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Abstract: - The article describes the procedure for designing a robust controller for controlling the course of sea 
vessels exposed to sea waves using µ-synthesis. To this end, practical knowledge of the vessel is used to obtain 
a linear design model with parametric uncertainties describing the dynamics of the vessel. Appropriate 
frequency weighting functions are selected to provide the required performance characteristics during the 
controller design phase. The proposed model and then the weighting functions are used to design a robust 
controller. The problem of wave filtering in the low-frequency range is also considered during the modeling 
and design of the controller. The key contribution of the paper is that it provides system designers with a 
methodology for obtaining uncertain linearized ship models that naturally fit within the framework of µ-
synthesis control theory, and it describes, in a systematic manner, the various stages of the controller design 
process. In addition, the document contains detailed information on methods for analyzing robust systems and 
their modeling. 
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1  Introduction 
Ship heading control systems are among the basic 
technical systems. In addition to providing the main 
function, they also provide the implementation of 
other, more complex tasks and, in particular, control 
of the movement of the vessel along the route or 
trajectory. The wind-wave effect has a significant 
disturbing effect on the operation of the ship's 
course control system, causing a significant 
activation of the ship's steering mechanisms. The 
disturbance created by sea waves is fed to the input 
of the regulator, which forms a control action 
supplied to the input of the steering engine, which is 
excessively active, working out insignificant local 
deviations of the vessel from the course. This 
phenomenon is most evident in control laws that use 
signal derivatives. 

Almost all automatic heading control systems 
currently used on ships use PID controllers to 
implement the task of automatically stabilizing the 
ship. Their use is justified due to their sufficient 
efficiency in controlling complex dynamic objects, 
such as sea vessels, the mathematical models of 
which are quite difficult to formalize. 

To control marine mobile objects (MMO), 
modern algorithmic and software tools are used, 
which are included in the basis of automation 

devices. These devices are connected to the steering 
gear, which allows you to track changes in course. 
To do this, it is necessary to evaluate the parameters 
of the control system, taking into account the 
characteristics of the vessel’s movement under the 
influence of exogenous disturbances (currents, 
waves, wind), [1]. Using effective methods for 
adjusting autopilot parameters will improve the 
quality of control and optimal performance of the 
vessel. Recently, a significant number of 
publications have appeared with developed methods 
that make it possible to select autopilot parameters 
that will ensure the suppression of various types of 
exogenous disturbances, [2], [3], [4], [5], [6]. The 
use of wave filters based on the Kalman filter is also 
considered, [7], [8], [9], [10], [11]. 
 
 
2   Problem Formulation 
The theoretical basis for solving problems 
associated with the development and research of 
traffic control systems for MMO and, in particular, 
sea vessels, are mathematical models of control 
objects. One of the characteristic features of sea 
vessels and, in general, MMO is significant 
parametric and structural uncertainty associated 
with the specific conditions of their operation. The 
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specified uncertainty in the mathematical model of 
the movement of a sea vessel leads to the need to 
take it into account when constructing a control 
system. In connection with the need to take into 
account the uncertainty factor of the parameters of 
the mathematical model of the vessel, adaptive 
regulators have been developed, the characteristics 
of which are adjusted following specific conditions, 
[12], [13], [14], [15]. An alternative to adaptive 
control of a ship as a parametric uncertain object is 
the robust approach, which has also been developed, 
[16], [17], [18], [19], [20]. The main idea of robust 
control is to ensure the specified quality of 
processes in the system for certain specified 
intervals of possible values of the parameters of the 
controlled object - the vessel, [21], [22], [23], [24], 
[25]. Recently, artificial intelligence methods have 
also been widely used to control sea vessels, [26], 
[27], [28], [29]. 

The purpose of this study is to study an 
approach to reducing the activity of the steering gear 
in rough seas by using a ship dynamics model and 
compensating for the influence of disturbance in a 
certain frequency band. The specificity of this work 
is that the robust regulator introduced into the 
control loop is synthesized taking into account the 
uncertainty of the ship model parameters and 
reduced sensitivity to wave yaw in the low-
frequency region. The controller is developed using 
ϻ - synthesis, [30], [31], [32]. 
 
