2

1b1

− fλ3µρ2A2
2b1 − gλ3µA2

1b1d
2
1

− gλ3µA2
2b1d

2
1 − 12 kλ2µ2A2

1a0a
2
1

− 12 kλ2µ2A2
2a0a

2
1 + 6 kλ3A2

1a0b
2
1

+ 6 kλ3A2
2a0b

2
1 + fλµ3ρ2b1

+ gλµ3b1d
2
1 + 6 kµ4a0a

2
1

− 4 kλ2µ b31 − 6 kλµ2a0b
2
1 = 0,

ϕ2ψ : 2 fλ4ρ2A4
1b1 + 4 fλ4ρ2A2

1A
2
2b1

+ 2 fλ4ρ2A4
2b1 + 2 gλ4A4

1b1d
2
1

+ 4 gλ4A2
1A

2
2b1d

2
1 + 2 gλ4A4

2b1d
2
1

+ 6 kλ4A4
1a

2
1b1 + 12 kλ4A2

1A
2
2a

2
1b1

+ 6 kλ4A4
2a

2
1b1 − 4 fλ2µ2ρ2A2

1b1

− 4 fλ2µ2ρ2A2
2b1 − 4 gλ2µ2A2

1b1d
2
1

− 4 gλ2µ2A2
2b1d

2
1 − 12 kλ2µ2A2

1a
2
1b1

− 12 kλ2µ2A2
2a

2
1b1 + 2 kλ3A2

1b
3
1

+ 2 kλ3A2
2b

3
1 + 2 fµ4ρ2b1

+ 2 gµ4b1d
2
1 + 6 kµ4a21b1

− 2 kλµ2b31 = 0,

ϕ : 2 fλ5ρ2A4
1a1 + 4 fλ5ρ2A2

1A
2
2a1

+ 2 fλ5ρ2A4
2a1 + 2 gλ5A4

1a1d
2
1

+ 4 gλ5A2
1A

2
2a1d

2
1 + 2 gλ5A4

2a1d
2
1

− fλ4τ2A4
1a1 − 2 fλ4τ2A2

1A
2
2a1

− fλ4τ2A4
2a1 − gλ4A4

1a1s
2
1

− 2 gλ4A2
1A

2
2a1s

2
1 − gλ4A4

2a1s
2
1

+ 6 kλ4A4
1a

2
0a1 + 12 kλ4A2

1A
2
2a

2
0a1

+ 6 kλ4A4
2a

2
0a1 − 4 fλ3µ2ρ2A2

1a1

− 4 fλ3µ2ρ2A2
2a1 − 4gλ3µ2A2

1a1d
2
1

− 4 gλ3µ2A2
2a1d

2
1 + 2 fλ2µ2τ2A2

1a1

+ 2 fλ2µ2τ2A2
2a1 + 2 gλ2µ2A2

1a1s
2
1

+ 2 gλ2µ2A2
2a1s

2
1 + 6 kλ4A2

1a1b
2
1

+ 6 kλ4A2
2a1b

2
1 − 12 kλ2µ2A2

1a
2
0a1

− 12 kλ2µ2A2
2a

2
0a1 − 2λ4A4

1a1s2

− 4λ4A2
1A

2
2a1s2 − 2λ4A4

2a1s2

+ 2 fλµ4ρ2a1 + 2 gλµ4a1d
2
1

− fµ4τ2a1 − gµ4a1s
2
1 − 6 kλ2µ2a1b

2
1

+ 6 kµ4a20a1 + 4λ2µ2A2
1a1s2

+ 4λ2µ2A2
2a1s2 − 2µ4a1s2 = 0,
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ϕψ : − 3 fλ4µρ2A4
1a1 − 6 fλ4µρ2A2

