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Abstract: We consider a system of ordinary differential equations which extends the well-known SIR model for
the dynamics of an epidemic. The main feature is that the population is divided in several subgroups according
to their immunity level, which has as a consequence different infection rates. The maximum level of immunity
can be achieved either by recovering from an infection, or by possible vaccination. We consider the cases that
the vaccination rate is independent on the size of infected population, or that it depends also on this value by a
power law. In addition, we assume that the immunity level can decay in time. The goal of this paper is to analyze
the existence and uniqueness of equilibrium solutions, which can be either a trivial (disease-free) equilibrium,
with no infections, or an endemic equilibrium, with a certain amount of infected individuals. Moreover, we give
conditions for the local asymptotic stability of the unique trivial equilibrium solution. It will turn out that, if
this is the case, then there exists no endemic equilibrium, which means that the epidemic can be eradicated, by
arriving at herd immunity. On the other hand, if the trivial equilibrium is unstable, then we prove the existence
of an endemic equilibrium which, under natural conditions, turns out to be unique. The stability of the endemic
equilibrium remains still an open problem.
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1 Introduction
The SIRmodel is a standard system of ordinary differ-
ential equations used for the modeling of epidemies,
see, [1], [2], [3]. It is a compartmental model, since
the population is divided into several compartments:
S - susceptible, I - infected and R - recovered. The
dynamics can be described by transitions between dif-
ferent stages. Susceptible individuals can get the dis-
ease by contact with infected ones. The correspond-
ing rate is directly proportional to the numbers S and
I , while the transition from I to R occurs at a rate
proportional to the number I of infected individuals.
An individual in this last stage is already immune and
cannot contribute anymore to the spread of the dis-
ease. By scaling the total population to 1, the system
of ordinary equations corresponding to the SIR model
is the following:

dS

dt
= −β · I · S

dI

dt
= β · I · S − α · I

dR

dt
= α · I (1)

The coefficients of the linear terms, i.e. the rates of
passing from one state to another, are inversely pro-
portional to the average time spent in the correspond-
ing state. With Tinf the average time spent in the in-
fectious state, we can therefore assume thatα = T−1

inf ,
while for β we can consider the form β = R(t) ·T−1

inf .
The term R(t) denotes the time dependent effective
reproduction number, i.e. the average number of fur-
ther infections produced by the contacts with one in-
fectious individual. At the beginning of the epidemic
its value is equal to R0, the so called basic repro-
duction number, but after that it may vary due to re-
strictions, social distancing, increased frequency of
testing, etc. Possible variations within this simplest
framework are the SIRS and the SIS models, where in
the first case the recovered individuals become again
susceptible after some time, whereas in the latter situ-
ation an individual moves after infection directly into
the susceptible state. In [3], it is shown that for these
models the local asymptotic stability of the disease-
free equilibrium holds if R0 < 1, which means that
the disease will die out due to arriving at herd immu-
nity. If R0 > 1 the disease will become endemic,
reaching an endemic equilibrium which turns out to
be asymptotically stable. In [4], the global stability of
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equilibrium solutions of the SIR, SIRS and SIS mod-
els is proven by constructing appropriate Lyapunov
functions.

The SIR model can be also extended to a SEIR
model, by introducing the intermediate state E - ex-
posed, or SVEIS with the state V - vaccinated, see,
[5], where also the local stability of equilibrium so-
lutions is analyzed. The stability of extensions of the
classic SIR model is analyzed also in [3], where it is
shown that in some cases there may be an asymptoti-
cally stable endemic equilibrium even if R0 < 1 and
other situations in which there is an endemic equilib-
rium that is unstable for certain values of R0 > 1.

The phenomenon of waning immunity, where the
rate of loss of immunity depends on the time since
recovery, is modeled by delay differential equations
like in [6], by systems of integro-differential equa-
tions like in [7], [8], or by coupling ordinary and par-
tial differential equations like in [9], [10], the latter
reference considering also vaccination, which is also
considered in [11].

Other papers consider also age-structured popu-
lations, like: [12], with five levels of immunity and
a discrete age structure, while, [13], considers the
age and the immunity level as continuous variables
and the dynamics is modeled by a system of integro-
differential equations.

The paper, [14], considers a model which
describes two competing diseases, influenza and
COVID-19 and analyzes the dynamics of the corre-
sponding non-linear system of differential equations
under vaccination strategy and immunity waning.

In this paper we will modify the above SIR model
by considering, besides the infected state I , several
levels of immunity. The full immunity against infec-
tion can be obtained either by passing through the dis-
ease, or by vaccination. We further assume that the
level of immunity decays with time. Therefore we
introduce the states S0, . . . Sm, m ≥ 2, where S0 de-
scribes the lowest possible level of immunity, while
Sm stands for the maximum level, or full immunity.
The system of ordinary differential equations corre-
sponding to this model is the following:

dSk

dt
= −βk · I · Sk − γk · Ip · Sk − ηk · Sk

+ηk+1Sk+1, 0 ≤ k ≤ m− 1

dSm

dt
= α · I +

m−1∑
k=0

γk · Ip · Sk − ηm · Sm

dI

dt
=

m−1∑
k=0

βk · I · Sk − α · I (2)

The assumption is that the total population remains
constantly equal to 1, since birth and death phenom-

ena are not considered. The infection mechanism is
similar to that of the SIR model, but with different
transmission rates βk ≥ 0, depending on the immu-
nity level. We consider the assumption βm = 0, that
is, at the maximum levelm there exists full immunity.

