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Abstract: - The present work proposes novel methods of Quenching self-sustained oscillations in the event of 
the existence of limit cycles (LC) in 3x3 non-linear systems. It explores the possibility of Stabilising/Quenching 
the LC by way of signal stabilization using high frequency dither signals both deterministic and random when 
3X3 systems exhibit such self-sustained nonlinear oscillations under autonomous state. The present work also 
explores the suppression limit cycles of 3X3 systems using state feedback by either arbitrary pole placement or 
optimal selection of pole placement. The complexity involved, in implicit non-memory type nonlinearity for 
memory type nonlinearities, it is extremely difficult to formulate the problem. Under this circumstance, the 
harmonic linearization/harmonic balance reduces the complexity considerably. Furthermore, the method is 
made simpler assuming the whole 3X3 system exhibits the LC predominantly at a single frequency. It is 
equally a formidable task to make an attempt to suppress the limit cycles for 3X3 systems with memory type 
nonlinearity in particular. Backlash is one of the nonlinearities commonly occurring in physical systems that 
limit the performance of speed and position control in robotics, the automation industry, and other occasions of 
modern applications. The proposed methods are well illustrated through examples and substantiated by digital 
simulation (a program developed using MATLAB CODES) and the use of the SIMULINK Toolbox of 
MATLAB software.   
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1   Introduction 
In the present scenario, nonlinear self-sustained 
oscillations or LC are the basic features of 
instability. The importance and weight-age of this 
problem were felt among the researchers, [1], [2], 
[3], [4], [5] in the decades past, where they were 
mostly focussing on single input and single output 
(SISO) systems. However, for the last five to six 
decades, the analysis of 2X2 Multi Input and Multi 
Output (MIMO) Nonlinear Systems gained 
importance and quite a good amount of literature is 
available, [6], [7], [8], [9], [10], [11], [12], [13], 
[14], [15], [16], [17], [18], [19], [20], [21], [22], 
[23], [24], [25], [26], [27], [28], [29], [30], [31], 
[32], [33], [34], [35], [36], [37], [38], [39], [40], 
[41], [42], [43], [44], [45], [46], [47], [48], 
addressing this area of research. The analysis and 
prediction of limit cycles in both SISO and MIMO 

systems, a means of increasing the reliability of the 
describing function (DF) are well established, [4], 
[5], [10], [13], [16], [23], [49], [50] and others used 
harmonic linearization/harmonic balance, [29], [33], 
[51]. 

In several cases in physical 2X2 nonlinear 
systems limit cycles are observed such as a couple 
Core Reactor [12], Pressurised Water Reactor 
(PWR) nuclear Reactor System [20], Radar Antenna 
pointing system, [11], and Inter Connected power 
system [39], which can fit the structure, [1], [24] of 
a MIMO two-dimensional nonlinear system. 
 Backlash is a most remarkable nonlinearity, 
commonly existing in physical systems that limit the 
performance of speed and positions, this has been 
extensively discussed for 2X2 MIMO systems, [7], 
[8], [35], [39], [43], [44], [45], [46], [48]. The recent 
literature describes some facts of multidisciplinary 
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applications where limit cycle oscillations have been 
discussed. The authors, [52], presented three 
possible scenarios, namely, stable limit cycles and 
chaos arise naturally in the flow and thermal 
dynamics of the device. The researchers, [53], 
formulated/initialized the cell model to the limit 
cycle, running one-dimensional simulations of 500 
stimuli at a BCL of 300ms. In [54], the dynamic 
nature of the nonlinear system switches between a 
stable equilibrium point and a stable limit cycle has 
been presented. In [55], the stable limit cycle has 
been observed in an autocatalytic system through 
the characteristics of the Hopf bifurcation. In [56], 
the existence of limit cycling oscillations has been 
observed in Biological Oscillators having both 
positive and negative feedback. The researchers, 
[57], have observed in natural systems a closed loop 
as in a stable limit cycle by reviewing empirical 
dynamic modeling. 

Scanty literature is available, which addresses 
3X3 nonlinear MIMO systems in the last two 
decades only [6], [38], [40], [41], [42]. 

However, several industrial problems with two 
or more higher dimensional configurations, [14], 
and prediction of limit cycles via the describing 
function method prove to be quite essential, [4], [5], 
[10], [13], [14], [16], [23], [49]. Hence the 
prediction of limit cycles in three dimensional 
nonlinear multivariable systems which can fit the 
structure of general 3X3, [6], [27], nonlinear 
systems has been addressed. 

