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Abstract: - T In this article, a new approach to control of robot motion in the radial mass density field is 
presented. This field is between the maximal and the minimal radial mass density values. Between these two 
limited values, one can use n points (n = 1, 2, . . . nmax) that can be included in the related algorithm for control 
of the robot motion. The number of the points nstep can be calculated by using the relation nstep = nmax / nvar , 
where nvar is the control parameter. The radial mass density is maximal at the minimal gravitational radius and 
minimal at the maximal gravitational radius. This is valid for Planck scale and for the scales that are less or 
higher of that one. Using the ratio of Planck mass and Planck radius it is generated the energy conservation 
constant κ = 0.99993392118. 
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1   Introduction 
Generally, the very large structures of the robots 
have a lot of application areas as in the precise 
production processes, in the medicine for cell 
manipulation, drug delivery, medical image 
acquisition, and non-invasive intervention. For those 
applications, one can use electrical, magnetic, 
chemical actuated robots and the bio/soft robots, [1], 
[2]. Genetic algorithms and unsupervised machine 
learning for predicting robotic manipulation failures 
for force-sensitive tasks discussed in [3]. An 
integrated design and fabrication strategy for 
entirely soft, autonomous robots is presented in [4]. 
Versatile soft-grippers with intrinsic electro-
adhesion based on multifunctional polymer 
actuators is point out in [5]. Magnetic actuation 
methods in bio/soft robotics are discussed in [6]. 
Efficient constant-time addressing scheme for 
parallel-controlled assembly of stress-engineered 
MEMS micro-robots is present in [7]. 

In this article, the control of the robot's motion 
is described in the radial mass density field. This 
field is in the region from the minimal radius (with 
the maximal radial mass density   (ρr max) and 
maximal radius (with the minimal radial mass 
density (ρr min). Between these two limited values, 
one can choose n points (n=1,2,..nmax ). In the case 

of the precise robot motion the number nmax should 
be bigger. Contrary, for the less precise robot 
motion, the number nmax may be smaller. In that 
sense, one can introduce the related steps number 
(nstep) between maximal and minimal radiuses in a 
gravitational field. This value can be calculated by 
using the relation (nstep = nmax / nvar ). If one uses the 
smaller parameter (nvar) than the number of the steps 

(nstep) is bigger and vice versa. In that way, one can 
obtain the most precise control of the robot's 
motion. 

The very important consequence of the solution 
of the field equations by including gravitational 
energy-momentum tensor (EMT) on the right side of 
the field equation is that the gravitational field 
exhibits repulsive (positive) and attractive 
(negative) gravitational forces. The minimum time 
transition between quantum states in the 
gravitational field is present in [8]. To precisely 
follow the desired trajectory of the robot motion one 
can include the new Relativistic Radial Density 
Theory (RRDT), [9]. The particle transition and 
correlation in quantum mechanics are discussed in 
[10]. Independent position control of two identical 
magnetic micro-robots in a plane using permanent 
magnets and magnetically powerful microrobots is 
presented in [11]. This application represents the new 
approach to the medical revolution epoch. 
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Magnetically powered micro-robots are discussed in 
[12], [13]. 

Further, the robust control of micro-robot motion 
is presented in [14]. A conjugate gradient-based 
BPTT – like optimal control algorithm with vehicle 
dynamics control application is discussed in [15]. 
Robust motion control with anti-windup scheme for 
electromagnetic actuated micro-robot using time-
delay estimation is presented in [16]. The two 
independent position controls of two equally micro-
robots motion in a plane are realized by using 
rotating permanent magnets, [17]. Magnetically 
powered micro-robots and the robust motion 
control, with an anti-windup scheme for 
electromagnetic actuated micro-robots, are 
presented in [18] and [19], respectively. Robotic-
assisted minimally invasive surgery is illustrated in 
[20]. The design of a novel haptic joystick for the 
teleoperation of continuum-mechanism-based 
medical robots is presented in [21]. In this reference, 
a novel mechanism with a series of coupled gears, 
that aims for the control of continuum robots for 
medical applications is pointed out. Positioning 
control of robotic manipulators subject to excitation 
from non-ideal sources is discussed in [22]. Further, 
tractor-robot cooperation is illustrated in [23]. 
Indoor positioning systems of mobile robots are 
present in [24]. A new single–leg lower-limb 
rehabilitation robot motion is presented in [25]. 
Multi-robot task scheduling for consensus-based 
fault resilient intelligent behavior in smart factories 
is discussed in [26]. A new single-leg lower limb 
rehabilitation robot with design, analysis, and 
experimental evolution is presented in [27]. It is also 
important to know how the portable surveillance 
robots can be used in IoT applications, [28]. The 
recent trends in robot learning and evolution for 
swarm robotics are presented in [29]. Finally, the 
proactivity of fish and leadership of self-propelled 
robotic fish during interaction and bio-inspiration 
with biomimietics is discussed in [30]. 