This full immunity can be achieved either by pass-
ing through the disease, which means that infected in-
dividuals, which recover at rate α > 0, change from
state I to the state Sm, or by vaccination from any
other level 0 ≤ k ≤ m − 1. The term which models
this transition is considered to be of the form γk ·Ip·Sk

with the vaccination rate γk > 0 (we assume that
γm = 0, that is, the vaccination does not take place
at the highest immunity level) and with the parameter
p ∈ [0, 1]. This choice is motivated by the fact that
the interest of individuals for vaccination might de-
pend on the size of the infected population I through
the factor of the form Ip. For p = 0 the corresponding
term is considered as γk · Sk, i.e. the vaccination rate
is independent on the size of the infected population.
We will consider also the situation of no vaccination
at all, with γ ≡ 0.

The decay of immunity is modeled by the transi-
tion from state Sk+1 to Sk with 0 ≤ k ≤ m−1 at rate
ηk > 0, while η0 = 0 (the immunity cannot decay
further at this lowest possible level).

Similarly to the SIR model we assume that α =
T−1
inf and βk = Rk ·α, with Rk being the basic repro-

duction number, that is, the average number of sec-
ondary infections generated from an infected individ-
ual on immunity level k. We consider the reproduc-
tion numbers corresponding to each immunity level
to be constant in time.

We may consider natural monotonicity assump-
tions on the coefficients Rk, γk, which are decreas-
ingwith k (reproduction numbers and vaccination rate
are lower at higher immunity levels, being =0 on the
highest level), but in our mathematical model we will
make use of them only if it is strictly necessary, other-
wise we keep the assumptions as general as possible.

One such example is the assumption Rk < 1 for
k ≥ 1 (the values of R0 > 0 can be arbitrary).
This is no significant restriction, since we are free to
choose the compartments of our model. By recalling
the property of such epidemic models, which states
that, if the basic reproduction number is< 1, then the
disease will eventually die out, we can interpret the
condition Rk < 1 for k ≥ 1 in the sense that we can
define the (partially) immune population groups in
our model as those for which the epidemic vanishes,
if the immunity would remain forever on that given
level. This assumption is needed only for the unique-
ness of the endemic equilibrium solution, otherwise
we don’t make use of it. Only for the basic reproduc-
tion number of the population without any immunity
we will consider also the possibility that R0 > 1.
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The system (2) was introduced by the present au-
thor in [15], by using a stochastic approach based
on Markov jump processes. A convergence result
was proved and also numerical simulations were per-
formed.

A relatedwork is reported in [16], where themodel
is denoted as SIR(k)S model, corresponding to k lev-
els of immunity. The decay of immunity follows a
similar mechanism as described previously, but for
the decay rates two possible specific assumptions are
made: linear or exponential decay, while in [15], or
in this paper, the rates are kept in a general form. In
[16], there are considered two possible vaccination
schemes: a general one, similar to the one considered
in this paper with constant rates, but also a so called
rational scheme, where only the susceptible popula-
tion (with no immunity at all) and only one additional
compartment with partial immunity are subjected to
vaccination. The mathematical results of the men-
tioned paper are the following:

1. The existence of a unique trivial equilibrium is
shown forR0 < 1 (no other equilibrium exists in
this case).

2. The model without vaccination has a unique en-
demic equilibrium if and only if R0 > 1.

3. The model with vaccination for m = 2 has a
unique endemic equilibrium if and only if Rη >
1, where Rη is a term which involves R0 and the
coefficients of the system of equations. It is con-
jectured that this result holds also for arbitrary
m > 2.

4. The paper discusses also the connection between
the ODE model and an ODE-PDE model for
m → ∞.

Compared to the aforementioned paper, which
considered only a particular form of the immunity de-
cay rates, the present work comes with new results
from several points of view. First, we keep the vacci-
nation and immunity decay rates as general as possi-
ble. Secondly, beyond constant vaccination rates, we
consider also the scenario that the vaccination rates
are proportional to some power Ip of the size of the
infected population. This models the situation that if
the incidence of the disease is low, the interest for vac-
cination is also low, and vice-versa.

Regarding the results of this paper, we show exis-
tence and uniqueness of the trivial and endemic equi-
librium (for allm, not only form = 2) under similar
conditions as in [16], but in a more general setting
and also in an additional scenario regarding the vac-
cination. Moreover, we analyze also the asymptotic
stability properties of the disease-free (trivial) equi-
librium, and show its stability for R0 < 1 in the case

that the vaccination rates depend on Ip and give also
necessary and sufficient conditions for stability if the
vaccination rates are independent on I , in the cases
m = 2 and m = 3. We conjecture that this stability
property holds for all k.