1A
2
2a1

− 3 fλ4µρ2A4
2a1 − 3 gλ4µA4

1a1d
2
1

− 6 gλ4µA2
1A

2
2a1d

2
1 − 3 gλ4µA4

2a1d
2
1

+ 12 kλ4A4
1a0a1b1 + 24 kλ4A2

1A
2
2a0a1b1

+ 12 kλ4A4
2a0a1b1 + 6 fλ2µ3ρ2A2

1a1

+ 6 fλ2µ3ρ2A2
2a1 + 6 gλ2µ3A2

1a1d
2
1

+ 6 gλ2µ3A2
2a1d

2
1 − 12 kλ3µA2

1a1b
2
1

− 12 kλ3µA2
2a1b

2
1 − 24 kλ2µ2A2

1a0a1b1

− 24 kλ2µ2A2
2a0a1b1 − 3 fµ5ρ2a1

− 3 gµ5a1d
2
1 + 12 kλµ3a1b

2
1

+ 12 kµ4a0a1b1 = 0,

ψ : fλ5ρ2A4
1b1 + 2 fλ5ρ2A2

1A
2
2b1

+ fλ5ρ2A4
2b1 + gλ5A4

1b1d
2
1

+ 2 gλ5A2
1A

2
2b1d

2
1 + gλ5A4

2b1d
2
1

− fλ4τ2A4
1b1 − 2 fλ4τ2A2

1A
2
2b1

− fλ4τ2A4
2b1 − gλ4A4

1b1s
2
1

− 2 gλ4A2
1A

2
2b1s

2
1 − gλ4A4

2b1s
2
1

+ 6 kλ4A4
1a

2
0b1 + 12 kλ4A2

1A
2
2a

2
0b1

+ 6 kλ4A4
2a

2
0b1 + 2 fλ2µ2τ2A2

1b1

+ 2 fλ2µ2τ2A2
2b1 + 2 gλ2µ2A2

1b1s
2
1

+ 2 gλ2µ2A2
2b1s

2
1 + 2 kλ4A2

1b
3
1

+ 2 kλ4A2
2b

3
1 − 12 kλ3µA2

1a0b
2
1

− 12 kλ3µA2
2a0b

2
1 − 12 kλ2µ2A2

1a
2
0b1

− 12 kλ2µ2A2
2a

2
0b1 − 2λ4A4

1b1s2

− 4λ4A2
1A

2
2b1s2 − 2λ4A4

2b1s2

− fλµ4ρ2b1 − gλµ4b1d
2
1

− fµ4τ2b1 − gµ4b1s
2
1 + 6 b31λ

2kµ2

+ 12 kλµ3a0b
2
1 + 6 kµ4a20b1

+ 4λ2µ2A2
1b1s2 + 4λ2µ2A2

2b1s2

− 2µ4b1s2 = 0,

ϕ0 : − fλ4τ2A4
1a0 − 2 fλ4τ2A2

1A
2
2a0

− fλ4τ2A2
4a0 − gλ4A4

1a0s
2
1

− 2 gλ4A2
1A

2
2a0s

2
1 − gλ4A4

2a0s
2
1

+ 2 kλ4A4
1a

3
0 + 4 kλ4A2

1A
2
2a

3
0

+ 2 kλ4A4
2a

3
0 − fλ4µρ2A2

1b1

− fλ4µρ2A2
2b1 − gλ4µA2

1b1d
2
1

− gλ4µA2
2b1d

2
1 + 2 fλ2µ2τ2A2

1a0

+ 2 fλ2µ2τ2A2
2a0 + 2 gλ2µ2A2

1a0s
2
1

+ 2 gλ2µ2A2
2a0s

2
1 + 6 kλ4A2

1a0b
2
1

+ 6 kλ4A2
2a0b

2
1 − 4 kλ2µ2A2

1a
3
0

− 4 kλ2µ2A2
2a

3
0 − 2λ4A4

1a0s2

− 4λ4A2
1A

2
2a0s2 − 2λ4A4

2a0s2

+ fλ2µ3ρ2b1 + gλ2µ3b1d
2
1

− fµ4τ2a0 − gµ4a0s
2
1 − 4 b31λ

3kµ

− 6 kλ2µ2a0b
2
1 + 2 kµ4a30 + 4λ2µ2A2

1a0s2

+ 4λ2µ2A2
2a0s2 − 2µ4a0s2 = 0.