In the event of the existence of limit cycling 
oscillations, the possibility, of quenching the 
sustained oscillations using the method of signal 
stabilization has been investigated, [5], [30], [31], 
[49], [50], in 2X2 nonlinear systems with non-
memory type nonlinear elements and memory type 
nonlinear elements in [46] using deterministic 
signals. Until, [47] signal stabilization with random 
signal for memory type multivariable nonlinear 
systems was not available even for 2X2 systems. 

The authors in [47], focused on robust and non-
fragile stabilization of nonlinear systems described 
by the multivariable Hammerstein model. The 
method illustrates a general procedure that addresses 
the general multi-variable nonlinear systems. Of 
course, the method considers uncertainties and most 
importantly control is adopted for stabilization 
which fails to project insight into the problem. 
However, the present work shows a simple method 
to quench the limit cycling oscillations exhibited in 
a class of 3x3 nonlinear systems and stabilize the 
systems using random signals in particular a 
Gaussian Signal. The signal stabilization refers to 
the possibility of quenching the self-sustained 

oscillations by injecting a suitable high frequency 
preferably more than ten times of s (the frequency 
of LC) signal at any point of the system, [5]. The 
random signal having Gaussian distribution contains 
infinite components of frequency. The Gaussian 
Signals are passed through a high pass filter so that 
the high frequency signal quenches the limit cycles 
and stabilizes the system. This has been illustrated 
through examples 1 and 2 revisited. This method 
projects a clear and lucid insight into the problem.   

Prediction and suppression of limit cycles 
oscillations in 2X2 memory type nonlinear systems 
using arbitrary pole placement has been discussed in 
[8], [32], [43], [44], [58] and pole placement by 
optimal selection using Riccati equation, [48], [59]. 
The suppression of limit cycle oscillations using the 
state feedback approach has been dealt with to an 
extent [8].  

The proposed work follows the dynamics of 
general 3X3 nonlinear systems shown in Figure 2, 
Figure 3, [6], which can also be taken as an 
equivalent representation of the general 
multivariable system considered in [42]. 

Having realized the importance of 
quenching/suppression of limit cycle oscillations the 
proposed work first establishes the exhibitions of 
limit cycles in 3X3 nonlinear systems following a 
similar procedure as depicted/illustrated, [6]. 

 
 

2 Prediction of Limit Cycles in a 

General 3X3 Nonlinear Systems  
To avoid the complexity involved in the structure, 
[6], [49], a graphical method is opted for 
investigation of the existence of limit cycling 
oscillations in 3X3 nonlinear systems. 
 
2.1  Graphical Method  

A graphical method has been adapted, [6], for the 
prediction of limit cycling oscillations in a 3x3 
nonlinear system. The steps as depicted in [6], have 
been followed for the establishment of existing limit 
cycling oscillations in a 3X3 nonlinear system 
which has been; illustrated through numerical 
examples and validated by (i) digital simulation, (ii) 
by use of SIMULINK Toolbox of MATLAB 
software. 

Consider a system of Figure 1, a class of 3X3 
nonlinear systems for simplicity it is assumed that 
the whole 3X3 system exhibits the LC 
predominantly of a single frequency sinusoid and 
harmonic linearization/harmonic balance leading to 
the use of describing function methods have been 
opted.  
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The normalized phase diagrams, [28], [46], are 
drawn with three combinations such as:  
Combination 1: For subsystems S1 & S2: C1 (+ve),  
C2 (-ve) and C3 (+ve) 
Combination 2: For subsystems S3 & S2: C2 (+ve),  
C3 (-ve) and C1 (+ve) 
Combination 3: For subsystems S1 & S3: C3 (+ve),  
C1 (-ve) and C2 (+ve) 
Example 1 and 2 are used for illustration of 
procedures of Normalized phase diagrams.  
The linear elements are represented by  
  ;  ;  

=   and Nonlinear elements are taken, Ideal 

relays as shown in Figure 2(a) and ideal saturations 
as shown in Figure 2(b) for Example 1 and Example 
2 respectively  
 

 
Fig. 1: An equivalent 3X3 multivariable nonlinear 
system of Figure 2 in [6] 

 
Fig. 2(a): All Ideal Relays 

 

 
Fig. 2(b): All Ideal Saturation type nonlinear 
elements (with slopes k1, k2, k3) 
 

