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1   Introduction 
Tubular surfaces are a fascinating class of 
geometric objects that arise in differential 
geometry. This kind of surface can be seen as the 
result of sweeping a curve through the Euclidean 
space, constructing a "tube" around the curve which 
is considered as the direction of the tube. Studying 
this class of surfaces, namely the tubular surfaces, is 
fundamental in many branches of mathematics and 
is applicable in physics, engineering, and computer 
graphics.  

Normal bundle is one of the essential concepts 
associated with tubular surfaces. In the Euclidean 3-
space, the normal bundle of a curve consists of 
vectors that are orthogonal to the curve at each 
point. By extending these vectors, one can create a 
tubular neighborhood along the curve. The radius of 
this neighborhood, or the size of the tube, is a 
crucial parameter that influences the geometry of 
the tubular surface.  

Immersions of finite Chen type, introduced by 
B.-Y. 50 years ago, [1] and has become a significant 
topic of active research in the field of differential 
geometry. Surfaces of finite Chen type encompass 
diverse surfaces that exhibit certain geometric 
properties. Examples of surfaces that fall under this 
category include immersions with vanishing Gauss 
curvature, minimal surfaces, and various special 
classes of surfaces, such as tubes [2], quadrics [3], 

[4], [5], translation surfaces [6], [7], ruled surfaces 
[8], [9], [10], surfaces of revolution [11], [12], [13], 
[14], [15], spiral surfaces [16], cyclides of Dupin 
[17], [18] and helicoidal surfaces [19], [20]. These 
classes represent various special cases of surfaces 
that fall under the umbrella of finite Chen type. 
Each of these classes has its distinctive geometric 
features. 

For a connected surface Q in Euclidean 3-space 
E3, described by coordinates v1, and v2, the 1st, 2nd, 
and 3rd fundamental forms are represented by (gij), 
(bij), and (eij) respectively. 

The first fundamental form (gij) is associated 
with the metric tensor of the surface, representing 
lengths and angles on the surface. The second 
fundamental form (bij) is related to the shape 
operator and provides information about the 
extrinsic curvature of the surface. The third 
fundamental form (eij) is associated with the 
derivatives of the unit normal vector to the surface. 

The 1st differential parameter of Beltrami is a 
mathematical quantity associated with surfaces in 
differential geometry. Now, let's consider two 
functions γ and δ defined on the surface Q. The 1st 
differential parameter of Beltrami concerning the 
fundamental form J = I, II, III between these two 
functions is defined as: 

J(,): = cij /i /j, 
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where /i: = 
iv

  and (cij) represents the inverse 

tensor of (gij), (bij), and (eij). The 2nd differential 
parameter of Beltrami regarding the fundamental 
form J of Q is defined by:  
 

ΔJ:  = -
/j/i )(1

ijcc
c

, c = det(cij). 

For the position vector z = z(v1,v2), of Q in E3 we 
have the following relation: 

IIIz = -ΙI(
K

H2 , z) -
K

H2 N, 

 
where N is the unit normal vector field, K is the 
Gauss curvature, and H is the mean curvature of Q. 
It was subsequently demonstrated that a surface 
meeting this criterion:  

ΔΙIΙz = λz,    λΙR, 
 
i.e. the statement asserts that if Q: z = z(v1,v2)  
satisfies this condition, where all coordinate 
functions are eigenfunctions of ΔΙIΙ with eigenvalue 
λ is the same, then Q is either a part of a sphere 
(with λ = 2) or a minimals (with λ = 0). In other 
words, this condition provides a geometric 
characterization of surfaces based on the behavior of 
their Laplace-Beltrami eigenfunctions. The 
eigenvalue λ being equal to 0 suggests a minimal 
surface, which is a surface with mean curvature 
equal to zero, while λ being equal to 2 suggests a 
spherical geometry. 
 

 

2   Fundamentals 
Consider the parametric representation  

𝒓(𝑥, 𝑦)  =  {𝑟1(𝑥, 𝑦), 𝑟2(𝑥, 𝑦), 𝑟3(𝑥, 𝑦)}, (𝑥, 𝑦) ∈
B  ℝ2 

 
Of a surface Q. Denote by:  

rx = 𝜕𝒓

𝜕𝑥
 ,   ry =

𝜕𝒓

𝜕𝑦
 ,   rxx = 𝜕

2𝑥

𝜕𝑥2  , … 
 
For the metric I of Q, it’s known that: 

I = Edx2 + 2Fdxdy + Gdy2. 
 
Applying the Laplacian operator ΔΙ, to a sufficiently 
differentiable function φ(x, y) defined on the same 
region D  ℝ2 gives, [21]: 

ΔΙφ = -


















































 y

yx

x

yx

FEG

EF

FEG

FG

FEG 222

1  . 

 
The metric II of Q is: 

II = Ldx2 + 2Mdxdy + Ndy2. 
 