(35)

Solving the above algebraic system using the Maple
package program, we get the following results:
Result 1

λ = λ, µ = 0, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±
√

−fρ
2 + gd21
k

, b1 = 0, d1 = d1,

d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = fλ ρ2 + gλ d21 −
1

2
fτ2 − 1

2
gs21,

(36)
where λ(> 0), f, g, k, d1, ρ, s1, τ, ω are arbitrary
constants such that k

(
fρ2 + gd21

)
< 0. From Eqs.

(14), (20), (25), and (36), we get the solution of Eq.
(2) as follows:

W (x, y, t) = ±
√

−fρ
2 + gd21
k

×


(
A1 cos

(
χ
√
λ
)√

λ−A2 sin
(
χ
√
λ
)√

λ
)

A1 sin
(
χ
√
λ
)
+A2 cos

(
χ
√
λ
)


× eiξ,

(37)
where A1, A2 re arbitrary constants and

χ =
Γ(γ + 1)

β

(
d1x

β − (fρτ + gd1s1) y
β + ρtβ

)
ξ =

Γ(γ + 1)

β

×

(
s1x

β +

(
fλρ2 + gλ d21 −

1

2
fτ2 − 1

2
gs21

)
yβ + τtβ + ω

)
.

Result 2

λ = − kb21
σ2
(
fρ2 + gd21

) , µ = 0, ω = ω, ρ = ρ,

τ = τ, a0 = 0, a1 = 0, b1 = b1, d1 = d1,

d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = −
σ2
(
fτ2 + gs21

)
− kb21

2σ2
,

(38)
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where σ2 = A2
1+A

2
2 and f, g, k, d1, ρ, s1, τ, ω, b1,

A1, A2 are arbitrary constants such that λ > 0. From
Eqs. (14), (20), (25), and (38), we obtain the exact
solution of Eq. (2) as follows:

W (x, y, t) =
b1

A1 sin
(
χ
√
λ
)
+A2 cos

(
χ
√
λ
) × eiξ,

(39)
where

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

×

(
s1x

β −
σ2
(
fτ2 + gs21

)
− kb21

2σ2
yβ + τ tβ + ω

)
.

Result 3
λ = λ, µ = µ, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±
√

−fρ
2 + gd21
4k

,

b1 = ±

√
−
(
fρ2 + gd21

)
λ2σ2 − (fρ2 + gd21)µ

2

4kλ
,

d1 = d1, d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 =
λ

4

(
fρ2 + gd21

)
− 1

2

(
fτ2 + gs21

)
,

(40)
where σ2 = A2

1 + A2
2 and λ(> 0), µ, f, g, k, d1, ρ,

s1, τ, ω, A1, A2 are arbitrary constants such that
k
(
fρ2 + gd21

)
< 0 and b1 ∈ R. From Eqs. (14),

(20), (25), and (40), we obtain the exact solution of
Eq. (2) as follows:

W (x, y, t)

=

{
±
√

−fρ
2 + gd21
4k

×

A1 cos
(
χ
√
λ
)√

λ−A2 sin
(
χ
√
λ
)√

λ

A1 sin
(
χ
√
λ
)
+A2 cos

(
χ
√
λ
)
+ µ

λ


±

√
− (fρ2+gd2

1)λ
2σ2−(fρ2+gd2

1)µ
2

4kλ

A1 sin
(
χ
√
λ
)
+A2 cos

(
χ
√
λ
)
+ µ

λ

}
× eiξ

(41)
where

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

×

(
s1x

β +

(
λ

4

(
fρ2 + gd21

)
− 1

2

(
fτ2 + gs21

))
yβ + τ tβ + ω

)
.