In examples 1 and 2 non-memory type nonlinear 
elements are used. Assuming harmonic linearization 
these nonlinear elements can be equivalently 
represented by their describing functions, [28], 
which are real functions in these two examples and 
do not contribute any phase angles to the system. 
Hence the phase angles of the system are due to 
linear functions) G1(s), G2(s), G3(s) which are 
complex functions of complex variable s, the 
Laplace operator. It may be noted that for frequency 

response, input is sinusoidal and outputs are steady 

state values considered, so that s (Laplace 

Operator) is replaced by j, [6].  
X1, X2 & X3 are the amplitudes of respective 

sinusoidal inputs to the nonlinear elements. C1, C2 & 
C3 are the amplitudes of sinusoidal output of 
subsystems S1, S2 & S3 respectively. G1, G2 & G3 
are the magnitudes/absolute values of linear 
elements represented by their transfer functions of 
subsystems S1, S2 & S3 respectively. N1, N2 & N3 
are the magnitudes/absolute values of linear 
elements represented by their describing functions 
of subsystems S1, S2 & S3 respectively. 
θL1 = Arg. (  (j ω)) = -90 - (ω): 
θL2 = Arg. (  (j ω)) = -90 - ( ): 

θL3 = Arg. (  (j ω)) = -90 - ( ): 

 N2=(11-3 ) ± 
         

(1)  
 

N1= N2 +                             (2)  
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 =                        (3)    

 =  =                        (4)  

 
For a fixed value of ω the Combinations of 

Subsystems 1, 2, and 3, Normalised Phase Diagrams 
are shown in Figure 3(a), (b), and (c) respectively. 
However, any one of these combinations can be 
used for the determination of limit cycling 
conditions and the related quantities of interest.  
 

 
Fig. 3(a): Normalised Phase Diagram with C1, C2 & 
C3 for the combination 1, where C1 (+ve), C2 (-ve) 
and C3 (+ve) 
 

 
Fig. 3(b): Normalised Phase Diagram with C1, C2 & 
C3 for the combination 2, where C2 (+ve), C3 (-ve) 
and C1 (+ve) 
 

 
Fig. 3(c): Normalised Phase Diagram with C1, C2 & 
C3 for the combination 3, C3 (+ve), C1 (-ve) and C2 
(+ve) 

 
 

With reference to a normalized phase diagram 
[28], [46], the phase representing X2 would lie along 
a straight line drawn at an angle θL2 with the phase 
C2 (C2 = - R1). The intersections of this straight line 
with the circle drawn concerning θL1 would 
represent possible self-oscillations [28]. The concept 
has been extended for 3 x 3 as: 

(i) Consider Figure 3(a) the phase representing 
X2 and X3 would lie along straight lines drawn at 
angles θL2 and ϴL3 with the phase C2 (C2 = - R1) and 
C3 (C3=R1) respectively. The intersections of these 
straight lines with the circle drawn concerning θL1 

would represent possible self-oscillations.  
(ii) Consider Figure 3(b), the phase representing 

X3 and X1 would lie along straight lines drawn at 
angles    

θL3 and θL1 with the phase C3 (C3= - R2) and C1 
(C1=R2) respectively. The intersections of these 
straight lines with the circle drawn concerning θL2 
would represent possible self-oscillations.  

(iii) Consider Figure 3(c) the phase X1 and X2 
would lie along straight lines drawn at angles θL1 

and θL2 with phase C1(C1=-R3) and C2(C2 = R3) 
respectively. The intersections of these straight lines 
with the circle drawn concerning θL3 would 
represent possible self-oscillations.  

Table 1 shows the θL1, θL2, θL3, r (radius), and 
the intersection points of the straight lines and circle 
for combination 1 corresponding to example 1. It 
may be noted that Table 1 Contains  obtained 

from Eqn.3 and Eqn.4 are matched at a limit cycling 
frequency. 
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Table 1. θL1, θL2,θL3, r (radius), and the intersection points of the straight lines and circles for combination 1 
corresponding to Example 1 

 θL1 θL2 θL3 r 

X1/X2 

from eqn.  