 
 

2 Dynamics of Autonomous Robot 

Motion in the Electromagnetic and 

Gravitational Radial Mass Density 

Field 
The problem of the nonlinear control of robot 
motion is discussed as the function of the maximal 
radial mass density value. To simplify the related 
calculation, here it started with the concept of the 
external linearization of the nonlinear control of the 
robot motion in the radial mass density field. In that 
case, in the closed regulation loop, one obtains the 

linear behaviour of the hole-system. Thus, the 
problem of the robot position control in the radial 
mass density field can be started by the calculation 
of the control of the error vector, e(t). This vector is 
a function of the radial mass density, r , and can be 
presented by the relations:  

  
2

2

2

2

1

1 1
w w

w w p t I

r max min

w

w p t Iw

r max min

d e n
e X X , r ( t ) F F NF ,

dt r c

d X / n
r ( t ) F F NF .

dt r c

 
        

 
      

(1) 

 
Here n=1,2,..,nmax and nmax = r max / r min , while 

the subscript w denotes the desired robot motion. 
The variables without this subscript present the real 
autonomous robot motion. Further, Fp is a potential 
force, Ft is a time - variation force, Fi is the 
interaction force and N is the related connection 
parameter. At the same time, the relations (1) also 
describe the canonical differential equations of the 
robot motion in the combination of the 
electromagnetic and gravitational fields. Vector rw(t) 
presents the desired (nominal) acceleration of the 
robot motion in the radial mass density field. 

Now following the idea of external 
linearization, one can introduce the following 
substitution: 

   

2

2

1
w p t I

r max min

T

x y z

d e n
u( t ) r ( t ) F F NF ,

dt r c

u( t ) ( u ( t ) u ( t ) u ( t )) .

 
       



(2) 

 
Here u(t) is the internal control vector of the 

robot motion in the radial mass density field. 
Further, one can apply the state-space phase 
variables, (z1 z2 z3)T , that from (1) gives the related 
state-space model of the robot motion in the radial 
mass density field:  

     

1 2 3

4 5 6

T T

x y z I

y T Tx z
II

e ( e e e ) Z ( z z z ) ,

dede dede
( ) Z ( z z z ) ,

dt dt dt dt

  

  
(3)     

and   

        
 

0 0
1 1 1

0 0

dZ / dt AZ( t ) Bu( t ),

I
A , B , I diag , , .

I

 

   
     
   

  
(4) 

 
In (4), parameters A and B are constant matrices 

with dimension (6x6) and (6x3), respectively. Here, 
it is supposed that the disturbances in a state-space 
model of the robot motion in the radial mass density 
field (3) and (4) are of the initial condition types. To 
eliminate the control error of the robot motion in the 
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radial mass density field, which is caused by the 
disturbances, one can introduce the following 
internal control: 

   
1

p r max min w I I II II t I

N
F r r ( t ) K Z K Z F F ,

n c

                            u( t ) K Z .

 
      

 

 

(5)  

 
Here, K is the state space controller, Z is the 

control error, Fp is the potential force, Ft is the time 
variable force, FI is an interaction force, N is a 
constant and c is the speed of the light in vacuum. 
Including the internal control relations (3) and (4) 
into (5), one obtains the related equation of the 
potential force as a function of the radial mass 
density value in the linear form:  
     

1
p r max min w I I II II t I

N
F r r ( t ) K Z K Z F F .

n c
 

 
      

 

 (6) 

 
Now starting from the previous relations one 

can generate the new equations of the potential force 
Fp as the functions of the potential energies Uj an Uc 
:   

                   

x y

z

j jc c
p p

j c
p

U UU U
F , F ,

x x y y

U U
                      F .

z z

     
        

      

 
   

  

(7) 

 
Here j = g for the gravitational field, j = e for 

the electromagnetic field and Uc is the related 
control potential field. It is followed by the 
inclusion of the control potential force, Fcp , that is 
derived by the artificial control field with potential 
control energy Uc . After inclusion of the relation (7) 
into the relation (6), one obtains the nonlinear 
control of the robot motion in the multi-potential 
field as the function of the maximal radial mass 
density

r max
 :  

   
1 F

cp r max min I I II II dp t I

N
F r r( t ) K Z K Z F F  .

n c

 
       

 

(8)                                           

 
Now, using (8), the control of the nonlinear 

system is solved by employing the concept of 
external linearization in the radial mass density 
field. Here the obtained equations are functions of 
the radial mass density values.  