Concerning the endemic equilibrium, we show ex-
istence and uniqueness basically under the condition
that ensures that the disease-free equilibrium in both
scenarios regarding vaccination is unstable. Since we
give only a general existence proof and cannot com-
pute it by an exact formula as in the case of the trivial
equilibrium, the question of stability of this endemic
equilibrium is not addressed in this paper. The re-
sults are qualitatively similar to those corresponding
to some extensions to the SIR model described in [3],
since, in the case that the vaccination rates are inde-
pendent on I , the disease-free equilibrium can be sta-
ble also if R0 > 1, basically if the immunity does
not decay too fast and if the vaccination rates are high
enough. In the discussion section we will also point
out some practical limitations of this mathematical re-
sult.

The present paper is structured as follows. In Sec-
tion 2 we discuss the nonlinear system of equations
corresponding to the equilibrium state, that is, the
right hand sides of the ODE system (2) are set to be
equal to 0. We also compute the corresponding Jaco-
bian matrix, since the local asymptotic stability of an
equilibrium solution is ensured by the negative sign
of the real parts of the eigenvalues of the Jacobian
matrix in this point. After describing this setup, in
the next sections we present the main results of this
paper. In Section 3 we discuss the existence, unique-
ness and stability of the disease-free equilibrium, with
no infections (I = 0) and in section 4 the existence
and uniqueness of the endemic equilibrium. In each
of these two sections we consider both scenarios re-
garding vaccination which are assumed in this paper.
We conclude with a summary of the results given in
Section 5 and with a discussion of their practical rel-
evance which is presented in Section 6.

2 The nonlinear system of equations
at equilibrium

The considered dynamics, which involve only transi-
tions between different states, but no changes in the
population size, which is assumed to be equal to 1,
is reflected also by the fact that the sum of the RHS
in (2) is equal to 0, which means a conservation of
the total population. Since the equations whose solu-
tions are the equilibria which we are interested in are
dependent, we replace the last equation with the as-
sumed conservation property. The nonlinear system
of equations which we consider is therefore the fol-
lowing:
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−βk · I · Sk − γk · Ip · Sk − ηk · Sk+

+ηk+1Sk+1 = 0

for 0 ≤ k ≤ m− 1

α · I +
m−1∑
k=0

γk · Ip · Sk − ηm · Sm = 0

m∑
k=0

Sk + I = 1 (3)

We will also use the relation corresponding to the
RHS of the equation for I in (2):

−
m−1∑
k=0

βk · I · Sk + α · I = 0 (4)

Note that equation (4) can be also obtained by sum-
ming up the firstm+ 1 equations in system (3).

Since the sumof the components remains constant,
for the stability analysis of the equilibrium points,
which are the solutions of system (3), we disregard the
equation for Sm and replace Sm = 1−

∑m−1
k=0 Sk − I

in the equation for Sm−1.
For this reduced system, considering the variables

in the order S0, S1, . . . Sm−1, I , the Jacobian matrix,
for which the signs the real parts of its eigenvalues de-
termine the local stability property of the equilibrium
points of the system (2), is given by:

J =



−β0I − γ0I
p η1 . . . 0 −β0S0 − γ0pI

p−1S0

0 −β1I − γ1I
p − η1 . . . 0 −β1S1 − γ1pI

p−1S1
...

...
...

...
−ηm −ηm . . . −βm−1I − γm−1I

p− −βm−1Sm−1 − ηm−
−ηm−1 − ηm −γm−1pI

p−1Sm−1

β0I β1I . . . βm−1I
∑m−1

k=0 βkSk − α


(5)

When analyzing the existence and possible
uniqueness of equilibrium solutions, we will consider
separately the following situations regarding the
dynamics of vaccination: either the form γk · Ip · Sk

with p ∈ (0, 1] where γk ≥ 0 (the value γk = 0 for
all k is also possible), or of the form γk · Sk, where
at least γ0 > 0. That is, in this case the vaccination
rates are independent on the size of the infected
population. We will analyze the trivial equilibrium
with I = 0 and also endemic equilibria with I ̸= 0.

3 Equilibrium solutions with I = 0
We first discuss the equilibrium solutions with no
infections under different assumptions regarding the
vaccination.

3.1 The case p > 0 or γ ≡ 0
We consider first the case that the vaccination rate de-
pends on the size of the infected population or that we

have no vaccination at all. Under these assumptions,
for I = 0 the system (3) reduces to:

−ηk · Sk + ηk+1Sk+1 = 0, 0 ≤ k ≤ m− 1

−ηm · Sm = 0
m∑
k=0

Sk = 1 (6)

Starting from the equation for Sm we obtain suc-
cesssively Sk = 0 for 1 ≤ k ≤ m (since ηk ̸= 0 if
k ≥ 1). By noting that η0 = 0 and considering the
conservation property, we obtain that the only equi-
librium with I = 0 is given by S0 = 1, Sk = 0 for
k ≥ 1. Under the assumption that p = 0 or γ ≡ 0
we replace all terms involving γk in the Jacobian (5)
with 0, therefore the value of J taken in the current
equilibrium point will be

J =



0 η1 0 . . . 0 −β0
0 −η1 η2 . . . 0 0
...

−ηm −ηm −ηm . . . −ηm− −ηm
−ηm−1

0 0 0 . . . 0 β0 − α


(7)

Theorem 3.1. Assume p > 0 or γ ≡ 0.
IfR0 < 1, the unique solution S0 = 1, S1 = . . . =

Sm = I = 0 of (3) is an asymptotically stable equi-
librium point of (2).