3 

X1/X2 

from eqn. 4 
Normalized Phase Diagrams Remark 

0.600 -151.93 -98.531 -106.7 -0.55257 - - 

 

No intersection 
of straight lines 

and circle 

0.650 -156.05 -99.23 -108 0.58256 - - 
 

No intersection 
of straight lines 

and circle 

0.700 -159.98 -99.926 -109.29 -2.128 - - 

 

No intersection 
of straight lines 

and circle 

0.701 -160.06 -99.94 -109.32 -3.1323 1.0 
1.02 

(matched) 

 

The intersection 
of st. lines & 
circle found: 
Confirms the 
occurrence of 
limit cycles 
=0.701, 

C1 = OD2 = 6 
C2 = 1 
C3 = 1 

X1=BD2=6.08 
X2=AD2=6.08 

X3=B’D2= 6.32 

0.750 -163.74 -100.62 -110.56 -1.3583 - - 

 

No intersection 
of straight lines 

and circle 
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Fig. 4(a): Equivalent Canonical form of Figure 1 for 
Ex1 & 2 

 
2.2  Digital Simulation 
Example 1 and Example 2 are revisited.  
A program has been developed [6] with the use of 
MATLAB code for digital simulation.  
The equivalent canonical form of Figure 1 for 
example 1 and 2 is shown in Figure 4(a) and digital 
representation is shown in Figure 4(b). 
 

Numerical results obtained from different 
methods are compared in Table 2(a) and Table 2(b) 
for example 1 and 2 respectively.  

The results/images for example 1 and 2 are 
shown in Figure 5 and Figure 6 respectively.  These 
are also compared with those of obtained using the 
SIMULINK Toolbox of MATLAB software.  
 
Table 2(a). Results obtained using different methods 

corresponding to Ideal Relay Example-1 
Sl. 

No 
Methods C1 C2 C3 X1 X2 X3  

1 Graphical 6.0 1.0 1.0 6.08 6.08 6.32 0.701 

2 
Digital 

Simulation 
4.83 0.74 0.95 4.72 4.91 5.23 0.70 

3 

Using 

SIMULINK 

TOOL BOX 

OF 

MATLAB 

5.95 1.01 0.96 4.84 5.12 5.62 0.70 

 
 

Table 2(b). Results obtained using different methods 
corresponding to Example2: (Saturation) 

 

 
Fig. 4(b): The Digital representation of Figure 1 for 
Ex.1 & 2 

 

Sl. 

No 
Methods C1 C2 C3 X1 X2 X3  

1 
Digital 

Simulation 
4.345 1.06 1.06 4.464 4.581 4.762 0.628 

2 

Use of  

SIMULINK 

TOOL 

BOX OF 

MATLAB 

4.30 1.05 1.05 4.425 4.534 4.74 0.6283 

S1 
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Fig. 5: Results/Images from digital simulation and SIMULINK for C1, C2, C3, X1, X2 and X3 of Example 1 
(relay type nonlinearities) 

 

  

  

  
Fig. 6: Results/Images from digital simulation and SIMULINK for C1, C2, C3, X1, X2, and X3 of Example 2 

(saturation type nonlinearities) 
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3 Signal Stabilization in a 3X3 

Nonlinear System  
 

3.1  Using Deterministic Signal  
In the case of 2x2 nonlinear systems the concept of 
Signal Stabilisation is as under: 
 If a 2x2 Nonlinear system exhibits limit cycles 
(L.C.), in the autonomous state, the possibility of 
quenching the limit cycling oscillations by injecting 
a suitable high frequency signal, preferably at least 
10 times of limit cycling frequency [5], [30], [46], 
[49], [50]. The process is also termed forced 
oscillations which have also been extensively 
discussed by several researchers [30], [33]. Under 
the forced oscillation process the phenomena of 
Synchronization and De-synchronization have been 
addressed thoroughly in [46] for 2x2 nonlinear 
systems. Such phenomena have been realized 
/observed by injecting a sinusoidal input B1 sin f t 
/B2 sin f t at any one or both input points of two 
subsystems S1 and S2 respectively. When the 
amplitude B1 of forcing signal B1 sin f t gradually 
increased keeping the amplitude B2 of forcing signal 
B2 sin f t fixed, the system would continue to 
exhibit a limit cycle. The variables at various points 
in the system would be composed of signals of the 
input frequency (f), the frequency of self-
oscillations (s), and the combination of 
frequencies, k1f ± k2s where k1, k2 assume various 
integer values. At this condition the system exhibits 
complex oscillations.  In the process of gradual 
increase of B1, the frequency of oscillations s 
would also gradually change and for a certain value 
of B1, the synchronization would occur, the self-
oscillation would be quenched and the system would 
exhibit forced-oscillation at frequency f. On the 
other hand, if subsequently the magnitude B1 is 
reduced gradually, a point would arrive at which the 
self-oscillations would reappear which is termed a 
de-synchronization phenomenon. It may be noted 
that the synchronization value of B1 is larger than 
the De-synchronization value of B1 [46]. 