The general approach to control the dynamics of 
the robot motion in radial mass density field for 
more potential fields, given in (8), can also be 
applied to the two potential electromagnetic and 
gravitational fields. In this sense, let a robot be an 
electrically charged particle with charge q and rest 
mass m0 that is moving with a non-relativistic 

velocity (v << c) in combined electromagnetic and 
gravitational potential fields. Further, it is also 
assumed that the gravitational field is produced by 
the spherically symmetric (non-charged) body with 
mass M. In that case, the total potential energy U of 
the robot motion in the two potential radial mass 
density fields is described by the relation:  

   

0 0

0 1

e g e

r max e r max min

min

GM
U qV m V qV m ,

r

m GM
, U qV r .

r n r

 
     

 

 
      

 
(9) 

Here Ve and Vg are the related scalar potentials 
of the electromagnetic and gravitational radial mass 
density fields, respectively. Parameter G is the 
gravitational constant and r is the radius as the 
distance between the autonomous robot and the 
center of the mass M and n=1,2,..,nmax , nmax = r max

/ r min .  Now applying (1) and using the notations, 
(Ee,He) for an electromagnetic field and (Eg,Hg) for 
the gravitational field, one can generate the vector 
equation as the explicit functions of the Lorentz 
forces: 

            

2

2

1 1

1 1

r max min e e

r max min g g

d X
r q E v H

n dt c

    r E v H .
n c

 
    

 

 
    

 

   (10) 

 
The parameters Ee, Eg, He and Hg are vectors 

described by the relations: 

  x x x x

y y y y

z z z z

e g e g

e e g g e e g g

e g e g

E E H H

E E , E E , H H , H H .

E E H H

       
       

          
       
              

(11) 

 
In this example, a robot is a particle with charge 

q and rest mass m0 and, therefore, this robot 
interacts with both electromagnetic and gravitational 
radial mass density fields. In that sense, the relations 
(10) and (11) describe the dynamic of the robot 
motion in two – potential electromagnetic and 
gravitational field. The components of the vector Ee 
and Eg can be calculated by using the following 
equations: 

1 1

1

x x

x x

y

y

e gge
e g

ee
e

A AVV
E , E ,

x c t x c t

AV
                    E ,

y c t

 
     

   


  

 

 
(12) 

and 
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1 1

1

y z

y z

z

z

g eg e
g e

gg

g

A AV V
E , E ,

y c t z c t

AV
                     E .

z c t

  
     

   


  
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(13) 

 
The components of vectors Ae, Ag, He, and Hg in 

(12) and (13) are given by the relations: 
yz

i i x

yz

x

eei gi e
e g e

gg

g

AAvVvV
A , A , H ,

c c y z

AA
               H , i x, y,z,

y z

  
     

    


  
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(14) 

and 

    

x xz z

y y

y yx x

z z

e ge g

e g

e ge g

e g

A AA A
H , H ,

z x z x

A AA A
H , H .

x y x y

  
   

   

  
   

   

(15) 

 
Applying (6) and (7) to the canonical 

differential equations of the autonomous robot 
motion in the two-potential radial mass density 
field, one obtains the control error model of the 
robot motion as a function of the maximal radial 
mass density value:                                   

           

1 v

1 v

w e e

r max min

g g

nq
e( t ) r ( t ) E H

r c

               E H ,
c

 
    

  

 
   
 

    (16) 

and     

               

1 v

1 v

w w

w w

w e w e

r max min

g w g

nq
r ( t ) E H

r c

           E H .
c

 
   
  

 
   
 

         
(17)

 

 
In (17) rw is the vector of desired acceleration of 

the robot motion. The subscript w denotes the 
desired values of the related variables. The next step 
is the application of the concept of external 
linearization to transform the equation (16) into the 
new relation: 

         

1

1

w e e

r max min

g g

nq
u( t ) r ( t ) E v H

r c

                E v H .
c

 
    