Case 3 (Rational function solutions): If λ = 0,
we substitute Eq.(25) with Eqs.(11) and (17) into
Eq.(22), so that the left-hand side of Eq. Eq.(22) be-
comes a polynomial in ϕ(χ) and ψ(χ). Setting all of
the coefficients of this resulting polynomial to zero,
we obtain the following system of nonlinear algebraic
equations in µ, ω, ρ, τ, a0, a1, b1, d1, s1, and s2:

ϕ3 : 8 fµ2ρ2A2
2a1 − 8 fµ ρ2A2

1A2a1

+ 2 fρ2A4
1a1 + 8 gµ2A2

2a1d
2
1

− 8 gµA2
1A2a1d

2
1 + 2 gA4

1a1d
2
1

+ 8 kµ2A2
2a

3
1 − 8 kµA2

1A2a
3
1

+ 2 kA4
1a

3
1 − 12 kµA2a1b

2
1

+ 6 kA2
1a1b

2
1 = 0,

ϕ2 : 24 kµ2A2
2a0a

2
1 − 24 kµA2

1A2a0a
2
1

+ 6 kA4
1a0a

2
1 + 2 fµ2ρ2A2b1

− fµ ρ2A2
1b1 + 2 gµ2A2b1d

2
1

− gµA2
1b1d1

2 − 12 kµA2a0b
2
1

+ 6 kA2
1a0b

2
1 − 4 kµ b31 = 0,

ϕ2ψ : 8 fµ2ρ2A2
2b1 − 8 fµ ρ2A2

1A2b1

+ 2 fρ2A4
1b1 + 8 gµ2A2

2b1d
2
1

− 8 gµA2
1A2b1d

2
1 + 2 gA4

1b1d
2
1

+ 24 kµ2A2
2a

2
1b1 − 24 kµA2

1A2a
2
1b1

+ 6 kA4
1a

2
1b1 − 4 kµA2b

3
1

+ 2 kA2
1b

3
1 = 0,

ϕ : − 4 fµ2τ2A2
2a1 + 4 fµ τ2A2

1A2a1

− fτ2A4
1a1 − 4 gµ2A2

2a1s
2
1

+ 4 gµA2
1A2a1s

2
1 − gA4

1a1s
2
1

+ 24 kµ2A2
2a

2
0a1 − 24 kµA2

1A2a
2
0a1

+ 6 kA4
1a

2
0a1 − 8µ2A2

2a1s2

+ 8µA2
1A2a1s2 − 2A4

1a1s2 = 0,

ϕψ : − 12 fµ3ρ2A2
2a1 + 12 fµ2ρ2A2

1A2a1

− 3 fµ ρ2A4
1a1 − 12 gµ3A2

2a1d
2
1

+ 12 gµ2A2
1A2a1d

2
1 − 3 gµA4

1a1d
2
1

+ 48 kµ2A2
2a0a1b1 − 48 kµA2

1A2a0a1b1

+ 12 kA4
1a0a1b1 + 24 kµ2A2a1b

2
1

− 12 kµA2
1a1b

2
1 = 0,

ψ : − 4 fµ3ρ2A2b1 + 2 fµ2ρ2A2
1b1

− 4 fµ2τ2A2
2b1 + 4 fµ τ2A2

1A2b1

− fτ2A4
1b1 − 4 gµ3A2b1d

2
1

+ 2 gµ2A2
1b1d

2
1 − 4 gµ2A2

2b1s
2
1

+ 4 gµA2
1A2b1s

2
1 − gA4

1b1s
2
1
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+ 24 kµ2A2
2a

2
0b1 − 24 kµA2

1A2a
2
0b1

+ 6 kA4
1a

2
0b1 + 24 kµ2A2a0b

2
1

− 12 kµA2
1a0b

2
1 + 8 kµ2b31

− 8µ2A2
2b1s2 + 8µA2

1A2b1s2

− 2A4
1b1s2 = 0,

ϕ0 : − 4 fµ2τ2A2
2a0 + 4 fµ τ2A2

1A2a0

− fτ2A4
1a0 − 4 gµ2A2

2a0s
2
1

+ 4 gµA2
1A2a0s

2
1 − gA4

1a0s
2
1

+ 8 kµ2A2
2a

3
0 − 8 kµA2

1A2a
3
0

+ 2 kA4
1a

3
0 − 8µ2A2

2a0s2

+ 8µA2
1A2a0s2 − 2A4

1a0s2 = 0.