Similar facts have been observed in 3x3 
nonlinear systems. The forced oscillation can be 
realized by feeding deterministic or random signals 
of high frequency, at least greater than 10 times the 
limit cycling frequency at any   one / all input points 
of subsystems S1, S2 and S3. 
 If the amplitude B of the high frequency signal 
is gradually increased, the system would exhibit 
complex oscillations before the synchronization 
takes place. On the reverse operation, if the 
amplitude B is gradually reduced at a certain value 
of B the self-oscillations i.e. the Limit cycle would 

reappear and the system would reappear and the 
system would exhibit complex oscillations again 
which can be called de-synchronisation. The 
phenomena of synchronization and de-
synchronization can be observed/identified 
analytically using the Incremental Input Describing 
function (IDF).   

However, the forced oscillation can also be 
analyzed using the Equivalent Gain/Dual input 
Describing Function (DIDF), [33], [49], in the case 
of a deterministic forcing signal in particular with a 
sinusoidal signal. Similarly, Equivalent Gain 
(Random input Describing Function-RIDF), [60], 
[61], [62] in case of random forcing signal, in 
particular with Gaussian Signal. 

The complexity arises in the structures, [6], 
particularly for the implicit non-memory type or 
memory type nonlinearities, it may be extremely 
difficult to formulate and simplify the expressions 
even using the harmonic linearization method [48]. 
Hence an attempt has been made to develop a 
graphical technique using the harmonic linearization 
/ harmonic balance method for prediction of limit 
cycles in 3x3 nonlinear systems by extension of the 
procedure as presented in [28]. The method uses the 
simultaneous intersection of two straight lines and 
one circle in three combinations. 

The analytical/mathematical observation of 
synchronization and de-synchronization of complex 
oscillation in the process of signal stabilization 
would be quite involved and time-consuming. 
Hence the digital simulation (Using our developed 
program) opted for the demonstration of signal 
stabilization with deterministic/random (Gaussian) 
signals which have been validated through the use 
of the SIMULINK Toolbox of MATLAB Software. 

It is established that the system shown in Figure 
1 with Numerical Example 1 and Example 2 
exhibits a limit cycle in the autonomous state. The 
possibility of quenching the self-sustained 
oscillations has been explored by injecting suitable 
high frequency preferably more than ten times 
of s signals, [5], at any one/all three input points 
(U1, U2, U3) . 

However taking the second option i.e. all three 
inputs are the same as B sinf t at 3 input points U1, 
U2, & U3, shown in Figure 7. Amplitude B is 
gradually increased, the frequency of self-
oscillation, s would gradually change, the system 
will synchronize to forcing frequency i.e. the self-
oscillation would be quenched and the system would 
exhibit forced oscillations at frequency f. 
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Fig. 7(a): Equivalent System of Figure 1 for forced 
oscillations (Signal Stabilization) with deterministic 
signal for Example 1. 
 

 
Fig 7(b): Equivalent System of Figure 1 for forced 
oscillations (Signal Stabilization) with deterministic 
signal for Example 2 
 

The results/ images from digital simulation for 
signal stabilization with deterministic signals in 

Examples 1&2 are shown in Figure 8 & Figure 9 
respectively. 

The steady state values are represented as C1ss, 
C2ss, C3ss and X1ss, X2ss, and X3ss with their 
frequencies,, which are almost equal to f. 
 

 
Fig. 8: Forced Oscillations by Signal Stabilization 
with deterministic signal for Example 1 
Forcing Signal U = 5sinf t (f = 7.5 rad / sec) 
 

 

3.2  Using Gaussian Signal   
The concept of signal stabilization with random 
inputs for SISO nonlinear systems was discussed, 
[60], [61], [62]. Current research gives importance 
to robust design and analysis which considers 
uncertainty/ randomness. Until [47], signal 
stabilization with random signal for multivariable 
nonlinear systems was not available even for 2X2 
systems. 