 
3   Problem Solution 
The ship's control system includes a control device, 
a steering gear, a gyrocompass, and the ship (Figure 
1). 

 

 
Fig. 1: General block diagram of the ship's course 
control system 
 

The dynamics of a heading control system are 
usually studied using the second-order Nomoto 
model, in which the transfer function is represented 
as             
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The parameters of the dynamic model are uncertain, 
as they can vary within the following limits: 
0,235 ≥ KC ≥ 0.135; KCH = 0.185; 141,6 ≥T1 ≥ 94,4;   

T1H  = 118;   9,36 ≥ T2 ≥ 6,24;  T2H = 7,8;  
22,2 ≥ T3H ≥ 14,8; T3H = 18,5. (Time constants are 
given in seconds for a Mariner-class cargo ship, 
[33]). 

For feedback design purposes, it is desirable to 
simplify the uncertainty model while being sure to 
preserve its overall variability. This is one use of the 
ucover command. This command takes an array of 
LTI realizations Wa and a nominal realization Wсн 
and models the difference Wa-Wcн as a 
multiplicative percentage control system uncertainty 
(ultidyn). To use ucover, we first map the uncertain 
WC model to the family of LTI implementations by 
using the usample function, [30]. This command 
retrieves the parameter values of undefined elements 
in the system. It returns an array of LTI models, 
where each model represents one of the possible 
behaviors of the uncertain system. 

In this case, 60 sample WC values are generated, 
using a random number generator to ensure 
repeatability of Warray implementations. We then 
use the ucover function to cover all Warray 
implementations in a simple indeterminate model of 
the following form: 

  
Wsys = Wсн * (1 + Wt * Delta), 

 
where all the uncertainty is concentrated in the 
“unmodeled dynamics” - the Delta(ultidynobject) 
component. Let us choose the nominal value of Wсн 
as the center of the frequency response graphs and 
use a 3rd order shaping filter Wt to record changes 
in the relative gap between Warray and Wсн 
depending on frequency. After executing these 
commands, we find a stable approximation of the 
upper boundary with a minimum phase (Figure 2). 
 

 
Fig. 2. Approximation of the frequency 
characteristics of an object with a minimum phase 
 

The transfer function of the stable minimum-
phase approximation of the multiplicative 
uncertainty is written as follows: 
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The transfer function (2) is the result of 

calculations using the ucover command. 
 

3.1 Creating an Open-Loop Model of the 

Designed System  
To design a robust controller for an uncertain P 
setting, it is necessary to select the target closed-
loop bandwidth desBW and perform a sensitivity 
minimization calculation using the simplified 
uncertainty model Usys. The structure of the control 
system is shown in Figure 3. 
 

 
Fig. 3: Block diagram of the ship's heading control 
system 
 

The main signals are the disturbance-
disturbance d, the measured noise signal n, the 
control signal u and the output coordinate of the 
installation y. The Wperf and Wnoise filters reflect 
the frequency content of interference and noise 
signals, or equivalently, frequency ranges in which 
interference is observed and good noise suppression 
properties are required. Our goal is to keep y close 
to zero, rejecting noise d and minimizing the 
influence of measurement noise n. It is necessary to 
design a controller that keeps the gain from d and n 
to y as small as possible. In this case, the value of y 
is determined by the following expression: 

 
y = Wperf * 1/(1+PC) * d + Wnoise * PC/(1+PC) * n 

 
Thus, the transfer function of interest consists of 

performance- and noise-weighted versions of the 
sensitivity function 1/(1+PC), plus an additional 
sensitivity function PC/ (1+ PC). Let's choose the 
performance weighting function Wperf as a first-
order low-pass filter with a value greater than 1 at 
frequencies below the required closed-loop 
bandwidth: 
desBW = 0.3 is the cutoff frequency desired for a 
closed-loop system;  
 

Wperf = makeweight(300, desBW, 0.5). 
 