If R0 > 1, this trivial equilibrium point is unsta-
ble.

Proof. From (7) can be easily seen (by expansion
w.r.t the last row) that one eigenvalue of J is λ0 =
β0 − α = α(R0 − 1) whose sign depends on the as-
sumption on R0. The other eigenvalues are the solu-
tions of p(λ) = 0 with

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ η1 0 . . . 0
0 −η1 − λ η2 . . . 0
0 0 −η2 − λ . . . 0
...

...
0 0 0 . . . ηm−1

−ηm −ηm −ηm . . . −ηm−
−ηm−1−

−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Substracting the first column from all the others we

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.57 Flavius Guiaş

E-ISSN: 2224-2856 553 Volume 18, 2023



obtain

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ η1 + λ λ . . . λ
0 −η1 − λ η2 . . . 0
0 0 −η2 − λ . . . 0
...

...
...

...
0 0 0 . . . ηm−1

−ηm 0 0 . . . −ηm−1−
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We add next all other rows to row 1 and therefore we
have

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ηm − λ 0 0 . . . 0
0 −η1 − λ η2 . . . 0
0 0 −η2 − λ . . . 0
...

...
...

...
0 0 0 . . . ηm−1

−ηm 0 0 . . . −ηm−1−
−λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Expanding the determinant with respect to the first
row and noting that the minor which arises has a tri-
angular form, we conclude that the other eigenvalues
of J are λk = −ηk < 0, k = 1, . . .m.

If R0 < 1, then all eigenvalues of the Jacobian
at the equilibrium point are negative and we conclude
that this equilibrium is asymptotically stable (locally).
If R0 > 1 then there exists a positive eigenvalue and
therefore the trivial equilibrium is unstable.

This result corresponds to the intuitive trivial ex-
pectation that, if R0 < 1, that is, the reproduction
number is less than 1 even for the lowest level of
immunity, the disease will vanish and the compo-
nents will approach the equilibrium state where all
individuals are on the lowest immunity level. More-
over, since the vaccination terms have either the form
γk · Ip · Sk with p ∈ (0, 1] or γ ≡ 0 (no vaccina-
tion), we conclude also that near this equilibrium the
vaccination becomes irrelevant to its stability, which
is always given. For R0 > 1 however, we will see
that the system has also at least one nontrivial (en-
demic) equilibrium with I ̸= 0 which, under further
additional conditions, is unique.

3.2 The case p = 0 (vaccination independent
on I)

In this case, for I = 0 the system (3) reduces to:

−(γk + ηk) · Sk + ηk+1Sk+1 = 0, 0 ≤ k ≤ m− 1
m−1∑
k=0

γk · Sk − ηm · Sm = 0

m∑
k=0

Sk = 1 (8)

There are m + 2 equations for the m + 1 unknowns
S0, . . . Sm, but we note that summing up the first
m + 1 equations we obtain 0, so in fact we can con-
sider only the equations for 0 ≤ k ≤ m − 1 and the
conservation property defined by the last equation.

Since all coefficients which appear are > 0, we
can express Sk+1 in terms of Sk, that is, successively
S1, S2, . . . Sm in terms of S0 in the form Sk = θk ·S0.

Taking into account that
∑m

k=0 Sk = 1, we obtain
that the system (8) has a unique solution with all Sk >
0.

The interpretation is that, by vaccination at the
given constant rates depending only on the immunity
level, combined with immunity decay, the system has
a trivial equilibrium. In this equilibrium point with no
infections (I = 0) the Jacobian has the value

J =



−γ0 η1 . . . 0
0 −γ1 − η1 . . . 0
...

...
...

−ηm −ηm . . . −γm−1 − ηm−1−
−ηm

0 0 . . . 0

−β0S0

−β1S1
...

−βm−1Sm−1 − ηm∑m−1
k=0 βkSk − α

 (9)

For a stability result we need a negative sign of the
real parts of the eigenvalues of this matrix. Due to the
structure of the last row we have that one eigenvalue
is λ0 =

∑m−1
k=0 βkSk−α = α(

∑m−1
k=0 RkSk−1). For

the stability of the equilibrium given by the solution
of (8) together with I = 0, it is therefore necessary
that λ0 < 0.

Remark 3.1. The necessary condition∑m−1
k=0 RkSk < 1 for the stability of the trivial

equilibrium solution with I = 0 in the case p = 0
(vaccination rate independent on I) and γ0 > 0 is
equivalent to the inequality Ψ(R̄, γ̄, η̄) < 0, where

Ψ(R̄, γ̄, η̄) = (R0 − 1)γ−1
0 + (R1 − 1)η−1

1 +

+
m−1∑
k=2

(Rk − 1)η−1
k

k−1∏
j=1

η−1
j (γj + ηj)−

−η−1
m

m−1∏
j=1

η−1
j (γj + ηj). (10)

This inequality holds always if Rk < 1 for all k, but
it can be also fulfilled even if this is not the case, if
in addition the vaccination rates γk and the immunity
decay rates ηk are chosen properly.
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Proof. From the system (8) we use the relations
Sk+1 = η−1

k+1(γk+ηk) ·Sk, k = 0, . . . ,m−1. Since
η0 = 0, we obtain therefore S1 = η−1

1 γ0 · S0 and

Sk = η−1
k

k−1∏
j=1

η−1
j (γj + ηj) · γ0 · S0, k = 2, . . . ,m.