The authors in [47], focused on robust and non-
fragile stabilization of nonlinear systems described 
by the multivariable Hammerstein model. The 
method illustrates a general procedure that addresses 
the general multi variable nonlinear systems. Of 
course, the method considers uncertainties and most 
importantly control is adopted for stabilization 
which fails to project insight into the problem. 
However, the present work shows a simple method 
to quench the limit cycling oscillations exhibited in 
a class of 3x3 nonlinear systems and stabilize the 
systems using random signals in particular a 
Gaussian Signal. The signal stabilization refers to 
the possibility of quenching the self-sustained 
oscillations by injecting a suitable high frequency 
preferably more than ten times of s (the frequency 
of LC) signal at any point of the system, [5]. The 
random signal having Gaussian distribution contains 
infinite components of frequency. The Gaussian 
Signals are passed through a high pass filter so that 
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the high frequency signal quenches the limit cycles 
and stabilizes the system. This has been illustrated 
through examples 1 and 2 revisited. This method 
projects a clear and lucid insight into the problem.  
 Consider the Examples 1 and 2 again. The 
system is exhibiting LC under an autonomous state, 
A Gaussian signal with specified mean and variance 
is injected at U1, U2 & U3 of subsystems for 
stabilizing the system / quenching the self-sustained 
oscillations. At a suitable value of mean () and 
variance (), the self-sustained oscillations vanish / 
the system is synchronised to high frequency forcing 
input.    
 The results/ images are shown in Figure 10 and 
Figure 11 for Examples 1 & 2 respectively, which 
are obtained from digital simulation by signal 
stabilization with Gaussian signals in examples 1 
and 2 replacing B sinf t using a suitable random 
signals in Figure 7(a) & Figure 7(b). 
 

 
Fig. 9: Forced Oscillations by Signal Stabilization 
with deterministic signal for Example 2 
Forcing signal U = 5 sin ft, (f = 8 rad/sec) 
 

 
Fig. 10: Forced Oscillations by signal stabilization 
with Gaussian Signal of mean 50 and variance 0.05 
for Example 1 
 

 
Fig. 11: Forced Oscillations by signal stabilization 
with Gaussian Signal of mean 300 and variance 
0.025 for Example 2 

 
Example 3: Consider a system where linear 

elements are represented by their transfer functions 
G(s) and the nonlinear elements are dead zone with 
saturation whose input output characteristics is 
shown in Figure 12 and represented by their 
describing functions N: where  ; 

 ;  =    
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Fig. 12: The nonlinear elements used in the system 
of example 3 (the same nonlinear elements are used 
for three sub systems, S1, S2, and S3.) 
 

The simulation diagram of Ex 3 is shown in 
Figure 13(a).  

 

 
Fig. 13(a): Equivalent System of Figure 1 for forced 
oscillations (Signal Stabilization) with 
random/Gaussian signal for Example 3 

 
The result / images obtained from digital 

simulation, using Gaussian signals are shown in 
Figure 13 (a).  

Figure 13 (b) shows the limit cycling oscillation 
in the absence of the forcing signal and Figure 13(c) 
shows the forced oscillation with a Gaussian signal 
of mean 70 and variance 0.025 for Example 3. 

 

 
Fig. 13(b): The limit cycle oscillations in the 
absence of forcing signals for Example 3. (s=0.647 
rad/sec) 

 

 
Fig. 13(c): Forced oscillations with Gaussian signal 
of mean 70 and variance 0.025 for the Example 3 
 
 
4  Suppression of Limit Cycle in 3x3 

Nonlinear System using Pole 

Placement Technique 
Limit cycles or self-sustained oscillations of a 2X2 
system can be suppressed by pole placement 
technique, [8]. The problem of placing the closed 
loop poles or Eigen values of the closed loop 
systems at the desired location using state feedback 
through an appropriate state feedback gain matrix K 
[k1, k2, k3]. Necessary and sufficient condition for 
arbitrary pole placement is that the system be 
completely state controllable, [58]. This can also be 

Y 

-0.1 

K 
-M=-0.1 

M 

S 0.1

1 

K1 = 1 
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done by optimal selection of feedback gain matrix K 
using Riccati Equation, [48], [59]. 

 
4.1 Suppression of Limit Cycles in 3X3 

Nonlinear System using Arbitrary Pole 

Placement by State Feedback 
Pole placement technique by state feedback is done 
by determining the Eigen values or poles of the 
system. These Eigen values cause the limit cycles in 
the system, and as the complete removal of these 
self-oscillations may not be possible, the location of 
the poles must be changed from its original position 
to bring about suppression of the limit cycle. The 
most general multivariable nonlinear system, [6], is 
shown in Figure 14(a). For the existence of limit 
cycles, an autonomous system (input U=0) Figure 
12(a) can be represented in a simplified form as 
shown in Figure 14(b). Making use of the first 
harmonic linearization of the nonlinear elements, the 
matrix equation for the system of Figure 14(b) can 
be expressed as  
X = -HC, where C = GN(x) X.  Hence, 

X = -HGN(x) = AX                                     (5) 
 
Where, A = -HGN(x) 
 

 
Fig. 14(a): Block diagram representation of a most 
general nonlinear multivariable system 
 

 
Fig. 14(b): Equivalent of the system of Figure 12 (a) 
with input U= 0 
 

Realizing Eqn. (5) As a transformation of the 
vector X onto itself, it is noted that for a limit cycle 
to exist the following two conditions should be 
satisfied, [6]. For every non-trivial solution of X, the 
matrix A must have an Eigen value λ equal to unity, 
and 

(i) The Eigen vector of “A” corresponding to 
this unity Eigen value must be 
coincident with X. 
 