The Laplacian ΔΙΙ is given by [21]: 
 ΔΙΙφ = 
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The metric III of Q is: 

III = e11 dx2 + 2e12 dxdy + e22 dy2. 
 
The Laplacian ΔΙIΙ is given by: 

ΔΙΙΙφ: = -eikk
ΙΙΙφ/i. 

 
For any vector-valued function r = {r1, r2, r3}, 
defined on B  ℝ2, we have: 

ΔJr = {ΔJr1, ΔJr2, ΔJr3}, J = I, II, III.                 
 
Certainly, let's elaborate on the definition of 

immersions of coordinate finite type, Subsequently, 
we can extend this investigation to a significant 
category of surfaces known as tubular surfaces.  
Definition 1. A surface Q is termed to be of 
coordinate finite type concerning the metric III if the 
position vector r of Q adheres to a specific relation 
of the form  

IIIr = Ar,                                      (1) 
 
where A is a square matrix of order 3. 
 

 

3   Tubular Surfaces 
A tubular surface is a surface that is formed by 
sweeping a regular unit speed curve C: c = c(v), 
v(a, b) of finite length in space along a given 
direction. It can be thought of as a surface "wrapped 
around" a curve. Let T, N, B be the Frenet frame of 
the curve C and let Κ > 0 be its curvature. Then a 
regular parametric representation of a tubular 
surface Ѣ of radius s satisfies 0 < s < min 

Κ

1  is 

given by [7]: 
Ѣ : r(v, ψ) = c + s cosψ N + s sinψ B.              (2) 

 
For the components gij of the first fundamental 

form I = gijdvidψ j we have: 
gij = 













 
22

2222

ss

ss



 , 

 
while the components bij of the second fundamental 
form are given by:  

bij = 












 

ss

ss



 cos2 Κ , 

 
where τ is the torsion of the curve c, and δ:= (1 - sΚ
cosψ). For the Gauss curvature of Ѣ, we have: 
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KG = -




s

cosΚ    (3) 

 
As we note before the Gauss curvature never 

vanishes, so we must have Κ ≠ 0. The Beltrami 
operator corresponding to the metric III of Ѣ can be 
found as follows: 

Δ= 






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
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Κcos
Κ 2 .         (4) 

 
where β: = Κ 'cosψ + Κ τsinψ, and ': = 

dv

d . 

Inserting the position vector of (2) in relation (4) we 
get: 
Δr = 

3)cos( 



Κ
T + (2s cosψ -

2cos

1

Κ
)N + 2ssinψ B.    

(5) 
 

Let r1, r2, r3 the component functions of the 
parametric representation (5). We will examine 
when will the surface Ѣ satisfies the relation (1). 
Analytically, we have:   
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 .                (6). 

 
Let ci, Ti, Ni, Bi, i = 1, 2, 3, the component functions 
of the vectors c, T, N, and B respectively. From (2) 
and system (6) we have: 

3)cos( 



Κ
Ti + (2s cosψ -

2cos

1

Κ
)Ni + 2ssinψ Bi = 

= λi1(c1 + s cosψ N1+ s sinψ B1) + 
λi2(c2 + s cosψ N2+ s sinψ B2) + 

+ λi3(c3 + s cosψ N3+ s sinψ B3),               (7) 
i = 1, 2, 3. 

 
We have the following two cases: 
Case I. β = 0. Then Κ ' = 0 and Κ τ = 0. Thus τ = 0 
and Κ  = const. ≠ 0, therefore the curve c is a plane 
circle and so, Ѣ is an anchor ring. In this case, a 
regular parametric representation of an anchor ring 
is:  
Ѣ: r(u,v) ={(a + scosu)cosv , (a+scosu)sinv ,s sinu},    

(8) 
a  s, a,sIR, 0  u  2π, 0  v  2π. 

 
The first fundamental form becomes: 

Ι: = s2du2 + (a +scosu)2dv2, 

while the second is: 
II: = sdu2 + (a + scosu)cosudv2. 

 
The Laplacian corresponding to the metric III of Ѣ 
can be found as follows: 

Δ = -
2

2

22

2

vucos

1

ucosu

sinu

u 











 .               (9) 

 
Let r1, r2, r3 the component functions of the 
parametric representation (2). Applying relation (9) 
for the functions r1, r2, and r3 we get: 

Δr1 = Δ[(a + scosu)cosv] = 
ucos

acosv
2

 + 2scosucosv, 

Δr2 = Δ[(a + rcosu)sinv] = 
ucos

asinv
2

 + 2scosusinv, 

Δr3 = Δ(ssinu) = 2ssinu. 
 