The specified choice of the performance 
weighting function Wperf assumes the effective 

suppression of wave disturbances that affect the 
accuracy of maintaining the specified course of the 
vessel. 

To limit the controller bandwidth and prevent 
going beyond the desired bandwidth, we use a 
Wnoise noise sensor model with a magnitude greater 
than 1 at frequencies exceeding 10*desBW. In this 
case, the transfer function of the noise sensor is 
equal to: 

44 44 2  9 427   1
0 01778 2  3 771   40

(4)
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Then we build an open connection of the system 

blocks using the Connect function shown in Figure 
3, using the following expression: 
M=connect(Wsys,Wperf,Wnoise,S1,S2,S3,{'d','n' 

,'u'},{'y', 'e'}); 

 

3.2  Synthesis of the Course Regulator 
The design controller is designed using the musyn 
automated command, an indefinite model with an 
open contour is set through:  

M:[K,CLperf] = musyn(G,ny,nu). 
 
This command synthesizes an unstructured robust 
black box controller for a system where the plant 
contains some dynamic uncertainty. The controller 
also eliminates the effects of noise on the system 
output. The controller transfer function obtained as a 
result of the calculation is of order 15, so an attempt 
was made to reduce its order using the reduce 
command. In this case, it was possible to obtain an 
8th order regulator. The controller transfer function 
has the following form: 
𝐾𝑝 =         

=

96.1𝑠7 +  2.042𝑒4𝑠6 +  2.169𝑒6𝑠5 +  6.834𝑒5𝑠4 +
+ 5.546𝑒4𝑠3 +  516.8𝑠2 +  0.9438𝑠 +  5.154𝑒 − 6

𝑠8 +  885.7𝑠7 +  5859𝑠6 +  1.708𝑒4𝑠5 +  2.533𝑒4𝑠4

+ 5460𝑠3 +  246.4𝑠2 +  0.7211𝑠 +  0.0004658

 . (4) 

 
To illustrate the results obtained during the 

design process, we present the LFC and PFC of an 
open-loop vessel course control system (Figure 4). 

 

 
Fig. 4: Logarithmic amplitude- and phase-frequency 
characteristics of an open-loop system 
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Using the function S= allmargin(L), we 
calculate the gain margin, phase margin, delay 
margin, and corresponding crossover frequencies for 
the SISO negative feedback loop with the open-loop 
response L. The negative feedback loop is calculated 
as feedback (L,eye(M)), where M is the number of 
inputs and outputs in L. In our case, using this 
function gives the following result: 

 
GainMargin:5.9389e+00         GMFrequency: 
1.9763e+00 
PhaseMargin: 7.6413e+01       PMFrequency: 3.7192e-01 
DelayMargin: 3.5858e+00       DMFrequency: 3.7192e-
01 
 
Stable: 1.  
 

The values obtained as a result of applying the 
allmargin(L) function indicate the stability of the 
system under study, as well as a sufficiently large 
margin both in modulus and in phase. High stability 
is indicated by the results of checking the system 
using the robuststab function. For example, the 
system can tolerate up to 389% of modeled 
uncertainty. The sensitivity for each undefined 
element is: 100% for delta_m. Increasing delta_m 
by 25% reduces margin by 25%. 

Figure 5 shows the transition function for the 
disturbing influence.  

 

 
Fig. 5: Transient function of the disturbance control 
system 
 

From Figure 5 it can be seen that the behavior 
of the transition function corresponds to the stable 
movement of the system, and also changing the 
parameters slightly changes the nature of the 
transition process and the time of its execution. The 
simulation of the proposed system for the nominal 
parameters of the vessel also showed that the system 
provides filtering of harmonic wave disturbances in 
the frequency range from 0.05 rad/s and below. 

4   Conclusion 
The proposed approach to the synthesis of a robust 
ship course controller has shown that it is possible 
to both provide the control function of a model with 
uncertain parameters and filter the influence of sea 
waves in the low-frequency region. 
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