4.1.1 Arbitrary Pole Placement for Suppression 

of Limit Cycles in Example 1 with All Ideal 

Relays     

To suppress the limit cycles, arbitrary pole 
placements may be possible if the system is 
completely state controllable [58].  

The controllability matrix                                                                    
(6) 

 
Where,  

  ;  

 

 

;  

 
 
From Table 1 for Example 1, 

 X1= 6.08, X2= 6.08, X3 
=6.32 
N1(X1) =    =  = 0.419; N2(X2) =   = 

 = 0.314, N3(X3) =  =  = 0.202 

 =  = 1.913                                                                                                                 

 =  =  = 0.351 

 = 0.673 

 
On substitution of the numerical values:  

 = -0.419 X 1.913 = - 0.802,  
 = - 0.314 X 0.351 = -0.110,  
 = -0.202 X 0.673 = -0.136 

 ; AB = 

  = ; 
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B =   = 

 

 

Hence S = = 0.0215≠0 

(The system is completely state controllable) 
 
Hence arbitrary pole placement is possible [58] 

=                     (7)      

 
The system under autonomous state is represented 
as shown in Figure 15.                                                                                                
 

Fig. 15: A system with state feedback 
 
Consider Figure 15: 

The control law u = -KX                           (8) 
 
Where K= [ ] is the feedback matrix. 
 Replacing K in Eqn. (7) by Eqn. (8), we get: 

= (A-BK) X               (9) 

 
Substituting the values of A, B and K, we get: The 
Characteristic Equation as:   

                                                                                                    

  
Hence,    

      

=                                                                    

      

=  

= {( ( +
( } 

(  - 
( + )} 

(  -  
( + )} 
={ + - + + -

+ + + +
-

+ + -
+ + +{

+ -
+ -

-
+ ( - + -

) 
= ( + + + )+ ( +

+ + + -
+ + + -

)+ -
+ + -

+ - -
- + -

 
= + ( + + + )+ (2 +2

+2 + + +
+ )+(4 +

+ =0               (10)  
 
(Ch. Equation)  
On substitution of the values of , , ,  and 

,  in Eqn. (10), we get, 
+ (0.136+0.11+0.802+ + 0.177+0.218+0.0

30+ + + 
+ }+(0.048+0.522+ =0          Or 

+ (1.048+ + 0.136
(0.57 x0.03)=0   (11) 

 
If the poles are selected arbitrarily at 

 respectively, the 
characteristic equation becomes: 
(  (  (  = +4 +5 +2=0          

(12) 
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Comparing Eq. (12) with Eq. (11), and equating the 
coefficients of like powers of  we get: 

4 = 1.048      (13) 
 

2 = (0.57  x 0.03), whence      (14) 
 

5 = (0.425  x 0.136 +  x 0.136  x 0.91) 
   

 
5= (0.425   0.136 +  x 0.136 

 x 0.91) or  
 
5=(0.425  +  x 0.136 ), whence 

                                                       (15) 

Hence K =  = 

                       (16) 

 
From Eqn. (9), (A – BK) = A1, with shifted poles for 
Example 1. Or 

A1 =  = 

                    (17) 

 

The images/response   in the 

autonomous state obtained from digital simulation 
for A1 of Example 1, are shown in Figure 16.  
 

 
Fig. 16: Suppression of Limit Cycles by State 
Feedback with arbitrarily selection of feedback gain 
matrix for Example 1 
 
 

4.1.2  Optimal Selection of Feedback gain Matrix 

using Riccati Equation for Example 1 
The Riccati Equation is A′P+PA- B′P+Q=0   

(18)  
 

And K = Feedback gain matrix =  B′P  (19) 
 

Assuming R = 1, B= , Q =   

 

Let P= , considering P to be 

symmetric matrix: = ,   

Hence P =   

 

P =     

=  

 
  (20) 

 

PA=  

=  

 
    (21) 

 

B′P= ,

= 

 

 
 = 
 

=

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2023.18.69 Kartik Chandra Patra, Asutosh Patnaik

E-ISSN: 2224-2856 690 Volume 18, 2023



=

                               (22) 