The conservation property
m∑
k=0

Sk = 1 is thus

equivalent to:

S0+η−1
1 γ0 ·S0+

m∑
k=2

η−1
k

k−1∏
j=1

η−1
j (γj+ηj)·γ0 ·S0 = 1

and from this we obtain:

S−1
0 = 1 + η−1

1 γ0 +
m∑
k=2

η−1
k

k−1∏
j=1

η−1
j (γj + ηj) · γ0.

(11)

The condition
m−1∑
k=0

RkSk < 1 is therefore equivalent

to R0S0 +R1η
−1
1 γ0 · S0 +

m−1∑
k=2

Rkη
−1
k

k−1∏
j=1

η−1
j (γj +

ηj) ·γ0 ·S0 < 1. By multiplying with S−1
0 using (11),

bringing all the terms on the LHS and dividing subse-
quently with γ0, we obtain that a necessary condition
for stability is given by

(R0 − 1)γ−1
0 + (R1 − 1)η−1

1 +

+
m−1∑
k=2

(Rk − 1)η−1
k

k−1∏
j=1

η−1
j (γj + ηj)−

−η−1
m

m−1∏
j=1

η−1
j (γj + ηj) < 0.

It is clear that this inequality is fulfilled if one of the
following conditions holds:

• Rk < 1 for all k = 0, . . . ,m− 1.

• R0 ≥ 1, Rk < 1, k = 1, . . . ,m − 1 (the par-
tially immune individuals do not contribute to an
exponential spread of the epidemic, which hap-
pens mainly due to the non-immune population).
In this case the necessary condition for stability

is fulfilled if R0− 1 < γ0 · η−1
m

m−1∏
j=1

(η−1
j γj +1).

This global inequality involving all vaccination
and immunity decay rates holds for example if
the vaccination rates γj are sufficiently high, or
if the immunity decay rates ηj are sufficiently
small, a property which confirms also our intu-
ition.

• Rk ≥ 1 for k = 0, . . . ,m − 1, (or basically no
restriction on Rk’s at all) if in addition the im-
munity decay rate ηm from the highest immu-
nity level (full immunity) is sufficiently small. A
larger threshold for this parameter can be consid-
ered for example if the vaccination rate γ0 of in-
dividuals with no immunity is sufficiently large.

Expanding det(J−λI)with respect to the last row
for J as in (9), one can see that the other eigenval-
ues than λ0 = α(

∑m−1
k=0 RkSk − 1) depend only on

γi, ηi > 0. We will show that for m = 2 and m = 3
these eigenvalues always have negative real parts.

Lemma 3.1. If m = 2 or m = 3 the eigenvalues of
the matrix

J1 =



−γ0 η1 . . . 0
0 −γ1 − η1 . . . 0
...

...
...

−ηm −ηm . . . −γm−1 − ηm−1−
−ηm


have negative real parts, provided γi, ηi > 0.

Proof. For the moment we will keepm ≥ 2 arbitrary.
The characteristic polynomial of degree m is given
by:

pm(λ) =∣∣∣∣∣∣∣∣∣∣∣∣∣

−γ0 − λ η1 . . . 0
0 −γ1 − η1 − λ . . . 0
...

...
...

0 0 . . . ηm−1

−ηm −ηm . . . −γm−1 − ηm−1−
−ηm − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
Expanding with respect to the first row we obtain:

pm(λ) = (−γ0 − λ) · pm−1(λ)−

−η1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 η2 0 . . . 0
0 −γ2 − η2 − λ η3 . . . 0
...

...
0 0 0 . . . ηm−1

−ηm −ηm . . . −γm−1 − ηm−1

−ηm − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
where pm−1(λ) is the characteristic polynomial of a
(m−1)×(m−1)- submatrix and has the same struc-
ture as pm(λ).

The second determinant can be expanded with re-
spect to the first column. By noting that eliminating
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the first column and the last row we obtain the deter-
minant of a lower triangular matrix with η2, . . . ηm−1

on the diagonal, we therefore have:

pm(λ) = (−γ0 − λ) · pm−1(λ) + (−1)m
m∏
i=1

ηi

= (−1)m · (p̃m(λ) +
m∏
i=1

ηi)

where the polynomial p̃m(λ) has positive coefficients
and roots with negative real parts.

The stability property of this general polynomial
is still an open problem, but we will show next that
form = 2 andm = 3 this polynomial has roots with
negative real parts.

Form = 2 we have

p2(λ) =

∣∣∣∣ −γ0 − λ η1
−η2 −γ1 − η1 − η2 − λ

∣∣∣∣
= λ2 + (γ0 + γ1 + η1 + η2)λ+ η1η2

+γ0(γ1 + η1 + η2)

Since all involved γi, ηj are > 0, the quadratic equa-
tion p2(λ) = 0 has the form λ2 + a1λ+ a0 = 0 with
a0, a1 > 0. This means that the sum of the roots −a1
is negative, while the product a0 is positive. If both
roots are real (even if equal), they must be necessar-
ily negative. In the case of complex conjugate roots of
the form x±iy, their sum is equal with 2x = −a1 < 0
which means that both eigenvalues λ1,2 have negative
real part.