From the last three equations and system (6) we 
have: 

ucos

acosv
2

 + 2scosucosv = 

λ11(a + scosu)cosv + λ12(a + scosu)sinv +λ13ssinu,      
(10) 

ucos

asinv
2

 + 2scosusinv = 

λ21(a + scosu)cosv + λ22(a + scosu)sinv +λ23ssinu,      
(11) 

2ssinu = λ31(a + scosu)cosv + 
λ32(a + scosu)sinv + λ33ssinu.                   (12) 

 
From (12) it can be easily seen that: 

λ31 = λ32 = 0,  λ33 = 2. 
 
Deriving relation (10) twice with respect to the 
parameter v we get: 

ucos

acosv
2

 + 2scosucosv = 

λ11(a + scosu)cosv + λ12(a + scosu)sinv.             (13) 
 
From (10) and (13) we find that λ13 = 0. 
Similarly, we will get λ23 = 0, and relations (10) and 
(11) finally become 

acosv = λ11acos2ucosv + λ12acos2usinv + 
(λ11 - 2)scos3ucosv + λ12scos3usinv,               (14) 

 
asinv = λ21acos2ucosv + λ22acos2usinv + 

+ (λ22 - 2)scos3usinv + λ21scos3ucosv.              (15) 
 
Deriving (14) and (15) with respect to the parameter 
v we have: 

2λ11acosv + 2λ12asinv + 
3(λ11 - 2)scosucosv + 3λ12scosusinv = 0,           (16) 

2λ21acosv + 2λ22asinv + 
3(λ22 - 2)scosusinv + 3λ21scosucosv = 0. 
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Deriving (16) with respect to the parameter v we 
have: 

-2λ11asinv + 2λ12acosv - 3(λ11 - 2)scosusinv 
+ 3λ12scosucosv = 0.                            (17) 

 
Multiplying (16) by sinv and (17) by cosv and 
adding the resulting equations, we obtain: 
  λ12(2a + 3rcosu) = 0  λ12 = 0. 
 
Following the same procedure, we also get λ21 = 0. 
Thus relations (14) and (15) become: 

a =λ11acos2u + (λ11 - 2)scos3u, 
a =λ22acos2u + (λ22 - 2)scos3u. 

 
From the last two equations, we conclude that 

λ11, and λ22 depend on the parameter u and are not 
constants, and hence relation (1) cannot be satisfied 
so we proved  
Proposition 1. The position vector of a parametric 
representation of an anchor ring (8) does not satisfy 
the relation ΔIIIr = Ar. 
Case II. β ≠ 0. 
 
Recalling equations (7), then we can write these 
equations as follows:  
βTi + 2sΚ

3cos4ψNi - Κ
2cosψNi + 2sΚ

3sinψcos3ψBi - 
-λi1Κ

3(c1cos3ψ + scos4ψN1 + scos3ψsinψB1) - 
-λi2Κ

3(c2cos3ψ + scos4ψN2 + scos3ψsinψB2) - 

-λi3Κ
3(c3cos3ψ + scos4ψN3 + scos3ψsinψB3) = 0, 

i =1, 2, 3, 
 
We also rewrite it in terms of cosψ as follows: 

βTi - Κ
2cosψNi + sΚ

3(2Ni - λi1N1 - λi2N2 - 

λi3N3)cos4ψ + 

+ sΚ
3(2Bi - λi1B1 - λi2B2 - λi3B3)cos3ψsinψ – 

Κ
3(λi1c1 + λi2c2 + λi3c3)cos3ψ = 0, 

i = 1, 2, 3. 
 

The above equations for i =1, 2, 3, are 
polynomials of the variables cosψ, sinψ with 
coefficients functions of the variable v. To be the 
last equations satisfied for all i = 1, 2, 3, then the 
coefficients functions of these polynomials must 
equal zeros. So we must have: 

λi1c1 + λi2c2 + λi3c3 = 0, 

2Ni - λi1n1 - λi2N2 - λi3N3 = 0, 

2Bi - λi1B1 - λi2B2 - λi3B3 = 0, 

βTi - Κ
2cosψ Ni = 0,                 (18) 

i = 1, 2, 3. 
 

Since relation (18) holds for all i = 1, 2, 3, then 
we write (18) in vector notation as follows: 

βT + Κ 2cosψ N = 0, 

from which we obtain that β = 0 and Κ  = 0. Hence 
Ѣ is an anchor ring, a case that has been investigated 
previously. So we proved: 
Theorem 1. There are no tubular surfaces in the 
three-dimensional Euclidean space whose position 
vector satisfies the relation IIIr = Ar. 
 

 

4   Conclusion 
This research article was divided into three sections, 
where after the introduction, the needed definitions 
and relations regarding this interesting field of study 
were given. Then a formula for the Laplace operator 
corresponding to the first, second, and third 
fundamental forms of a surface Q were defined. 
Finally, we classified the tubular surfaces satisfying 
the relation Δr = Ar, for a real square matrix A of 
order 3. It is also interesting if this type of research 
can be applied to other families of surfaces that have 
not been studied yet such as spiral surfaces, or 
cyclides of Dupin. 
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