  

 
   
 

  (18)                     

 
Here u(t) is the internal control vector and 

n=1,2,..nmax is the number of the robot steps from 
the minimal to the maximal radiuses in radial mass 
density field. From (17) and (18), one obtains the 

related equivalent of the linear control error model 
of the robot motion in the combined electromagnetic 
and gravitational radial mass density field, given by 
(6) and (7). Applying (18), one obtains the new 
relation as the function of the maximal radial mass 
density in the form:  

 
1 v

1 v

r max min

e w I I II II e

r max min

g g

r
E r ( t ) K Z K Z H

nq c

r
                E H .

nq c

  
     

 

  
   

 

(19) 

 
Now, let the electric field Ee consist of the two 

electric components Ee = Ede + Ece. Here Ede is a 
disturbance electric field that is caused by the 
influence of a two-potential field on the motion of 
the robot in the radial mass density field. The 
component Ece is an artificial electric control field 
that should control robot motion in the two potential 
fields. Including Ee = Ede + Ece into (19), one obtains 
the nonlinear electric control of the robot motion in 
the two-potential radial mass density field as the 
function of the maximal radial mass density:  

     

 

1 1v v

r max min

ce w I I II II

r max min

de e g g

r
 E r ( t ) K Z K Z

nq

r
E H E H .

c nq c


  

   
       

   

(20) 

 
Taking into account the relation (10), the 

canonical differential equations of the robot motion 
in the two-potential radial mass density field can be 
rewritten as a function of the maximal radial mass 
density: 

             

2

2

1 v

1 v

de ce e

r max min

g g

d X n q
E E H

dt r c

               E H .
c

 
    
  

 
   
 

    (21)          

 
Applying the nonlinear control Ece from (20) to 

the nonlinear dynamical model of the robot motion 
(21), one obtains the closed-loop system in the 
linear form:  

                
2

2 w I I II II

d X
r ( t ) K Z K Z .

dt
         (22)              

 
Thus, equation (20) is the nonlinear control, 

which in the closed loop with the nonlinear 
canonical differential equations of the robot motion 
(21), results in the linear behaviour of the hole 
system (22). On that way the problem of controlling 
the robot motion in the combination of an 
electromagnetic and gravitational radial mass 
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density field has been solved by employing the 
concept of external linearization. This is very 
important for application of the micro and 
nanorobots in the drag delivery across the human 
body. 

 
 

3  The Other Methods of Application 

of the Radial Mass Density to 

Robot Control 
The global positioning of robot manipulators with 
mixed revolute and prismatic joints is presented in 
[19]. In this section, it is illustrated how one can 
apply the maximal radial mass density theory to the 
mentioned class of the robots. In that sense, the 
dynamic model of the robot with the n-link rigid 
body can be described as the function of the 
maximal radial mass density: 

    

2

0 2

2

2

0

r max min

r max min

d q dq dq
m ( q ) C( q, ) q( q ) U ,

dt dt dt

d q dq dq
r ( q ) C( q, ) q( q ) U ,

dt dt dt

m ( q ) r .

 

  

   

 

(23) 

 
Here q is (nx1) vector of robot joints 

coordinates, dq/dt is the related vector of joints 
velocities, U is a vector of applied joint torques and 
forces, 0m (q) is (nxn) inertia matrix, and 
C(q,dq/dt)dq/dt is (nx1) vector of centrifugal and 
Coriolis torques. Further q(q) is the vector of 
gravitational torques and forces and r max is the 
maximal radial mass density at the minimal radius. 
If the robot, described by (23), is in the closed loop 
with the nonlinear PID controller, described by the 
relation: 

          

2

2p d I

d q dq dq
U( t ) ( K K K ),

dt dtdt
       (24) 

Then the closed loop system of the relations 
(23) and (24) resulted in the form that is the function 
of the maximal radial mass density: 

         

2

2

2

2

r max min

p d I

d q dq dq
r ( q ) C( q, ) q( q )

dt dtdt

d q dq dq
   ( K K K ).

dt dtdt

  

   

  (25) 

 
The relation (25) can be applied for the 

parameter n =1,2,…, r max r min/  . Now one can use 
the relation (25) in the new form:          

  

2

2

2

2

r max min

step

step max varp d I

d q dq dq
  ( C( q, ) q( q )

dt r ( q ) dt dt

d q dq dq
K K K ), .

dt dt d

n

  n n / n
t



  


   (26)   

Thus, using the relation (26) it is possible to 
control the robot’s acceleration by changing the 
numerical parameter nstep. In that way by changing 
the parameter nvar it is possible the realization of the 
most precise robot motion control. This means that 
the radial distance between two points should be 
minimal if the nvar is maximal. 