Form = 3 we have

p3(λ) =

∣∣∣∣∣∣∣∣
−γ0 − λ η1 0

0 −γ1 − η1 − λ η2
−η3 −η3 −γ2 − η2

−η3 − λ

∣∣∣∣∣∣∣∣
= −[λ3 + (γ0 + γ1 + η1 + γ2 + η2 + η3)λ

2

+[γ0(γ1 + η1) + γ0(γ2 + η2 + η3) +

+(γ1 + η1)(γ2 + η2 + η3) + γ0η2η3]λ

+γ0(γ1 + η1)(γ2 + η2 + η3) + η1η2η3]

For the polynomial with positive coefficients
−p3(λ) = λ3 + a2λ

2 + a1λ + a0 we will use the
Routh-Hurwitz criterion in order to show that its
roots have negative real parts. According to Routh-
Hurwitz, this property is equivalent to the fact that
all principal minors of the following Hurwitz matrix
are > 0:

H =

 a2 a0 0
1 a1 0
0 a2 a0


This means that

a2 > 0,

∣∣∣∣ a2 a0
1 a1

∣∣∣∣ > 0,

det H = a0 ·
∣∣∣∣ a2 a0
1 a1

∣∣∣∣ > 0.

Since all coefficients are positive, it is therefore suffi-
cient to show that the principal minor of second order
is positive, i.e. a1a2 − a0 > 0. By computing this
term from the above polynomial, it will turn out that
all negative terms from −a0 cancel with correspond-
ing terms in a1a2 and that the remaining difference is
positive. This proves the statement of the lemma.

By summarizing the previous results we obtain the
stability property in this case.

Theorem 3.2. Let p = 0, βi, γi, ηi > 0 and Sk the
solution of (8) for m = 2 or m = 3. If the condition∑m−1

k=0 RkSk < 1 holds, then these Sk together with
I = 0 are an asymptotically stable equilibrium point
of (2).

4 Existence of an endemic
equilibrium with I ̸= 0

We will analyze now the equilibrium solutions of (2)
with I ̸= 0. The main result is the following:

Theorem 4.1. Let α, βk, ηk > 0, γk ≥ 0 for all k,
except βm = η0 = 0.

(i) If p ∈ (0, 1] (vaccination dependent on I) or
γ0 = 0 (no vaccination for individuals on the
lowest immunity level) and β0 > α ⇔ R0 > 1,
or

(ii) If p = 0 (vaccination independent on I), γ0>0
and Ψ(R̄, γ̄, η̄) > 0 with Ψ defined in (10),

then the system (3) has at least a solution
S0, S1, . . . , Sm, I with all components in (0, 1)
which corresponds to a nontrivial endemic equilib-
rium.

If in addition Rk < 1 for k ≥ 1, then this solution
is unique.

Proof. The basic outline of the proof can be described
as follows. In order to compute the solution of the
nonlinear system (3), we show first that we can ex-
press all Sk in terms of I . Inserting these terms into
the conservation property, it will turn out that the ex-
istence of a solution is equivalent to the existence of
a solution I ∈ (0, 1) of this nonlinear equation. This
can be ensured if there is a sign change of the values
of this function between 0 and 1. In the case that this
function can be proven to be monotone, then the so-
lution, if it exists, turns out to be unique. Moreover,
in the case of monotonicity without sign change, we
will conclude that there exists no solution of the equa-
tion for I , which means that there exists no endemic
equilibrium of the system of differential equations.
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From the equations for 0 ≤ k ≤ m − 1 in (3) we
obtain successively

Sk+1 = η−1
k+1(βkI + γkI

p + ηk)Sk

and therefore Sk = Pk(I) · S0, where Pk(I) is a gen-
eralized polynomial of degree k in I , that is, a finite
linear combination of powers of I , the maximal ex-
ponent being equal to k (since p ∈ [0, 1]). More-
over, all coefficients of Pk are positive and starting
with P0(I) = 1 and P1(I) = η−1

1 (β0I + γ0I
p) (since

η0 = 0) for 0 ≤ k ≤ m − 1 we have the recursion
formula

Pk+1(I) = η−1
k+1(βkI + γkI

p + ηk) · Pk(I) (12)

Dividing (4) by I ̸= 0 we obtain
∑m−1

k=0 βkSk =

α ⇔
∑m−1

k=0 βkPk(I) · S0 = α ⇔ S0 = α/Qm−1(I),
where Qm−1(I) =

∑m−1
k=0 βkPk(I) is a generalized

polynomial of degreem− 1 in I .
Inserting the Sk’s computed above into the conser-

vation property
∑m

k=0 Sk + I = 1 we obtain
m∑
k=0

α

Qm−1(I)
· Pk(I) + I = 1 ⇔

α
m∑
k=0

Pk(I) + I ·Qm−1(I)−Qm−1(I) = 0 ⇔

α
m∑
k=0

Pk(I) + (I − 1)
m−1∑
k=0

βkPk(I) = 0 ⇔

Rm(I) = 0

where Rm(I) defined as above is a generalized poly-
nomial of degreem in I .