 
On substitution of numerical values, Eqn. 20 can be 
written as: 

(23) 
 

On substitution of numerical values, Eqn. 21 can be 
written as: 

 
 (24) 

 
On substitution of these values of Eqns. (22), (23), 
(24) and the assumed value of Q in Riccati Eqn. 18 
yields: 

(-1.604 -1.604 )+1-p213 = 0 
    (25) 

 
(-0.912 +0.802 -0.802 -0.11 +0.11 -

p13 p23=0  (26) 
 

(-0.938 +0.802 p23-0.802 p33+0.136 p11-0.136 p12- 
p13 p33=0                          (27) 

 
(-0.22 p12-0.22 p22+0.22 p23- p2

23 = 0       (28) 
 

(-0.11 p13-0.246 p23+0.11 p33+0.136 p12-0.136 p22- 
p23 p33=0    (29) 

 
(0.272 p13-0.272 p23-0.272 p33- p33 p23) = 0      (30) 

 
Further, subtracting Eqn. (29) from Eqn. (30), we 
get,  

0.382 p13 – 0.026 p23 – 0.382 p33 – 0.136  + 
0.136 p22    (31) 

 
The solution of these simultaneous Eqns. 
(26),(27),(28),(29),(30) & (31) yields :  
   = -116.68,  = -110.48, =6.58,  = -
93.24, p23 = -6.58, p33 = 0 
From Eqn. (19), K =  B′P = 1  

 

Or =

  
Or =   
=  , 

 Whence,  = 6.58, = -6.58 and  = 0      (32) 
 

Hence, A – BK =  

A2 =   

 
On substitution of numerical values for Example 1, 
A2 becomes:  

A2 =    

=              (33) 

The images/ responses C =  and  =  in the 

autonomous state, obtained from digital simulation 
for Example 1, are shown in Figure 17.  
 

 
Fig. 17: Suppression of Limit Cycles by State 
Feedback with optimal selection of feedback gain 
matrix for Example 1 
 
 
5    Conclusion 
In today’s scenario, nonlinear self-sustained 
oscillations or Limit Cycles are the basic feature of 
instability. The existence /exhibition of such 
phenomena limit the performance of most of the 
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physical systems such as the speed and position 
control in robotics, the automation industry in 
particular. Quenching / complete extinction of such 
LC has been severe headache among researchers for 
several decades. There are some methods, seen in 
the available literatures which suggest the solution 
to this problem occurring in SISO or 2x2 systems. 
However, the present work explores the solution for 
3x3 systems in the event of the existence of an LC 
problem and establishes the result graphically & 
validated by digital simulation. The novelty of the 
work claims in (i) Quenching of LC exhibited in 
nonlinear systems by Signal Stabilization with 
deterministic as well as random (Gaussian) signals, 
(ii) Suppression of limit cycles in 3x3 nonlinear 
systems by Pole Placement using State feedback 
with arbitrary selection as well as optimal selection 
of feedback gain matrix K.  

More importantly, the poles of such 3x3 systems 
are shifted or placed suitably by State feedback so 
that the system does not exhibit limit cycles. This 
pole placement is done either by arbitrary selection 
satisfying the complete state controllability 
condition or by optimal selection of feedback gain 
matrix K using the Riccati equation which has not 
been attempted earlier. 

The present work has the brighter future scope of 
adopting techniques like signal stabilization [46], 
[47] and suppression of limit cycles [48], in the 
event of the existence of limit cycling oscillations 
for 3x3 or higher dimensional systems through an 
exhaustive analysis.  

Analytical/Mathematical procedures may also be 
developed for signal stabilization using both 
deterministic and random signals applying DIDF 
and RIDF respectively.  

Backlash is one of the nonlinearities commonly 
occurring in physical systems which are an inherent 
characteristic of Governor, more popularly used for 
load frequency control (LFC) in power systems. The 
LFC shows poor performance due to the backlash 
characteristic of the governor. Similarly, the 
backlash characteristic limits the performance of 
speed and position control in the robotics, and 
automation industry. The poor performance of LFC, 
speed, and position control in robotics and in 
automation industries is happening since these 
systems exhibit limit cycles due to their backlash 
type of nonlinear characteristics. The proposed 
method of suppression of L.C. can be extended and 

developed for backlash type nonlinearity in 3x3 
systems and used to eliminate the limit cycle to 
mitigate such problems.  

The phenomena of synchronization and de-
synchronization can be observed / identified 

analytically using the Incremental Input Describing 
function (IDF). 
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