(42)

Solving the above algebraic system using the Maple
package program, we get the following results.
Result 1

µ = 0, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±
√

−fρ
2 + gd21
k

, b1 = 0, d1 = d1,

d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = −1

2

(
fτ2 + gs21

)
,

(43)

where f, g, k, d1, ρ, s1, τ, ω are arbitrary constants
such that k

(
fρ2 + gd21

)
< 0. From Eqs. (16), (20),

(25), and (43), we obtain the exact solution of Eq. (2)
as follows:

W (x, y, t) = ±

√
−fρ2+gd2

1

k A1

A1χ+A2
× eiξ, (44)

where A1, A2 are arbitrary constants and

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β − 1

2

(
fτ2 + gs21

)
yβ + τ tβ + ω

)
.

Result 2
µ = 0, ω = ω, ρ = ρ, τ = τ, a0 = 0, a1 = 0,

b1 = ±
√

−fρ
2 + gd21
k

A1, d1 = d1,

d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = −1

2

(
fτ2 + gs21

)
,

(45)
where f, g, k, d1, ρ, s1, τ, ω, A1 are arbitrary con-
stants such that k

(
fρ2 + gd21

)
< 0. From Eqs. (16),

(20), (25), and (45), the solution of Eq. (2) is:

W (x, y, t) = ±

√
−fρ2+gd2

1

k A1

A1χ+A2
× eiξ, (46)

where A2 is an arbitrary constant and

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β − 1

2

(
fτ2 + gs21

)
yβ + τ tβ + ω

)
.

Result 3

µ = 0, ω = ω, ρ = ρ, τ = τ, a0 = 0,

a1 = ±1

2

√
−fρ

2 + gd21
k

, b1 = a1A1,

d1 = d1, d2 = − (fρ τ + gd1s1) , s1 = s1,

s2 = −1

2

(
fτ2 + gs21

)
,

(47)

where f, g, k, d1, ρ, s1, τ, ω, A1 are arbitrary con-
stants such that k

(
fρ2 + gd21

)
< 0. From Eqs. (16),

(20), (25), and (47), we obtain the exact solution of
Eq. (2) as follows:

W (x, y, t) = ±

√
−fρ2+gd2

1

k A1

A1χ+A2
× eiξ, (48)

where A2 is arbitrary constant and

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β − 1

2

(
fτ2 + gs21

)
yβ + τ tβ + ω

)
.

Result 4

µ =

(
fρ2 + gd21

)
A2

1 + 4 kb21
2A2

(
fρ2 + gd21

) , ω = ω, ρ = ρ,

τ = τ, a0 = 0, a1 = ±1

2

√
− fρ2 + gd21

k
,

b1 = b1, d1 = d1, d2 = − (fρ τ + gd1s1) ,

s1 = s1, s2 = −1

2
fτ2 − 1

2
gs21,

(49)
where f, g, k, d1, ρ, s1, τ, ω, b1, A1, A2 are arbi-
trary constants such that k

(
fρ2 + gd21

)
< 0. From

Eqs. (16), (20), (25), and (49), we get the solution of
Eq. (2) as follows:

W (x, y, t) =

(
ΦΨ+ Ω

Θ

)
eiξ, (50)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.53

Pim Malingam, Paiwan Wongsasinchai, 
Sekson Sirisubtawee, Sanoe Koonprasert

E-ISSN: 2224-2856 507 Volume 18, 2023



where
Φ =

(
χ
(
fρ2 + gd21

)
A2

1 + 2A1A2

(
fρ2 + gd21

)
+ 4χkb21

)
,

Ψ =

√
−fρ2 + gd21

k
,

Ω = 4 b1A2

(
fρ2 + gd21

)
,

Θ = χ2 (fρ2 + gd21
)
A2

1 + 4A1χA2

(
fρ2 + gd21

)
+
(
4 fρ2 + 4 gd21

)
A2

2 + 4χ2kb21,

χ =
Γ(γ + 1)

β

(
d1x

β − (fρ τ + gd1s1) y
β + ρ tβ

)
,

ξ =
Γ(γ + 1)

β

(
s1x

β − 1

2

(
fτ2 + gs21

)
yβ + τ tβ + ω

)
.