The dynamics of the robot motion can also be 
described as the function of the alpha field 
parameters derived in the Relativistic Alpha Field 
Theory (RAFT), [7]. In this theory, one can start 
with the potential energy of the robot (particle) in 
the combination of the electromagnetic and 
gravitational fields, Ue and Ug, respectively. Now let 
q, m, Ve, and Vg are the robot’s (particle’s) charge, 
mass, electrical potential, and gravitational 
potential, respectively. Further, G is the gravitational 
constant, M is the mass of the gravitational field and 
c is the speed of light in a vacuum. The potential 
energy of the robot in combination with the 
electromagnetic and gravitational fields is given by 
the relations:        

               

2 2 2

e g e

e

mGM
U U U qV ,

r

qVU GM
      ,

mc mc rc

   







           (27) 

and 

2 2 2
e

r max min r max min

r max min

qVU GM
,

r c r c rc

m r .

 









     (28) 

The relation (28) can also be described as the 
function of the parameter n:                 

            
2 2 2

1 step m

e

r max min r max

ax v

min

ma arx

nqVnU GM
,

r c r c rc

n ...,n , .n n / n





 
 



     (29) 

 
If one wants to use RAF theory in robotics then 

it requires the introduction of the related alpha field 
parameters. The solution of the field parameters for 
an electron in the two-potential electromagnetic and 
gravitational fields are given as follows. In that 
sense parameters 1 and 1' are given by the 
relations: 
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1 2 2

1 2 2
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1

e

r max min

e
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nq V GM
i - ,

r c rc

nq V GM
'

 

i - .
r c rc





 


 


    (30) 

 
For parameters 2 and 2' : 

              

2 2 2

2 2 2

1

1

e

r max min

e

r max min

nq V GM
i - ,

r c rc

nq V GM
'

 

i - .
r c rc





 


 


   (31) 

 
For parameters 3 and 3' : 

           

3 2 2

3 2 2

1

1

e

r max min

e

r max min

nq V GM
i - ,

r c rc

nq V GM
' i ,

 

-
r c rc





  


  


  (32) 

 
and for parameters 4 and 4' : 

          

4 2 2

4 2 2

1

1

e

r max min

e

r max min

nq V GM
i - ,

r c rc

nq V GM
' i .

 

-
r c rc





  


  


    (33) 

 
Now one can introduce the generalized Lorentz-

Einstein parameters, for an electron in a two-
potential electromagnetic and gravitational field. 
These parameters are described by the following 
equations:  

        

1 22
1

2

1 2 2 2 2

2

/
v

nq V GMec
r r

r max min

nq VH .GMe, i c v
r c rc

r max min

nq V GMec
r r

r max min

  


 
 
 

  
 
 

  
  

 
 
 

  
  

 (34) 

 
The solutions of the H3,4 are symmetric to the 

solutions of the parameters H12. 

The previously presented two potential fields 
can be generalized by the application of the multi-
potential field as the function of the field parameters 
α and α’. Now, for derivation of a four-potential 
vector A of the related potential field, one can recall 
the general Hamilton function, H, for the weak 
potential fields:  

   

1 22 2

2
3 2

1

p x p y
x y

r max minp z

step max

z p

max var

H

n n /

U v U v
c p c p

c c

rU v
c p c U ,
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n ...,n , .n

 




   
       

   

 
    

 



(35) 

 
Here Up is a potential energy, (px, py, pz) is a 

three-momentum vector, (vx, vy, vz) is a three-
velocity vector and ζ1, ζ2, ζ3 and β are the well-
known Dirac’s matrices. If an electron is moving 
with a constant velocity v << c in an 
electromagnetic field with a scalar potential, V, then 
one should use the following relations: 

2 2

2

p x p y yx
x y

p z z
z

U v U v V vV vq q q q
A , A ,

c c c c c cc c

U v q V v q
A .

c c cc

   

 

(36) 

 
Here q is an electric charge of an electron and 

(Ax , Ay , Az ) is a three-potential vector of  the 
electromagnetic field. Including (36) into (35), one 
obtains the well-known Hamilton function for 
Dirac’s electron in an electromagnetic field: 