We have that Rm(1) = α
∑m

k=0 Pk(1) > 0 since
all coefficients of Pk are > 0.

We further haveRm(0) =
∑m−1

k=0 (α−βk)Pk(0)+

αPm(0) = α(
∑m−1

k=0 (1−Rk)Pk(0) + Pm(0)).
Assuming first that p ∈ (0, 1] or γ0 = 0, we have

that P1(0) = 0 and therefore Pk(0) = 0 for all 1 ≤
k ≤ m. We thus have Rm(0) = α(1 − R0) < 0 if
R0 > 1.

Due to the sign change ofRm between 0 and 1, we
conclude that there exists at least a nontrivial solution
I of the equation Rm(I) = 0.

If p = 0 then we have to consider system (8) and
for computing Rm(0) we need to compute the terms
Pk(0) which, by adapting (12) for the case p = 0
can be computed by Pk+1(0) = η−1

k+1(γk+ηk)Pk(0).
Since P0 ≡ 1, this is exactly the recursion for the Sk

from Remark 3.1. We therefore have P1(0) = η−1
1 γ0

and Pk(0) = η−1
k

∏k−1
j=1 η

−1
j (γj + ηj) · γ0 for k =

2, . . . ,m. Using the form

Rm(0) = α(
m−1∑
k=0

(1−Rk)Pk(0) + Pm(0))

we thus have

α−1Rm(0) = 1−R0 + (1−R1)η
−1
1 γ0 +

+
m−1∑
k=2

(1−Rk)η
−1
k

k−1∏
j=1

η−1
j (γj + ηj) · γ0 +

+η−1
m

m−1∏
j=1

η−1
j (γj + ηj) · γ0

The condition Rm(0) < 0 is therefore equivalent to
Ψ(R̄, γ̄, η̄) > 0 with Ψ defined in (10). In this case,
due to the sign change of Rm, we have at least a
nonzero solution of the equation Rm(I) = 0.

Once the existence of a solution I of the equation
Rm(I) = 0 is established, the corresponding values
Sk can be computed as follows:

∑m
k=0 Sk + I =

1 ⇔
∑m

k=0 Pk(I)S0 + I = 1 and from this we
obtain S0 = (1 − I)/

∑m
k=0 Pk(I). The other val-

ues can be computed then recursively by Sk+1 =
η−1
k+1(βkI + γkI

p + ηk)Sk.
We will analyze next sufficient conditions for the

monotonicity ofRm, which implies the uniqueness of
this solution.

Indeed, deriving the function

Rm(I) = α
m∑
k=0

Pk(I) + (I − 1)
m−1∑
k=0

βkPk(I) (13)

and taking into account that P0(I) ≡ 1 and thus
P ′
0(I) = 0, we obtain

R′
m(I) = α

m∑
k=0

P ′
k(I) +

m−1∑
k=0

βkPk(I) +

+(I − 1)
m−1∑
k=0

βkP
′
k(I)

= αP ′
m(I) +

m−1∑
k=0

βkPk(I) +

+
m−1∑
k=1

(α+ (I − 1)βk)P
′
k(I)

= α

(
P ′
m(I) +

m−1∑
k=0

RkPk(I)+

+
m−1∑
k=1

(1−Rk + IRk)P
′
k(I)

)

Since Pk(I), P
′
k(I) > 0 for I > 0, we note thatRk <

1 for k = 1, . . . ,m − 1 is a sufficient condition for
R′

m(I) > 0, i.e. for the uniqueness of the endemic
equilibrium.
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Note that, if Rm(0) > 0 and Rm(I) is increasing
(for example if Rk < 1 for k ≥ 1), then there exists
no endemic equilibrium, but only the trivial one. In
the case p > 0 or γ ≡ 0 we have Rm(0) > 0 if
R0 < 1, while if p = 0, γ0 > 0 this is equivalent
to the inequality Ψ(R̄, γ̄, η̄) < 0 with Ψ defined in
(10). In both cases we can thus say that, if the local
stability condition for the trivial equilibrium with I =
0 is fulfilled, then this is the unique equilibrium state.

5 Summary of the results
Consider the system (2) of ordinary differential equa-
tions modeling the spread of an epidemic into a popu-
lation subjected to possible vaccination, with several
levels of immunity which can decay in time. The ba-
sic reproduction numbers on these levels are given by
Rk = αβk and the vaccination rates are either of the
form γkI

p with p ∈ (0, 1] or constant γk, i.e. inde-
pendent on the size of the infected population. The
results of this paper regarding existence, uniqueness
and stability of the equilibrium solutions can be sum-
marized as follows.

5.1 The case p > 0 or γ ≡ 0 (vaccination
dependent on I or no vaccination)

In this case we have a unique trivial equilibrium so-
lution with I = 0, with S0 = 1, S1 = . . . , Sm = 0.
If R0 < 1, this is the only equilibrium solution at all
and it is locally asymptotically stable. Note however
that this situation has no practical relevance, since the
reproduction numbersRk should logically decay with
increasing level of immunity k, therefore an epidemic
with such values of the spreading paremeters would
vanish by its natural dynamics, even without vaccina-
tion.