4 Graphs of Some Exact Solutions
In this section, we show graphs of some of the
exact traveling wave solutions of the truncated M-
fractional paraxial wave dynamical model in Kerr me-
dia in Eq. (2) that we obtained using the (G′/G, 1/G)-
expansion method. In particular, we show the exact
solutions through 3D, 2D, and contour plots for the
following range of fractional-order values: β = 0.9,
β = 0.8, and β = 0.6. The exact traveling wave
solutions in Eq. (28) and Eq. (37) have been chosen
to demonstrate how their physical behavior changes
in terms of 3D, 2D, and contour plots when values
of the fractional-order β are altered. All figures were
obtained using the Maple software package.

In Figure 1 (Appendix), magnitudes of the exact
traveling wave solutionW (x, y, t) in (28) are plotted
on the domain

D1 = {(x, y, t) | 0 6 x 6 60, y = 1, and 0 6 t 6 30}

for the 3D plots and on the domain

D2 = {(x, y, t) | 0 6 x 6 60, y = 1, and t = 1}

for the 2D graphs. In addition, contour plots, which
represent a 3D surface by plotting (x, t) contours for
a range of fixed |W | values, are also illustrated. The
following parameter values: λ = −1, µ = 0, a0 = 0,
b1 = 0, f = 0.8, g = 2, k = 0.8, d1 = 2, ρ = 0.5,
s1 = 5, τ = 2, ω = 3, A1 = 3, A2 = 5, and γ = 1.5
are used in this figure. In particular, Figures 1 (a)-(c),
(d)-(f), and (g)-(i) (Appendix) show the 3D, 2D, and
contour graphs of magnitudes of the exact solution
W (x, y, t) in (28) calculated at β = 0.9, β = 0.8, and
β = 0.6, respectively. As can be observed from the
3D graphs of Figure 1 (Appendix), the physical be-
havior of the magnitude of solution (28) can be char-
acterized as an anti-soliton solution. In Figure 1 (Ap-
pendix), it is worth noticing that the singular point of
|W (x, t)| can be moved as the value of the fractional-
order β is changed. This is because the denomi-
nator term A1 sinh

(
χ
√
−λ
)
+ A2 cosh

(
χ
√
−λ
)
in

Eq. (28) can be zero depending upon the value of
β, which is embedded in χ. For the given parame-
ter values as mentioned above, the singular point is
x ≈ 12.7918 when β = 0.9 and t = 1 as shown in
Figure 1 (b) (Appendix).

In Figure 2 (Appendix), magnitudes of the exact
traveling wave solutionW (x, y, t) in (37) are plotted
on the domain

D3 = {(x, y, t) | 0 6 x 6 10, y = 1, and 0 6 t 6 10}

for the 3D plots and on the domain

D4 = {(x, y, t) | 0 6 x 6 10, y = 1, and t = 1}

for the 2D graphs. Contour plots, which represent a
3D surface by plotting (x, t) contours for a range of
fixed |W | values, are also shown. The following pa-
rameter values: λ = 1, µ = 0, a0 = 0, b1 = 0,
f = 1, g = 0.5, k = 1, d1 = 2, ρ = 0.1, s1 = 5,
τ = 0.5, ω = 1, A1 = 3, A2 = 5, and γ = 0.8
are used in this figure. In particular, Figures 2 (a)-
(c), (d)-(f), and (g)-(i) (Appendix) display the 3D, 2D,
and contour plots of magnitudes of the exact solution
W (x, y, t) in (37) calculated at β = 0.9, β = 0.8,
and β = 0.6, respectively. As can be observed from
the 3D graphs of Figure 2 (Appendix), the magnitude
of solution (37) can be categorized as a singularly pe-
riodic wave solution. In Figure 2 (Appendix), it is
worth observing that the singular point of |W (x, t)|
can be changed when the value of the fractional-order
β is varied. This is because the denominator term
A1 sin

(
χ
√
λ
)
+ A2 cos

(
χ
√
λ
)
in Eq. (37) can be

zero depending upon the value of β, which appears
in χ. Specifically, the singular point of |W (x, t)|
is obtained when χ

√
λ = − arctan

(
A2

A1

)
. For the

given parameter values as described above, some of
the singular points are, for instance, x ≈ 2.1327 and
x ≈ 4.0164 when β = 0.9 and t = 1 as shown in
Figure 2 (b) (Appendix).