     
1 2

2
3

x x y y

r max min
z z

q q
H c P A c P A

c c

rq
c P A c qV .

c n

 




   
       

   

 
    

 

(37)    

 
On the other hand, if a robot (particle) is 

moving with constant velocity v << c in a 
gravitational field, then, according to the previous 
procedure, one should use the following relations:  

   

2 x

r max min r max min
p g

r max min r max minp x g x
g

r GM r
U V ,

nr n

r rU v V v
A .

nc c ncc

 
  

 
 

(38)  

and 
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2

2

y

z

r max min r max minp y g y
g

r max min r max minp z g z
g

r rU v V v
A ,

nc c ncc

r rU v V v
A .

nc c ncc

 
 

 
 

(39) 

 
In the relations (38) and (39) G is a gravitational 

constant, M is a gravitational mass, Vg is a 
gravitational scalar potential and (Agx , Agy , Agz ) is a 
three-potential vector of the gravitational field. 
Including (39) into the equation (37), one obtains 
the Hamilton function Hg for the particle in a 
gravitational field: 

1

2 3

2

x

y z

r max min
g x g
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y g z g
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 
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      

   

 
 

(40)                                                                                 

 
Generally, if the robot velocity v in a potential 

field is constant, then the four-potential vector A can 
be derived as a function of the field parameters α 
and α′:  

         
 

2
0 1 2 3 0

1 0

1

x
x

c
A A ,A ,A ,A , A ,

v
                  A A A ,

c




   
 

 

'
 (41)                          

and     

          

1 0 2 0

3 0

yx
x y

z
z

vv
A A A ,   A A A ,

c c

v
                 A A A .

c

   

 

      (42)    

 
Now, the components of the field tensor Fij of 

the potential field can be calculated by using 
relations (41) and (42) and the well-known 
procedure:  

           

 0 1 2 3

0 1 2 3
j i

ij i j

A A
F , i, j , , , ,

x x

X x ,x ,x ,x ct ,x, y,z .

 
  
 

  
 

     (43) 

 
As the result of this calculation, one obtains the 

well-known anti-symmetric tensor Fij of the 
potential field in the following form:                             

01 02 03 01 02 03

10 12 13 01 12 13

20 21 23 02 12 23

30 31 32 03 13 23

0 0
0 0

0 0
0 0

ij

F F F F F F

F F F F F F
F .

F F F F F F

F F F F F F

   
   

     
    
   

       

(44) 

This tensor can be employed for the derivation 
of the related Maxwell’s like equations in a vacuum.  

Following the previous consideration, one can 
introduce the normalized scalar potential 0

mA  of a 
multi-potential field in the dimension of specific 
potential energy:           

   0 0 21 1 2m j j j  A A ' c , j , ,..,n.       (45) 

 
Here term αα′ has to be calculated by employing 

the relations (30) to (33):  
                                         

  21 1 2jp

r max min

n U
 , j , ,..,n.

r c




 
  
  

' =  (46)   

 
The relations (45) and (46) tell us what the 

normalized scalar potential 0
mA  really is: 

0 1 2 1jp

m ma

step max va

x
r max min

r

n U
A , j , ,..,n, n ...,n ,

r

            n n / n         .





  


 
(47)  

 
In recent decades, it has been created a wide 

range of robotic systems mostly inspired by animals. 
In that sense, engineers have created a wide range of 
robotic systems like four - legged robots, snake 
robots, insect robots, and fish robots, [37]. 
Following the previous consideration, it is possible 
to control that class of robots by using the radial 
mass density field theory.  

 
 

4   Calculation of the Robot Motion in 

Radial Mass Density Field 
Gravitational field with the mass Mg has the 
maximal and minimal gravitational radial mass 
densities given in [12]:  

    

2
27

max
min

(1 ) 2.693182 10 / ,g

rm

M c
kg m

r G


     (48) 

and 

    
2

23
min

max

(1 ) 0.888779 10 / .g

rm

M c
kg m

r G


     (49) 

 
The numerical values in (48) and (49) are 

constant and are valued for all amounts of the 
gravitational mas Mg. In relations (48) and (49) the 
parameter κ is the energy conservation constant that 
has been calculated in the 12, by using Planck’s 
mass and Planck’s length:  
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2 2

2 2
1 0 99993392118

1
p p

p

p

GM GM
L , . .