The relevant situation is therefore when we have
R0 > 1. In this case there exists at least one non-
trivial solution corresponding to an endemic equilib-
rium with I ∈ (0, 1). If additionally Rk < 1 for
k ≥ 1, then this nontrivial equilibrium solution is
unique. This assumption on the basic reproduction
numbers for higher levels of immunity is a natural
one, since we can define our compartments in a con-
venient way and can therefore consider that on any
immunity level larger than 0 the basic reproduction
number corresponds to a value for which the epidemic
will eventually die out.

Since we cannot compute explicitly the endemic
equilibrium solution, its stability under the conditions
considered in this paper can be only conjectured.

5.2 The case p = 0 (vaccination independent
on I)

In this case, which assumes implicitely that at least
γ0 > 0, there exists a unique trivial equilibrium so-
lution with I = 0 and Sk > 0 for all k. A necessary

(and at least for m = 2, 3 also sufficient) condition
for the local asymptotic stability of this solution is∑m−1

k=0 RkSk < 1 or, equivalently, Ψ(R̄, γ̄, η̄) < 0,
with

Ψ(R̄, γ̄, η̄) = (R0 − 1)γ−1
0 + (R1 − 1)η−1

1 +

+
m−1∑
k=2

(Rk − 1)η−1
k

k−1∏
j=1

η−1
j (γj + ηj)−

−η−1
m

m−1∏
j=1

η−1
j (γj + ηj). (14)

In this case, if in addition the property Rk < 1 for
k ≥ 1 holds, by the proof of Theorem 4.1 and the af-
terward remark, we conclude that there exists no en-
demic equilibrium with I > 0.

By neglecting the negative termswith factorsRk−
1 < 0 for k ≥ 1, we have that a sufficient condition
such that the only equilibrium solution is the trivial
one with I = 0 is given by

R0 − 1 < γ0 · η−1
m

m−1∏
j=1

(η−1
j γj + 1), together with

Rk < 1 for k ≥ 1.
Note that the RHS of the former inequality is

monotone increasing in the vaccination rates γj and
monotone decreasing in the immunity decay rates ηj .
Assuming the natural condition R0 > 1, we obtain
that the unique equilibrium is the trivial one (which
implies the vanishing of the epidemic) if the vacci-
nation rates are sufficiently high and/or the immunity
decay rates are sufficiently low.

If, however, Ψ(R̄, γ̄, η̄) > 0, then we have at least
one nontrivial (endemic) equilibriumwith I > 0. The
uniqeness of this equilibrium is implied by the condi-
tionRk < 1 for k ≥ 1. The stability of such nontrivial
equilibria is still an open problem.

6 Discussion
In this final section we discuss the possible practical
relevance of the mathematical results of this paper. In
any epidemic model one is basically interested if the
epidemic can be eradicated, that is, if herd immunity
can be achieved by a suitable vaccination strategy, or
if its dynamics will allways stabilize in an endemic
state. The practical relevant case is R0 > 1, since
otherwise the disease will vanish by itself. We also
consider the assumption Rk < 1 for k ≥ 1, which
was already explained in this paper.

Consider first the case that the vaccination rates
depend also on Ip. In this situation the interest for
vaccination is high only if the number of infections is
high and vice-versa. The case that we have no vacci-
nation can be also considered within the same frame-
work. In this situation the disease-free equilibrium
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turns out to be unstable and there exists a unique en-
demic equilibrium. This means that herd immunity
cannot be achieved under these assumptions on the
vaccination strategy.

However, in the case that the vaccination rates are
constant, independent on I , the picture turns out to be
different. We give a necessaray condition for stabil-
ity of the disease-free equilibrium which can be ful-
filled also ifR0 > 1, if the vaccination rates are suffi-
ciently high and the immunity decay rates sufficiently
low. We proved that this condition is also sufficient
in the cases m = 2 and m = 3, which correspond
to the classes ’no immunity’, ’partial immunity’, ’full
immunity’ and ’no immunity’, ’low immunity’, ’high
immunity’, ’full immunity’, respectively. Moreover,
if the necessary condition for this trivial equilibrium is
fulfilled, then in turns out that that there exists no en-
demic equilibrium. That is, if stability is given, which
in our paper is shown for m ≤ 3, then one can ar-
rive at herd immunity and therefore the disease can
be eradicated.

Nevertheless, this theoretical result has some prac-
tical limitations. The immunity decay rates are ba-
sically given, so they can not be changed, while the
vaccination rates cannot be increased arbitrarily, due
to medical and logistic reasons. So, depending on the
particular parameters of the model which correspond
to a given disease and on the values of the vaccina-
tion rates that can be assumed as realistic, in prac-
tice both outcomes are possible: either herd immu-
nity is achieved, according to the theoretical result,
or one arrives at an endemic equilibrium. This out-
come appears if the necessary condition for stability
of the disease-free equilibrium is not fulfilled, due to
fast decay of immunity and low vaccination rates, the
last fact being possible due to several reasons, also of
practical nature.
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