5 Conclusions
In this paper, the paraxial wave dynamical model
in Kerr media with truncated M-fractional deriva-
tives given in (2) has been symbolically solved
to obtain exact traveling wave solutions using the
(G′/G, 1/G)-expansion method. Since the equation
has complex-valued solutions, we wrote exact solu-
tions as the product of a real function U(χ) and eiξ as
shown in (20). The algebraic manipulations required
to obtain the exact solutions of the function U(χ)
were carried out using the Maple software package.
We found that exact solutions forU(χ) can be written
in terms of either hyperbolic functions, trigonometric
functions, or rational functions. From these solutions

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.53

Pim Malingam, Paiwan Wongsasinchai, 
Sekson Sirisubtawee, Sanoe Koonprasert

E-ISSN: 2224-2856 508 Volume 18, 2023



forU(χ), we finally obtained the exact travelingwave
solutions of the equation (2) via Eq. (20) and the trans-
formation (21).

In [38] the authors used the modified simple
equation method (MSEM) and the auxiliary equa-
tion method (AEM) to find exact solutions of the M-
fractional paraxial wave equation with Kerr media.
Their governing equation was equipped with higher-
order truncated M-fractional partial derivatives with
respect to t and x. This is slightly different from
Eq. (2) in which the composite of the truncated M-
fractional derivatives of order less than one is used.
In addition, the fractional-order β was not inserted as
an exponent of the independent variables x, y, and
t in their traveling wave transformation. However,
the real function U(χ) of their solutions expressed in
terms of the exponential functions were found. In [39]
the truncated time M-fractional paraxial wave equa-
tion in kerr media was explored for some optical so-
lutions. The unified scheme was implemented to ob-
tain exact traveling wave solutions of the proposed
equation. As a result, the solutions were expressed in
terms of hyperbolic, trigonometric, and rational func-
tions with some free parameters. Roughly compar-
ing our results to the obtained solutions in [38], [39],
some of the exact solutions obtained in this article
have not been derived in any previous work because
equation (2) and the used method are not the same as
in the referred literature.

From our results, the 3D, 2D, and contour plots
of magnitudes of selected solutions have been plotted
for a range of values of fractional-order β using the
Maple package in order to understand the effects of
changing the fractional-order on the physical behav-
ior of chosen solutions. From Figure 1 and Figure 2
(Appendix), an anti-soliton solution and a singularly
periodic wave solution have been found. Finally, with
the assistance ofMaple, all of the exact solutions have
been verified by substituting them back into the orig-
inal equation to check their correctness. In summary,
since the (G′/G, 1/G)-expansion method is an ex-
tension of the (G′/G)-expansion method and its rel-
evant methods, [40], the advantage of the proposed
method is that it is more productive, efficient, and re-
liable for generating exact traveling wave solutions of
nonlinear real-world problems modeled by NPDEs.
This work could be improved by using different frac-
tional order values for the truncated M-fractional par-
tial derivatives with respect to x, y, and t. A promis-
ing future work would be to compare the fractional
equation and solutions developed in this article with
real data obtained from physical phenomena.
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(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Fig. 1: Graphs for |W (x, y, t)| where W (x, y, t) is expressed in (28) and obtained using the (G′/G, 1/G)-
expansion method: (a)-(c) when β = 0.9; (d)-(f) when β = 0.8; (g)-(i) when β = 0.6.

(a) 3D (b) 2D (c) contour

(d) 3D (e) 2D (f) contour

(g) 3D (h) 2D (i) contour

Fig. 2: Graphs for |W (x, y, t)| where W (x, y, t) is expressed in (37) and obtained using the (G′/G, 1/G)-
expansion method: (a)-(c) when β = 0.9; (d)-(f) when β = 0.8; (g)-(i) when β = 0.6.
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