( )c L c



   


(50) 

 
Thus, the value of κ is close to one but less than 

it. Using the combination of equations (21) and (48) 
one obtains the canonical differential equations of 
the robot motion at the minimal gravitational radius 
with the maximal radial mass density:      

 

2

2 27
1 v

2.693182 10
1 v / ,   /   .

de ce e

step max varg g

d X nq
E E H

cdt

E H m k n n ng
c

 
    

  

 
   
 

(51) 

 
By changing parameter n = 1, 2, .., nmax and 

using the parameter nvar , one can obtain the desired 
acceleration and precise control of the robot motion 
in the related control region. Further, using the 
combination of (21) and (48) one obtains the 
canonical differential equations of the robot motion 
at the maximal gravitational radius with the minimal 
radial mass density: 

 

2

2 23

1 v
0.888779 10
1 v / ,   /   .

de ce e

step max varg g

d X n q
E E H

dt c

E H m k n n ng
c

 
    

  

 
   
 

 (52) 

 
Now, by changing parameter n = 1, 2, .., nmax 

and variable parameter nvar , one can obtain the 
desired acceleration and precise motion of the robot 
control in the related region. The ratio between the 
maximal and minimal radial mass densities can be 
calculated by using the relation: 

   

27
max 4

max 23
min

2.693182 10 3.030204 10 .
0.888779 10

rm

rm

n
 

   
 

 (53) 
 

This ratio is the constant and is valued for the 
all amounts of the gravitational masses. 

Following the previous equations, one can 
calculate of the maximal steps, nstep , between 
maximal and minimal radiuses in a gravitational 
field. For the calculation of the precise motion of the 
robots in the gravitational radial direction, one can 
introduce the variable step of the robot motion, nvar. 
In that case, it is possible to select (change) the scale 
of the desirable step of the robot motion in the radial 
mass density field.  

For an example, let the variable step of the robot 
motion in the radial direction be given by the 
amount nvar =100. In that case the number of the 
robot steps nstep from the minimal to the maximal 

radiuses has the value: 

    
2

max

var

303.0204 10 303.0204 .
100step

n
n steps

n


    (54) 

 
In this calculation a robot needs 303 steps of the 

motion from the minimal to the maximal radiuses in 
the radial direction. In the case where the robot 
motion is not in the radial direction one should use 
the related projection of the radial trajectory to the 
desired robot trajectory. 

The next example is related to the possibility 
that one wants to introduce the potential energies at 
the minimal and maximal gravitational radiuses, Ug 

max and Ug min, respectively. In that case it is possible 
to calculate the minimal and the maximal radial 
lengths, Lgmin and Lgmax , respectively, by using the 
relations: 

  
max min

0 max min 0 max min
min 2

min

                       ,

2
,

(1 )

g rm

rm rm p

g

g

M r

m G r m G r
L

U c

 

  
 



(55) 

and 

   0 min max 0 min min
max 2

max

2
.

(1 )
rm rm p

g

g

m G r m G r
L

U c

  
 


 (56) 

 
From relations (55) and (56) one can see how 

the potential energies in the gravitational field can 
influence the robot's motion in that field. 

 
 

5   Conclusion  
This article is based on the new Relativistic Radial 
Density Theory (RRDT) that has been applied to the 
control of the robot motion in potential fields. The 
robot motion is calculated from the minimal to the 
maximal gravitational radiuses and vice-verse. In 
the case where the robot motion is not in the radial 
direction, it is necessary to transform the radial 
coordinates into the rectangular ones by using 
related projection. It is shown that the maximal 
radial mass density occurs at the minimal 
gravitational radius. On the other hand, the minimal 
radial mass density happens at the maximal 
gravitational radius. Furthermore, the both maximal 
and minimal radial mass densities can also be 
described as the functions of the energy 
conservation constant κ. In that sense, the related 
gravitational length, time, energy, and temperature 
can be represented as functions of the Planck length, 
time energy, and temperature, respectively.  

Finally, it is concluded that the precise control 
of the robot motion in combination with the 
electromagnetic and gravitation fields can be 
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controlled by the introduction of the variable step of 
the robot motion. In that sense, one can introduce 
the steps number, nstep, that is function of the 
variable term, nstep = nmax / nvar, between maximal 
and minimal radiuses in gravitational field. On that 
way, the smaller value of the parameter nvar gives 
the bigger number of the steps, nstep, and vice versa. 
Thus, the bigger nstep gives more precise control of 
the robot motion in the radial mass density field.        
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